mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-26 23:55:40 +08:00
rdma/siw: application buffer management
Broken up commit to add the Soft iWarp RDMA driver. Signed-off-by: Bernard Metzler <bmt@zurich.ibm.com> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
This commit is contained in:
parent
303ae1cdfd
commit
2251334dca
460
drivers/infiniband/sw/siw/siw_mem.c
Normal file
460
drivers/infiniband/sw/siw/siw_mem.c
Normal file
@ -0,0 +1,460 @@
|
||||
// SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
|
||||
|
||||
/* Authors: Bernard Metzler <bmt@zurich.ibm.com> */
|
||||
/* Copyright (c) 2008-2019, IBM Corporation */
|
||||
|
||||
#include <linux/gfp.h>
|
||||
#include <rdma/ib_verbs.h>
|
||||
#include <linux/dma-mapping.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/sched/mm.h>
|
||||
#include <linux/resource.h>
|
||||
|
||||
#include "siw.h"
|
||||
#include "siw_mem.h"
|
||||
|
||||
/*
|
||||
* Stag lookup is based on its index part only (24 bits).
|
||||
* The code avoids special Stag of zero and tries to randomize
|
||||
* STag values between 1 and SIW_STAG_MAX_INDEX.
|
||||
*/
|
||||
int siw_mem_add(struct siw_device *sdev, struct siw_mem *m)
|
||||
{
|
||||
struct xa_limit limit = XA_LIMIT(1, 0x00ffffff);
|
||||
u32 id, next;
|
||||
|
||||
get_random_bytes(&next, 4);
|
||||
next &= 0x00ffffff;
|
||||
|
||||
if (xa_alloc_cyclic(&sdev->mem_xa, &id, m, limit, &next,
|
||||
GFP_KERNEL) < 0)
|
||||
return -ENOMEM;
|
||||
|
||||
/* Set the STag index part */
|
||||
m->stag = id << 8;
|
||||
|
||||
siw_dbg_mem(m, "new MEM object\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* siw_mem_id2obj()
|
||||
*
|
||||
* resolves memory from stag given by id. might be called from:
|
||||
* o process context before sending out of sgl, or
|
||||
* o in softirq when resolving target memory
|
||||
*/
|
||||
struct siw_mem *siw_mem_id2obj(struct siw_device *sdev, int stag_index)
|
||||
{
|
||||
struct siw_mem *mem;
|
||||
|
||||
rcu_read_lock();
|
||||
mem = xa_load(&sdev->mem_xa, stag_index);
|
||||
if (likely(mem && kref_get_unless_zero(&mem->ref))) {
|
||||
rcu_read_unlock();
|
||||
return mem;
|
||||
}
|
||||
rcu_read_unlock();
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static void siw_free_plist(struct siw_page_chunk *chunk, int num_pages,
|
||||
bool dirty)
|
||||
{
|
||||
struct page **p = chunk->plist;
|
||||
|
||||
while (num_pages--) {
|
||||
if (!PageDirty(*p) && dirty)
|
||||
put_user_pages_dirty_lock(p, 1);
|
||||
else
|
||||
put_user_page(*p);
|
||||
p++;
|
||||
}
|
||||
}
|
||||
|
||||
void siw_umem_release(struct siw_umem *umem, bool dirty)
|
||||
{
|
||||
struct mm_struct *mm_s = umem->owning_mm;
|
||||
int i, num_pages = umem->num_pages;
|
||||
|
||||
for (i = 0; num_pages; i++) {
|
||||
int to_free = min_t(int, PAGES_PER_CHUNK, num_pages);
|
||||
|
||||
siw_free_plist(&umem->page_chunk[i], to_free,
|
||||
umem->writable && dirty);
|
||||
kfree(umem->page_chunk[i].plist);
|
||||
num_pages -= to_free;
|
||||
}
|
||||
atomic64_sub(umem->num_pages, &mm_s->pinned_vm);
|
||||
|
||||
mmdrop(mm_s);
|
||||
kfree(umem->page_chunk);
|
||||
kfree(umem);
|
||||
}
|
||||
|
||||
int siw_mr_add_mem(struct siw_mr *mr, struct ib_pd *pd, void *mem_obj,
|
||||
u64 start, u64 len, int rights)
|
||||
{
|
||||
struct siw_device *sdev = to_siw_dev(pd->device);
|
||||
struct siw_mem *mem = kzalloc(sizeof(*mem), GFP_KERNEL);
|
||||
struct xa_limit limit = XA_LIMIT(1, 0x00ffffff);
|
||||
u32 id, next;
|
||||
|
||||
if (!mem)
|
||||
return -ENOMEM;
|
||||
|
||||
mem->mem_obj = mem_obj;
|
||||
mem->stag_valid = 0;
|
||||
mem->sdev = sdev;
|
||||
mem->va = start;
|
||||
mem->len = len;
|
||||
mem->pd = pd;
|
||||
mem->perms = rights & IWARP_ACCESS_MASK;
|
||||
kref_init(&mem->ref);
|
||||
|
||||
mr->mem = mem;
|
||||
|
||||
get_random_bytes(&next, 4);
|
||||
next &= 0x00ffffff;
|
||||
|
||||
if (xa_alloc_cyclic(&sdev->mem_xa, &id, mem, limit, &next,
|
||||
GFP_KERNEL) < 0) {
|
||||
kfree(mem);
|
||||
return -ENOMEM;
|
||||
}
|
||||
/* Set the STag index part */
|
||||
mem->stag = id << 8;
|
||||
mr->base_mr.lkey = mr->base_mr.rkey = mem->stag;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void siw_mr_drop_mem(struct siw_mr *mr)
|
||||
{
|
||||
struct siw_mem *mem = mr->mem, *found;
|
||||
|
||||
mem->stag_valid = 0;
|
||||
|
||||
/* make STag invalid visible asap */
|
||||
smp_mb();
|
||||
|
||||
found = xa_erase(&mem->sdev->mem_xa, mem->stag >> 8);
|
||||
WARN_ON(found != mem);
|
||||
siw_mem_put(mem);
|
||||
}
|
||||
|
||||
void siw_free_mem(struct kref *ref)
|
||||
{
|
||||
struct siw_mem *mem = container_of(ref, struct siw_mem, ref);
|
||||
|
||||
siw_dbg_mem(mem, "free mem, pbl: %s\n", mem->is_pbl ? "y" : "n");
|
||||
|
||||
if (!mem->is_mw && mem->mem_obj) {
|
||||
if (mem->is_pbl == 0)
|
||||
siw_umem_release(mem->umem, true);
|
||||
else
|
||||
kfree(mem->pbl);
|
||||
}
|
||||
kfree(mem);
|
||||
}
|
||||
|
||||
/*
|
||||
* siw_check_mem()
|
||||
*
|
||||
* Check protection domain, STAG state, access permissions and
|
||||
* address range for memory object.
|
||||
*
|
||||
* @pd: Protection Domain memory should belong to
|
||||
* @mem: memory to be checked
|
||||
* @addr: starting addr of mem
|
||||
* @perms: requested access permissions
|
||||
* @len: len of memory interval to be checked
|
||||
*
|
||||
*/
|
||||
int siw_check_mem(struct ib_pd *pd, struct siw_mem *mem, u64 addr,
|
||||
enum ib_access_flags perms, int len)
|
||||
{
|
||||
if (!mem->stag_valid) {
|
||||
siw_dbg_pd(pd, "STag 0x%08x invalid\n", mem->stag);
|
||||
return -E_STAG_INVALID;
|
||||
}
|
||||
if (mem->pd != pd) {
|
||||
siw_dbg_pd(pd, "STag 0x%08x: PD mismatch\n", mem->stag);
|
||||
return -E_PD_MISMATCH;
|
||||
}
|
||||
/*
|
||||
* check access permissions
|
||||
*/
|
||||
if ((mem->perms & perms) < perms) {
|
||||
siw_dbg_pd(pd, "permissions 0x%08x < 0x%08x\n",
|
||||
mem->perms, perms);
|
||||
return -E_ACCESS_PERM;
|
||||
}
|
||||
/*
|
||||
* Check if access falls into valid memory interval.
|
||||
*/
|
||||
if (addr < mem->va || addr + len > mem->va + mem->len) {
|
||||
siw_dbg_pd(pd, "MEM interval len %d\n", len);
|
||||
siw_dbg_pd(pd, "[0x%016llx, 0x%016llx] out of bounds\n",
|
||||
(unsigned long long)addr,
|
||||
(unsigned long long)(addr + len));
|
||||
siw_dbg_pd(pd, "[0x%016llx, 0x%016llx] STag=0x%08x\n",
|
||||
(unsigned long long)mem->va,
|
||||
(unsigned long long)(mem->va + mem->len),
|
||||
mem->stag);
|
||||
|
||||
return -E_BASE_BOUNDS;
|
||||
}
|
||||
return E_ACCESS_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
* siw_check_sge()
|
||||
*
|
||||
* Check SGE for access rights in given interval
|
||||
*
|
||||
* @pd: Protection Domain memory should belong to
|
||||
* @sge: SGE to be checked
|
||||
* @mem: location of memory reference within array
|
||||
* @perms: requested access permissions
|
||||
* @off: starting offset in SGE
|
||||
* @len: len of memory interval to be checked
|
||||
*
|
||||
* NOTE: Function references SGE's memory object (mem->obj)
|
||||
* if not yet done. New reference is kept if check went ok and
|
||||
* released if check failed. If mem->obj is already valid, no new
|
||||
* lookup is being done and mem is not released it check fails.
|
||||
*/
|
||||
int siw_check_sge(struct ib_pd *pd, struct siw_sge *sge, struct siw_mem *mem[],
|
||||
enum ib_access_flags perms, u32 off, int len)
|
||||
{
|
||||
struct siw_device *sdev = to_siw_dev(pd->device);
|
||||
struct siw_mem *new = NULL;
|
||||
int rv = E_ACCESS_OK;
|
||||
|
||||
if (len + off > sge->length) {
|
||||
rv = -E_BASE_BOUNDS;
|
||||
goto fail;
|
||||
}
|
||||
if (*mem == NULL) {
|
||||
new = siw_mem_id2obj(sdev, sge->lkey >> 8);
|
||||
if (unlikely(!new)) {
|
||||
siw_dbg_pd(pd, "STag unknown: 0x%08x\n", sge->lkey);
|
||||
rv = -E_STAG_INVALID;
|
||||
goto fail;
|
||||
}
|
||||
*mem = new;
|
||||
}
|
||||
/* Check if user re-registered with different STag key */
|
||||
if (unlikely((*mem)->stag != sge->lkey)) {
|
||||
siw_dbg_mem((*mem), "STag mismatch: 0x%08x\n", sge->lkey);
|
||||
rv = -E_STAG_INVALID;
|
||||
goto fail;
|
||||
}
|
||||
rv = siw_check_mem(pd, *mem, sge->laddr + off, perms, len);
|
||||
if (unlikely(rv))
|
||||
goto fail;
|
||||
|
||||
return 0;
|
||||
|
||||
fail:
|
||||
if (new) {
|
||||
*mem = NULL;
|
||||
siw_mem_put(new);
|
||||
}
|
||||
return rv;
|
||||
}
|
||||
|
||||
void siw_wqe_put_mem(struct siw_wqe *wqe, enum siw_opcode op)
|
||||
{
|
||||
switch (op) {
|
||||
case SIW_OP_SEND:
|
||||
case SIW_OP_WRITE:
|
||||
case SIW_OP_SEND_WITH_IMM:
|
||||
case SIW_OP_SEND_REMOTE_INV:
|
||||
case SIW_OP_READ:
|
||||
case SIW_OP_READ_LOCAL_INV:
|
||||
if (!(wqe->sqe.flags & SIW_WQE_INLINE))
|
||||
siw_unref_mem_sgl(wqe->mem, wqe->sqe.num_sge);
|
||||
break;
|
||||
|
||||
case SIW_OP_RECEIVE:
|
||||
siw_unref_mem_sgl(wqe->mem, wqe->rqe.num_sge);
|
||||
break;
|
||||
|
||||
case SIW_OP_READ_RESPONSE:
|
||||
siw_unref_mem_sgl(wqe->mem, 1);
|
||||
break;
|
||||
|
||||
default:
|
||||
/*
|
||||
* SIW_OP_INVAL_STAG and SIW_OP_REG_MR
|
||||
* do not hold memory references
|
||||
*/
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
int siw_invalidate_stag(struct ib_pd *pd, u32 stag)
|
||||
{
|
||||
struct siw_device *sdev = to_siw_dev(pd->device);
|
||||
struct siw_mem *mem = siw_mem_id2obj(sdev, stag >> 8);
|
||||
int rv = 0;
|
||||
|
||||
if (unlikely(!mem)) {
|
||||
siw_dbg_pd(pd, "STag 0x%08x unknown\n", stag);
|
||||
return -EINVAL;
|
||||
}
|
||||
if (unlikely(mem->pd != pd)) {
|
||||
siw_dbg_pd(pd, "PD mismatch for STag 0x%08x\n", stag);
|
||||
rv = -EACCES;
|
||||
goto out;
|
||||
}
|
||||
/*
|
||||
* Per RDMA verbs definition, an STag may already be in invalid
|
||||
* state if invalidation is requested. So no state check here.
|
||||
*/
|
||||
mem->stag_valid = 0;
|
||||
|
||||
siw_dbg_pd(pd, "STag 0x%08x now invalid\n", stag);
|
||||
out:
|
||||
siw_mem_put(mem);
|
||||
return rv;
|
||||
}
|
||||
|
||||
/*
|
||||
* Gets physical address backed by PBL element. Address is referenced
|
||||
* by linear byte offset into list of variably sized PB elements.
|
||||
* Optionally, provides remaining len within current element, and
|
||||
* current PBL index for later resume at same element.
|
||||
*/
|
||||
u64 siw_pbl_get_buffer(struct siw_pbl *pbl, u64 off, int *len, int *idx)
|
||||
{
|
||||
int i = idx ? *idx : 0;
|
||||
|
||||
while (i < pbl->num_buf) {
|
||||
struct siw_pble *pble = &pbl->pbe[i];
|
||||
|
||||
if (pble->pbl_off + pble->size > off) {
|
||||
u64 pble_off = off - pble->pbl_off;
|
||||
|
||||
if (len)
|
||||
*len = pble->size - pble_off;
|
||||
if (idx)
|
||||
*idx = i;
|
||||
|
||||
return pble->addr + pble_off;
|
||||
}
|
||||
i++;
|
||||
}
|
||||
if (len)
|
||||
*len = 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
struct siw_pbl *siw_pbl_alloc(u32 num_buf)
|
||||
{
|
||||
struct siw_pbl *pbl;
|
||||
int buf_size = sizeof(*pbl);
|
||||
|
||||
if (num_buf == 0)
|
||||
return ERR_PTR(-EINVAL);
|
||||
|
||||
buf_size += ((num_buf - 1) * sizeof(struct siw_pble));
|
||||
|
||||
pbl = kzalloc(buf_size, GFP_KERNEL);
|
||||
if (!pbl)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
|
||||
pbl->max_buf = num_buf;
|
||||
|
||||
return pbl;
|
||||
}
|
||||
|
||||
struct siw_umem *siw_umem_get(u64 start, u64 len, bool writable)
|
||||
{
|
||||
struct siw_umem *umem;
|
||||
struct mm_struct *mm_s;
|
||||
u64 first_page_va;
|
||||
unsigned long mlock_limit;
|
||||
unsigned int foll_flags = FOLL_WRITE;
|
||||
int num_pages, num_chunks, i, rv = 0;
|
||||
|
||||
if (!can_do_mlock())
|
||||
return ERR_PTR(-EPERM);
|
||||
|
||||
if (!len)
|
||||
return ERR_PTR(-EINVAL);
|
||||
|
||||
first_page_va = start & PAGE_MASK;
|
||||
num_pages = PAGE_ALIGN(start + len - first_page_va) >> PAGE_SHIFT;
|
||||
num_chunks = (num_pages >> CHUNK_SHIFT) + 1;
|
||||
|
||||
umem = kzalloc(sizeof(*umem), GFP_KERNEL);
|
||||
if (!umem)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
|
||||
mm_s = current->mm;
|
||||
umem->owning_mm = mm_s;
|
||||
umem->writable = writable;
|
||||
|
||||
mmgrab(mm_s);
|
||||
|
||||
if (!writable)
|
||||
foll_flags |= FOLL_FORCE;
|
||||
|
||||
down_read(&mm_s->mmap_sem);
|
||||
|
||||
mlock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
|
||||
|
||||
if (num_pages + atomic64_read(&mm_s->pinned_vm) > mlock_limit) {
|
||||
rv = -ENOMEM;
|
||||
goto out_sem_up;
|
||||
}
|
||||
umem->fp_addr = first_page_va;
|
||||
|
||||
umem->page_chunk =
|
||||
kcalloc(num_chunks, sizeof(struct siw_page_chunk), GFP_KERNEL);
|
||||
if (!umem->page_chunk) {
|
||||
rv = -ENOMEM;
|
||||
goto out_sem_up;
|
||||
}
|
||||
for (i = 0; num_pages; i++) {
|
||||
int got, nents = min_t(int, num_pages, PAGES_PER_CHUNK);
|
||||
|
||||
umem->page_chunk[i].plist =
|
||||
kcalloc(nents, sizeof(struct page *), GFP_KERNEL);
|
||||
if (!umem->page_chunk[i].plist) {
|
||||
rv = -ENOMEM;
|
||||
goto out_sem_up;
|
||||
}
|
||||
got = 0;
|
||||
while (nents) {
|
||||
struct page **plist = &umem->page_chunk[i].plist[got];
|
||||
|
||||
rv = get_user_pages(first_page_va, nents,
|
||||
foll_flags | FOLL_LONGTERM,
|
||||
plist, NULL);
|
||||
if (rv < 0)
|
||||
goto out_sem_up;
|
||||
|
||||
umem->num_pages += rv;
|
||||
atomic64_add(rv, &mm_s->pinned_vm);
|
||||
first_page_va += rv * PAGE_SIZE;
|
||||
nents -= rv;
|
||||
got += rv;
|
||||
}
|
||||
num_pages -= got;
|
||||
}
|
||||
out_sem_up:
|
||||
up_read(&mm_s->mmap_sem);
|
||||
|
||||
if (rv > 0)
|
||||
return umem;
|
||||
|
||||
siw_umem_release(umem, false);
|
||||
|
||||
return ERR_PTR(rv);
|
||||
}
|
74
drivers/infiniband/sw/siw/siw_mem.h
Normal file
74
drivers/infiniband/sw/siw/siw_mem.h
Normal file
@ -0,0 +1,74 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause */
|
||||
|
||||
/* Authors: Bernard Metzler <bmt@zurich.ibm.com> */
|
||||
/* Copyright (c) 2008-2019, IBM Corporation */
|
||||
|
||||
#ifndef _SIW_MEM_H
|
||||
#define _SIW_MEM_H
|
||||
|
||||
struct siw_umem *siw_umem_get(u64 start, u64 len, bool writable);
|
||||
void siw_umem_release(struct siw_umem *umem, bool dirty);
|
||||
struct siw_pbl *siw_pbl_alloc(u32 num_buf);
|
||||
u64 siw_pbl_get_buffer(struct siw_pbl *pbl, u64 off, int *len, int *idx);
|
||||
struct siw_mem *siw_mem_id2obj(struct siw_device *sdev, int stag_index);
|
||||
int siw_mem_add(struct siw_device *sdev, struct siw_mem *m);
|
||||
int siw_invalidate_stag(struct ib_pd *pd, u32 stag);
|
||||
int siw_check_mem(struct ib_pd *pd, struct siw_mem *mem, u64 addr,
|
||||
enum ib_access_flags perms, int len);
|
||||
int siw_check_sge(struct ib_pd *pd, struct siw_sge *sge,
|
||||
struct siw_mem *mem[], enum ib_access_flags perms,
|
||||
u32 off, int len);
|
||||
void siw_wqe_put_mem(struct siw_wqe *wqe, enum siw_opcode op);
|
||||
int siw_mr_add_mem(struct siw_mr *mr, struct ib_pd *pd, void *mem_obj,
|
||||
u64 start, u64 len, int rights);
|
||||
void siw_mr_drop_mem(struct siw_mr *mr);
|
||||
void siw_free_mem(struct kref *ref);
|
||||
|
||||
static inline void siw_mem_put(struct siw_mem *mem)
|
||||
{
|
||||
kref_put(&mem->ref, siw_free_mem);
|
||||
}
|
||||
|
||||
static inline struct siw_mr *siw_mem2mr(struct siw_mem *m)
|
||||
{
|
||||
return container_of(m, struct siw_mr, mem);
|
||||
}
|
||||
|
||||
static inline void siw_unref_mem_sgl(struct siw_mem **mem, unsigned int num_sge)
|
||||
{
|
||||
while (num_sge) {
|
||||
if (*mem == NULL)
|
||||
break;
|
||||
|
||||
siw_mem_put(*mem);
|
||||
*mem = NULL;
|
||||
mem++;
|
||||
num_sge--;
|
||||
}
|
||||
}
|
||||
|
||||
#define CHUNK_SHIFT 9 /* sets number of pages per chunk */
|
||||
#define PAGES_PER_CHUNK (_AC(1, UL) << CHUNK_SHIFT)
|
||||
#define CHUNK_MASK (~(PAGES_PER_CHUNK - 1))
|
||||
#define PAGE_CHUNK_SIZE (PAGES_PER_CHUNK * sizeof(struct page *))
|
||||
|
||||
/*
|
||||
* siw_get_upage()
|
||||
*
|
||||
* Get page pointer for address on given umem.
|
||||
*
|
||||
* @umem: two dimensional list of page pointers
|
||||
* @addr: user virtual address
|
||||
*/
|
||||
static inline struct page *siw_get_upage(struct siw_umem *umem, u64 addr)
|
||||
{
|
||||
unsigned int page_idx = (addr - umem->fp_addr) >> PAGE_SHIFT,
|
||||
chunk_idx = page_idx >> CHUNK_SHIFT,
|
||||
page_in_chunk = page_idx & ~CHUNK_MASK;
|
||||
|
||||
if (likely(page_idx < umem->num_pages))
|
||||
return umem->page_chunk[chunk_idx].plist[page_in_chunk];
|
||||
|
||||
return NULL;
|
||||
}
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user