2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-15 08:44:14 +08:00

- Second batch of the lazy destroy patches

- First batch of KVM changes for kernel virtual != physical address support
 - Removal of a unused function
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEwGNS88vfc9+v45Yq41TmuOI4ufgFAmN/eYwACgkQ41TmuOI4
 ufjoxA/9Et38aXO/IhmUt8v0QhA4yec+sc5GSFfQSYehej/1Vqhw0DXx+ORUiRgg
 +rtiXJSSqkuD2dL+BDffY2xoul6nzNdVf4AbkcnrWscfWr6xwVYlPvuL0ymGI6J2
 U/IPedRoKw0bHw/wHs05yV5PubrRwDFERKhtyXWYGbPJhX0w2n3IFOoKH1oWBhLW
 Dc8jEs6t3gDbJ71Er0xoeBUoiuu+PgZG06cpOvzBZ0KclRgjADXyISqqk8/4mu8w
 R+/Wf8NcrbQYV1jfCeq5zIsKC8uvnFj25UuyTLumn5vh+dNNsvE72Khe4tz7LI0I
 ZPZ+GZuemu7Yi12dKjw4Sw3ui0ejWH/5XL1SVB0X/xYIWrBqOot+Lq6538GCng+c
 tJt+zsu64VFgXCCZ8O9qO4uE4DBL70H3ThT7VZxIghSTZtY0xh3uFc64f3/3d9dy
 K4WTJHrmMxhXaA/rqtIa8I53JvFl8CztofZATiQQesyPuc7lZ01w1Co5el4xYaxe
 YknyMTq11qf/iYqVOW7sjoWW/YRuuMZ4+FhpI3o/SllVdN98iTwkk1kP3wcoBO5P
 bvzpm+WXHbv9OxifPrqkqv34+upbjfEmSogHudQzagBX4vl3rZRfBCdQGCAha0Uc
 ZYyg68kiil5sWmHI/Ln/ZjANYfbS5sF0CreuWxnmqcwKl2NSN/E=
 =/1yt
 -----END PGP SIGNATURE-----

Merge tag 'kvm-s390-next-6.2-1' of https://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into HEAD

- Second batch of the lazy destroy patches
- First batch of KVM changes for kernel virtual != physical address support
- Removal of a unused function
This commit is contained in:
Paolo Bonzini 2022-11-28 13:34:47 -05:00
commit 1e79a9e3ab
19 changed files with 604 additions and 163 deletions

View File

@ -5163,10 +5163,13 @@ KVM_PV_ENABLE
===== =============================
KVM_PV_DISABLE
Deregister the VM from the Ultravisor and reclaim the memory that
had been donated to the Ultravisor, making it usable by the kernel
again. All registered VCPUs are converted back to non-protected
ones.
Deregister the VM from the Ultravisor and reclaim the memory that had
been donated to the Ultravisor, making it usable by the kernel again.
All registered VCPUs are converted back to non-protected ones. If a
previous protected VM had been prepared for asynchonous teardown with
KVM_PV_ASYNC_CLEANUP_PREPARE and not subsequently torn down with
KVM_PV_ASYNC_CLEANUP_PERFORM, it will be torn down in this call
together with the current protected VM.
KVM_PV_VM_SET_SEC_PARMS
Pass the image header from VM memory to the Ultravisor in
@ -5289,6 +5292,36 @@ KVM_PV_DUMP
authentication tag all of which are needed to decrypt the dump at a
later time.
KVM_PV_ASYNC_CLEANUP_PREPARE
:Capability: KVM_CAP_S390_PROTECTED_ASYNC_DISABLE
Prepare the current protected VM for asynchronous teardown. Most
resources used by the current protected VM will be set aside for a
subsequent asynchronous teardown. The current protected VM will then
resume execution immediately as non-protected. There can be at most
one protected VM prepared for asynchronous teardown at any time. If
a protected VM had already been prepared for teardown without
subsequently calling KVM_PV_ASYNC_CLEANUP_PERFORM, this call will
fail. In that case, the userspace process should issue a normal
KVM_PV_DISABLE. The resources set aside with this call will need to
be cleaned up with a subsequent call to KVM_PV_ASYNC_CLEANUP_PERFORM
or KVM_PV_DISABLE, otherwise they will be cleaned up when KVM
terminates. KVM_PV_ASYNC_CLEANUP_PREPARE can be called again as soon
as cleanup starts, i.e. before KVM_PV_ASYNC_CLEANUP_PERFORM finishes.
KVM_PV_ASYNC_CLEANUP_PERFORM
:Capability: KVM_CAP_S390_PROTECTED_ASYNC_DISABLE
Tear down the protected VM previously prepared for teardown with
KVM_PV_ASYNC_CLEANUP_PREPARE. The resources that had been set aside
will be freed during the execution of this command. This PV command
should ideally be issued by userspace from a separate thread. If a
fatal signal is received (or the process terminates naturally), the
command will terminate immediately without completing, and the normal
KVM shutdown procedure will take care of cleaning up all remaining
protected VMs, including the ones whose teardown was interrupted by
process termination.
4.126 KVM_XEN_HVM_SET_ATTR
--------------------------

View File

@ -142,8 +142,7 @@ struct mcck_volatile_info {
CR14_EXTERNAL_DAMAGE_SUBMASK)
#define SIDAD_SIZE_MASK 0xff
#define sida_origin(sie_block) \
((sie_block)->sidad & PAGE_MASK)
#define sida_addr(sie_block) phys_to_virt((sie_block)->sidad & PAGE_MASK)
#define sida_size(sie_block) \
((((sie_block)->sidad & SIDAD_SIZE_MASK) + 1) * PAGE_SIZE)
@ -276,6 +275,7 @@ struct kvm_s390_sie_block {
#define ECB3_AES 0x04
#define ECB3_RI 0x01
__u8 ecb3; /* 0x0063 */
#define ESCA_SCAOL_MASK ~0x3fU
__u32 scaol; /* 0x0064 */
__u8 sdf; /* 0x0068 */
__u8 epdx; /* 0x0069 */
@ -942,6 +942,8 @@ struct kvm_s390_pv {
unsigned long stor_base;
void *stor_var;
bool dumping;
void *set_aside;
struct list_head need_cleanup;
struct mmu_notifier mmu_notifier;
};
@ -1017,7 +1019,13 @@ void kvm_arch_crypto_clear_masks(struct kvm *kvm);
void kvm_arch_crypto_set_masks(struct kvm *kvm, unsigned long *apm,
unsigned long *aqm, unsigned long *adm);
extern int sie64a(struct kvm_s390_sie_block *, u64 *);
int __sie64a(phys_addr_t sie_block_phys, struct kvm_s390_sie_block *sie_block, u64 *rsa);
static inline int sie64a(struct kvm_s390_sie_block *sie_block, u64 *rsa)
{
return __sie64a(virt_to_phys(sie_block), sie_block, rsa);
}
extern char sie_exit;
extern int kvm_s390_gisc_register(struct kvm *kvm, u32 gisc);

View File

@ -4,8 +4,8 @@
#ifndef __ASSEMBLY__
int set_memory_encrypted(unsigned long addr, int numpages);
int set_memory_decrypted(unsigned long addr, int numpages);
int set_memory_encrypted(unsigned long vaddr, int numpages);
int set_memory_decrypted(unsigned long vaddr, int numpages);
#endif /* __ASSEMBLY__ */

View File

@ -46,6 +46,7 @@ struct stack_frame {
unsigned long sie_savearea;
unsigned long sie_reason;
unsigned long sie_flags;
unsigned long sie_control_block_phys;
};
};
unsigned long gprs[10];

View File

@ -34,6 +34,7 @@
#define UVC_CMD_INIT_UV 0x000f
#define UVC_CMD_CREATE_SEC_CONF 0x0100
#define UVC_CMD_DESTROY_SEC_CONF 0x0101
#define UVC_CMD_DESTROY_SEC_CONF_FAST 0x0102
#define UVC_CMD_CREATE_SEC_CPU 0x0120
#define UVC_CMD_DESTROY_SEC_CPU 0x0121
#define UVC_CMD_CONV_TO_SEC_STOR 0x0200
@ -81,6 +82,7 @@ enum uv_cmds_inst {
BIT_UVC_CMD_UNSHARE_ALL = 20,
BIT_UVC_CMD_PIN_PAGE_SHARED = 21,
BIT_UVC_CMD_UNPIN_PAGE_SHARED = 22,
BIT_UVC_CMD_DESTROY_SEC_CONF_FAST = 23,
BIT_UVC_CMD_DUMP_INIT = 24,
BIT_UVC_CMD_DUMP_CONFIG_STOR_STATE = 25,
BIT_UVC_CMD_DUMP_CPU = 26,
@ -230,6 +232,14 @@ struct uv_cb_nodata {
u64 reserved20[4];
} __packed __aligned(8);
/* Destroy Configuration Fast */
struct uv_cb_destroy_fast {
struct uv_cb_header header;
u64 reserved08[2];
u64 handle;
u64 reserved20[5];
} __packed __aligned(8);
/* Set Shared Access */
struct uv_cb_share {
struct uv_cb_header header;

View File

@ -62,6 +62,7 @@ int main(void)
OFFSET(__SF_SIE_SAVEAREA, stack_frame, sie_savearea);
OFFSET(__SF_SIE_REASON, stack_frame, sie_reason);
OFFSET(__SF_SIE_FLAGS, stack_frame, sie_flags);
OFFSET(__SF_SIE_CONTROL_PHYS, stack_frame, sie_control_block_phys);
DEFINE(STACK_FRAME_OVERHEAD, sizeof(struct stack_frame));
BLANK();
/* idle data offsets */

View File

@ -225,18 +225,20 @@ ENDPROC(__switch_to)
#if IS_ENABLED(CONFIG_KVM)
/*
* sie64a calling convention:
* %r2 pointer to sie control block
* %r3 guest register save area
* __sie64a calling convention:
* %r2 pointer to sie control block phys
* %r3 pointer to sie control block virt
* %r4 guest register save area
*/
ENTRY(sie64a)
ENTRY(__sie64a)
stmg %r6,%r14,__SF_GPRS(%r15) # save kernel registers
lg %r12,__LC_CURRENT
stg %r2,__SF_SIE_CONTROL(%r15) # save control block pointer
stg %r3,__SF_SIE_SAVEAREA(%r15) # save guest register save area
stg %r2,__SF_SIE_CONTROL_PHYS(%r15) # save sie block physical..
stg %r3,__SF_SIE_CONTROL(%r15) # ...and virtual addresses
stg %r4,__SF_SIE_SAVEAREA(%r15) # save guest register save area
xc __SF_SIE_REASON(8,%r15),__SF_SIE_REASON(%r15) # reason code = 0
mvc __SF_SIE_FLAGS(8,%r15),__TI_flags(%r12) # copy thread flags
lmg %r0,%r13,0(%r3) # load guest gprs 0-13
lmg %r0,%r13,0(%r4) # load guest gprs 0-13
lg %r14,__LC_GMAP # get gmap pointer
ltgr %r14,%r14
jz .Lsie_gmap
@ -248,6 +250,7 @@ ENTRY(sie64a)
jnz .Lsie_skip
TSTMSK __LC_CPU_FLAGS,_CIF_FPU
jo .Lsie_skip # exit if fp/vx regs changed
lg %r14,__SF_SIE_CONTROL_PHYS(%r15) # get sie block phys addr
BPEXIT __SF_SIE_FLAGS(%r15),(_TIF_ISOLATE_BP|_TIF_ISOLATE_BP_GUEST)
.Lsie_entry:
sie 0(%r14)
@ -258,13 +261,14 @@ ENTRY(sie64a)
BPOFF
BPENTER __SF_SIE_FLAGS(%r15),(_TIF_ISOLATE_BP|_TIF_ISOLATE_BP_GUEST)
.Lsie_skip:
lg %r14,__SF_SIE_CONTROL(%r15) # get control block pointer
ni __SIE_PROG0C+3(%r14),0xfe # no longer in SIE
lctlg %c1,%c1,__LC_KERNEL_ASCE # load primary asce
.Lsie_done:
# some program checks are suppressing. C code (e.g. do_protection_exception)
# will rewind the PSW by the ILC, which is often 4 bytes in case of SIE. There
# are some corner cases (e.g. runtime instrumentation) where ILC is unpredictable.
# Other instructions between sie64a and .Lsie_done should not cause program
# Other instructions between __sie64a and .Lsie_done should not cause program
# interrupts. So lets use 3 nops as a landing pad for all possible rewinds.
.Lrewind_pad6:
nopr 7
@ -293,8 +297,8 @@ sie_exit:
EX_TABLE(.Lrewind_pad4,.Lsie_fault)
EX_TABLE(.Lrewind_pad2,.Lsie_fault)
EX_TABLE(sie_exit,.Lsie_fault)
ENDPROC(sie64a)
EXPORT_SYMBOL(sie64a)
ENDPROC(__sie64a)
EXPORT_SYMBOL(__sie64a)
EXPORT_SYMBOL(sie_exit)
#endif
@ -373,7 +377,7 @@ ENTRY(pgm_check_handler)
j 3f # -> fault in user space
.Lpgm_skip_asce:
#if IS_ENABLED(CONFIG_KVM)
# cleanup critical section for program checks in sie64a
# cleanup critical section for program checks in __sie64a
OUTSIDE %r9,.Lsie_gmap,.Lsie_done,1f
SIEEXIT
lghi %r10,_PIF_GUEST_FAULT

View File

@ -255,6 +255,13 @@ static int make_secure_pte(pte_t *ptep, unsigned long addr,
*/
static bool should_export_before_import(struct uv_cb_header *uvcb, struct mm_struct *mm)
{
/*
* The misc feature indicates, among other things, that importing a
* shared page from a different protected VM will automatically also
* transfer its ownership.
*/
if (test_bit_inv(BIT_UV_FEAT_MISC, &uv_info.uv_feature_indications))
return false;
if (uvcb->cmd == UVC_CMD_UNPIN_PAGE_SHARED)
return false;
return atomic_read(&mm->context.protected_count) > 1;

View File

@ -217,7 +217,7 @@ static int handle_itdb(struct kvm_vcpu *vcpu)
return 0;
if (current->thread.per_flags & PER_FLAG_NO_TE)
return 0;
itdb = (struct kvm_s390_itdb *)vcpu->arch.sie_block->itdba;
itdb = phys_to_virt(vcpu->arch.sie_block->itdba);
rc = write_guest_lc(vcpu, __LC_PGM_TDB, itdb, sizeof(*itdb));
if (rc)
return rc;
@ -409,8 +409,7 @@ int handle_sthyi(struct kvm_vcpu *vcpu)
out:
if (!cc) {
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
memcpy((void *)(sida_origin(vcpu->arch.sie_block)),
sctns, PAGE_SIZE);
memcpy(sida_addr(vcpu->arch.sie_block), sctns, PAGE_SIZE);
} else {
r = write_guest(vcpu, addr, reg2, sctns, PAGE_SIZE);
if (r) {
@ -464,7 +463,7 @@ static int handle_operexc(struct kvm_vcpu *vcpu)
static int handle_pv_spx(struct kvm_vcpu *vcpu)
{
u32 pref = *(u32 *)vcpu->arch.sie_block->sidad;
u32 pref = *(u32 *)sida_addr(vcpu->arch.sie_block);
kvm_s390_set_prefix(vcpu, pref);
trace_kvm_s390_handle_prefix(vcpu, 1, pref);
@ -497,7 +496,7 @@ static int handle_pv_sclp(struct kvm_vcpu *vcpu)
static int handle_pv_uvc(struct kvm_vcpu *vcpu)
{
struct uv_cb_share *guest_uvcb = (void *)vcpu->arch.sie_block->sidad;
struct uv_cb_share *guest_uvcb = sida_addr(vcpu->arch.sie_block);
struct uv_cb_cts uvcb = {
.header.cmd = UVC_CMD_UNPIN_PAGE_SHARED,
.header.len = sizeof(uvcb),

View File

@ -314,11 +314,6 @@ static inline u8 gisa_get_ipm(struct kvm_s390_gisa *gisa)
return READ_ONCE(gisa->ipm);
}
static inline void gisa_clear_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
{
clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
}
static inline int gisa_tac_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
{
return test_and_clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);

View File

@ -209,6 +209,14 @@ unsigned int diag9c_forwarding_hz;
module_param(diag9c_forwarding_hz, uint, 0644);
MODULE_PARM_DESC(diag9c_forwarding_hz, "Maximum diag9c forwarding per second, 0 to turn off");
/*
* allow asynchronous deinit for protected guests; enable by default since
* the feature is opt-in anyway
*/
static int async_destroy = 1;
module_param(async_destroy, int, 0444);
MODULE_PARM_DESC(async_destroy, "Asynchronous destroy for protected guests");
/*
* For now we handle at most 16 double words as this is what the s390 base
* kernel handles and stores in the prefix page. If we ever need to go beyond
@ -616,6 +624,9 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
case KVM_CAP_S390_BPB:
r = test_facility(82);
break;
case KVM_CAP_S390_PROTECTED_ASYNC_DISABLE:
r = async_destroy && is_prot_virt_host();
break;
case KVM_CAP_S390_PROTECTED:
r = is_prot_virt_host();
break;
@ -2519,9 +2530,13 @@ static int kvm_s390_pv_dmp(struct kvm *kvm, struct kvm_pv_cmd *cmd,
static int kvm_s390_handle_pv(struct kvm *kvm, struct kvm_pv_cmd *cmd)
{
const bool need_lock = (cmd->cmd != KVM_PV_ASYNC_CLEANUP_PERFORM);
void __user *argp = (void __user *)cmd->data;
int r = 0;
u16 dummy;
void __user *argp = (void __user *)cmd->data;
if (need_lock)
mutex_lock(&kvm->lock);
switch (cmd->cmd) {
case KVM_PV_ENABLE: {
@ -2555,6 +2570,31 @@ static int kvm_s390_handle_pv(struct kvm *kvm, struct kvm_pv_cmd *cmd)
set_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
break;
}
case KVM_PV_ASYNC_CLEANUP_PREPARE:
r = -EINVAL;
if (!kvm_s390_pv_is_protected(kvm) || !async_destroy)
break;
r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc);
/*
* If a CPU could not be destroyed, destroy VM will also fail.
* There is no point in trying to destroy it. Instead return
* the rc and rrc from the first CPU that failed destroying.
*/
if (r)
break;
r = kvm_s390_pv_set_aside(kvm, &cmd->rc, &cmd->rrc);
/* no need to block service interrupts any more */
clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
break;
case KVM_PV_ASYNC_CLEANUP_PERFORM:
r = -EINVAL;
if (!async_destroy)
break;
/* kvm->lock must not be held; this is asserted inside the function. */
r = kvm_s390_pv_deinit_aside_vm(kvm, &cmd->rc, &cmd->rrc);
break;
case KVM_PV_DISABLE: {
r = -EINVAL;
if (!kvm_s390_pv_is_protected(kvm))
@ -2568,7 +2608,7 @@ static int kvm_s390_handle_pv(struct kvm *kvm, struct kvm_pv_cmd *cmd)
*/
if (r)
break;
r = kvm_s390_pv_deinit_vm(kvm, &cmd->rc, &cmd->rrc);
r = kvm_s390_pv_deinit_cleanup_all(kvm, &cmd->rc, &cmd->rrc);
/* no need to block service interrupts any more */
clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
@ -2718,6 +2758,9 @@ static int kvm_s390_handle_pv(struct kvm *kvm, struct kvm_pv_cmd *cmd)
default:
r = -ENOTTY;
}
if (need_lock)
mutex_unlock(&kvm->lock);
return r;
}
@ -2922,9 +2965,8 @@ long kvm_arch_vm_ioctl(struct file *filp,
r = -EINVAL;
break;
}
mutex_lock(&kvm->lock);
/* must be called without kvm->lock */
r = kvm_s390_handle_pv(kvm, &args);
mutex_unlock(&kvm->lock);
if (copy_to_user(argp, &args, sizeof(args))) {
r = -EFAULT;
break;
@ -3243,6 +3285,8 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
kvm_s390_vsie_init(kvm);
if (use_gisa)
kvm_s390_gisa_init(kvm);
INIT_LIST_HEAD(&kvm->arch.pv.need_cleanup);
kvm->arch.pv.set_aside = NULL;
KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
return 0;
@ -3287,11 +3331,9 @@ void kvm_arch_destroy_vm(struct kvm *kvm)
/*
* We are already at the end of life and kvm->lock is not taken.
* This is ok as the file descriptor is closed by now and nobody
* can mess with the pv state. To avoid lockdep_assert_held from
* complaining we do not use kvm_s390_pv_is_protected.
* can mess with the pv state.
*/
if (kvm_s390_pv_get_handle(kvm))
kvm_s390_pv_deinit_vm(kvm, &rc, &rrc);
kvm_s390_pv_deinit_cleanup_all(kvm, &rc, &rrc);
/*
* Remove the mmu notifier only when the whole KVM VM is torn down,
* and only if one was registered to begin with. If the VM is
@ -3344,28 +3386,30 @@ static void sca_del_vcpu(struct kvm_vcpu *vcpu)
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
{
if (!kvm_s390_use_sca_entries()) {
struct bsca_block *sca = vcpu->kvm->arch.sca;
phys_addr_t sca_phys = virt_to_phys(vcpu->kvm->arch.sca);
/* we still need the basic sca for the ipte control */
vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
vcpu->arch.sie_block->scaoh = sca_phys >> 32;
vcpu->arch.sie_block->scaol = sca_phys;
return;
}
read_lock(&vcpu->kvm->arch.sca_lock);
if (vcpu->kvm->arch.use_esca) {
struct esca_block *sca = vcpu->kvm->arch.sca;
phys_addr_t sca_phys = virt_to_phys(sca);
sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block);
vcpu->arch.sie_block->scaoh = sca_phys >> 32;
vcpu->arch.sie_block->scaol = sca_phys & ESCA_SCAOL_MASK;
vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
} else {
struct bsca_block *sca = vcpu->kvm->arch.sca;
phys_addr_t sca_phys = virt_to_phys(sca);
sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block);
vcpu->arch.sie_block->scaoh = sca_phys >> 32;
vcpu->arch.sie_block->scaol = sca_phys;
set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
}
read_unlock(&vcpu->kvm->arch.sca_lock);
@ -3396,6 +3440,7 @@ static int sca_switch_to_extended(struct kvm *kvm)
struct kvm_vcpu *vcpu;
unsigned long vcpu_idx;
u32 scaol, scaoh;
phys_addr_t new_sca_phys;
if (kvm->arch.use_esca)
return 0;
@ -3404,8 +3449,9 @@ static int sca_switch_to_extended(struct kvm *kvm)
if (!new_sca)
return -ENOMEM;
scaoh = (u32)((u64)(new_sca) >> 32);
scaol = (u32)(u64)(new_sca) & ~0x3fU;
new_sca_phys = virt_to_phys(new_sca);
scaoh = new_sca_phys >> 32;
scaol = new_sca_phys & ESCA_SCAOL_MASK;
kvm_s390_vcpu_block_all(kvm);
write_lock(&kvm->arch.sca_lock);
@ -3625,15 +3671,18 @@ static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
free_page(vcpu->arch.sie_block->cbrlo);
free_page((unsigned long)phys_to_virt(vcpu->arch.sie_block->cbrlo));
vcpu->arch.sie_block->cbrlo = 0;
}
int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL_ACCOUNT);
if (!vcpu->arch.sie_block->cbrlo)
void *cbrlo_page = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
if (!cbrlo_page)
return -ENOMEM;
vcpu->arch.sie_block->cbrlo = virt_to_phys(cbrlo_page);
return 0;
}
@ -3643,7 +3692,7 @@ static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
vcpu->arch.sie_block->ibc = model->ibc;
if (test_kvm_facility(vcpu->kvm, 7))
vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
vcpu->arch.sie_block->fac = virt_to_phys(model->fac_list);
}
static int kvm_s390_vcpu_setup(struct kvm_vcpu *vcpu)
@ -3700,9 +3749,8 @@ static int kvm_s390_vcpu_setup(struct kvm_vcpu *vcpu)
VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u",
vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id);
}
vcpu->arch.sie_block->sdnxo = ((unsigned long) &vcpu->run->s.regs.sdnx)
| SDNXC;
vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
vcpu->arch.sie_block->sdnxo = virt_to_phys(&vcpu->run->s.regs.sdnx) | SDNXC;
vcpu->arch.sie_block->riccbd = virt_to_phys(&vcpu->run->s.regs.riccb);
if (sclp.has_kss)
kvm_s390_set_cpuflags(vcpu, CPUSTAT_KSS);
@ -3752,7 +3800,7 @@ int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
return -ENOMEM;
vcpu->arch.sie_block = &sie_page->sie_block;
vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;
vcpu->arch.sie_block->itdba = virt_to_phys(&sie_page->itdb);
/* the real guest size will always be smaller than msl */
vcpu->arch.sie_block->mso = 0;
@ -5169,6 +5217,7 @@ static long kvm_s390_vcpu_sida_op(struct kvm_vcpu *vcpu,
struct kvm_s390_mem_op *mop)
{
void __user *uaddr = (void __user *)mop->buf;
void *sida_addr;
int r = 0;
if (mop->flags || !mop->size)
@ -5180,16 +5229,16 @@ static long kvm_s390_vcpu_sida_op(struct kvm_vcpu *vcpu,
if (!kvm_s390_pv_cpu_is_protected(vcpu))
return -EINVAL;
sida_addr = (char *)sida_addr(vcpu->arch.sie_block) + mop->sida_offset;
switch (mop->op) {
case KVM_S390_MEMOP_SIDA_READ:
if (copy_to_user(uaddr, (void *)(sida_origin(vcpu->arch.sie_block) +
mop->sida_offset), mop->size))
if (copy_to_user(uaddr, sida_addr, mop->size))
r = -EFAULT;
break;
case KVM_S390_MEMOP_SIDA_WRITE:
if (copy_from_user((void *)(sida_origin(vcpu->arch.sie_block) +
mop->sida_offset), uaddr, mop->size))
if (copy_from_user(sida_addr, uaddr, mop->size))
r = -EFAULT;
break;
}

View File

@ -23,7 +23,8 @@
/* Transactional Memory Execution related macros */
#define IS_TE_ENABLED(vcpu) ((vcpu->arch.sie_block->ecb & ECB_TE))
#define TDB_FORMAT1 1
#define IS_ITDB_VALID(vcpu) ((*(char *)vcpu->arch.sie_block->itdba == TDB_FORMAT1))
#define IS_ITDB_VALID(vcpu) \
((*(char *)phys_to_virt((vcpu)->arch.sie_block->itdba) == TDB_FORMAT1))
extern debug_info_t *kvm_s390_dbf;
extern debug_info_t *kvm_s390_dbf_uv;
@ -233,7 +234,7 @@ static inline unsigned long kvm_s390_get_gfn_end(struct kvm_memslots *slots)
static inline u32 kvm_s390_get_gisa_desc(struct kvm *kvm)
{
u32 gd = (u32)(u64)kvm->arch.gisa_int.origin;
u32 gd = virt_to_phys(kvm->arch.gisa_int.origin);
if (gd && sclp.has_gisaf)
gd |= GISA_FORMAT1;
@ -243,6 +244,9 @@ static inline u32 kvm_s390_get_gisa_desc(struct kvm *kvm)
/* implemented in pv.c */
int kvm_s390_pv_destroy_cpu(struct kvm_vcpu *vcpu, u16 *rc, u16 *rrc);
int kvm_s390_pv_create_cpu(struct kvm_vcpu *vcpu, u16 *rc, u16 *rrc);
int kvm_s390_pv_set_aside(struct kvm *kvm, u16 *rc, u16 *rrc);
int kvm_s390_pv_deinit_aside_vm(struct kvm *kvm, u16 *rc, u16 *rrc);
int kvm_s390_pv_deinit_cleanup_all(struct kvm *kvm, u16 *rc, u16 *rrc);
int kvm_s390_pv_deinit_vm(struct kvm *kvm, u16 *rc, u16 *rrc);
int kvm_s390_pv_init_vm(struct kvm *kvm, u16 *rc, u16 *rrc);
int kvm_s390_pv_set_sec_parms(struct kvm *kvm, void *hdr, u64 length, u16 *rc,

View File

@ -924,8 +924,7 @@ static int handle_stsi(struct kvm_vcpu *vcpu)
return -EREMOTE;
}
if (kvm_s390_pv_cpu_is_protected(vcpu)) {
memcpy((void *)sida_origin(vcpu->arch.sie_block), (void *)mem,
PAGE_SIZE);
memcpy(sida_addr(vcpu->arch.sie_block), (void *)mem, PAGE_SIZE);
rc = 0;
} else {
rc = write_guest(vcpu, operand2, ar, (void *)mem, PAGE_SIZE);

View File

@ -18,6 +18,29 @@
#include <linux/mmu_notifier.h>
#include "kvm-s390.h"
/**
* struct pv_vm_to_be_destroyed - Represents a protected VM that needs to
* be destroyed
*
* @list: list head for the list of leftover VMs
* @old_gmap_table: the gmap table of the leftover protected VM
* @handle: the handle of the leftover protected VM
* @stor_var: pointer to the variable storage of the leftover protected VM
* @stor_base: address of the base storage of the leftover protected VM
*
* Represents a protected VM that is still registered with the Ultravisor,
* but which does not correspond any longer to an active KVM VM. It should
* be destroyed at some point later, either asynchronously or when the
* process terminates.
*/
struct pv_vm_to_be_destroyed {
struct list_head list;
unsigned long old_gmap_table;
u64 handle;
void *stor_var;
unsigned long stor_base;
};
static void kvm_s390_clear_pv_state(struct kvm *kvm)
{
kvm->arch.pv.handle = 0;
@ -44,7 +67,7 @@ int kvm_s390_pv_destroy_cpu(struct kvm_vcpu *vcpu, u16 *rc, u16 *rrc)
free_pages(vcpu->arch.pv.stor_base,
get_order(uv_info.guest_cpu_stor_len));
free_page(sida_origin(vcpu->arch.sie_block));
free_page((unsigned long)sida_addr(vcpu->arch.sie_block));
vcpu->arch.sie_block->pv_handle_cpu = 0;
vcpu->arch.sie_block->pv_handle_config = 0;
memset(&vcpu->arch.pv, 0, sizeof(vcpu->arch.pv));
@ -66,6 +89,7 @@ int kvm_s390_pv_create_cpu(struct kvm_vcpu *vcpu, u16 *rc, u16 *rrc)
.header.cmd = UVC_CMD_CREATE_SEC_CPU,
.header.len = sizeof(uvcb),
};
void *sida_addr;
int cc;
if (kvm_s390_pv_cpu_get_handle(vcpu))
@ -79,16 +103,17 @@ int kvm_s390_pv_create_cpu(struct kvm_vcpu *vcpu, u16 *rc, u16 *rrc)
/* Input */
uvcb.guest_handle = kvm_s390_pv_get_handle(vcpu->kvm);
uvcb.num = vcpu->arch.sie_block->icpua;
uvcb.state_origin = (u64)vcpu->arch.sie_block;
uvcb.stor_origin = (u64)vcpu->arch.pv.stor_base;
uvcb.state_origin = virt_to_phys(vcpu->arch.sie_block);
uvcb.stor_origin = virt_to_phys((void *)vcpu->arch.pv.stor_base);
/* Alloc Secure Instruction Data Area Designation */
vcpu->arch.sie_block->sidad = __get_free_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
if (!vcpu->arch.sie_block->sidad) {
sida_addr = (void *)__get_free_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
if (!sida_addr) {
free_pages(vcpu->arch.pv.stor_base,
get_order(uv_info.guest_cpu_stor_len));
return -ENOMEM;
}
vcpu->arch.sie_block->sidad = virt_to_phys(sida_addr);
cc = uv_call(0, (u64)&uvcb);
*rc = uvcb.header.rc;
@ -159,7 +184,185 @@ out_err:
return -ENOMEM;
}
/* this should not fail, but if it does, we must not free the donated memory */
/**
* kvm_s390_pv_dispose_one_leftover - Clean up one leftover protected VM.
* @kvm: the KVM that was associated with this leftover protected VM
* @leftover: details about the leftover protected VM that needs a clean up
* @rc: the RC code of the Destroy Secure Configuration UVC
* @rrc: the RRC code of the Destroy Secure Configuration UVC
*
* Destroy one leftover protected VM.
* On success, kvm->mm->context.protected_count will be decremented atomically
* and all other resources used by the VM will be freed.
*
* Return: 0 in case of success, otherwise 1
*/
static int kvm_s390_pv_dispose_one_leftover(struct kvm *kvm,
struct pv_vm_to_be_destroyed *leftover,
u16 *rc, u16 *rrc)
{
int cc;
/* It used the destroy-fast UVC, nothing left to do here */
if (!leftover->handle)
goto done_fast;
cc = uv_cmd_nodata(leftover->handle, UVC_CMD_DESTROY_SEC_CONF, rc, rrc);
KVM_UV_EVENT(kvm, 3, "PROTVIRT DESTROY LEFTOVER VM: rc %x rrc %x", *rc, *rrc);
WARN_ONCE(cc, "protvirt destroy leftover vm failed rc %x rrc %x", *rc, *rrc);
if (cc)
return cc;
/*
* Intentionally leak unusable memory. If the UVC fails, the memory
* used for the VM and its metadata is permanently unusable.
* This can only happen in case of a serious KVM or hardware bug; it
* is not expected to happen in normal operation.
*/
free_pages(leftover->stor_base, get_order(uv_info.guest_base_stor_len));
free_pages(leftover->old_gmap_table, CRST_ALLOC_ORDER);
vfree(leftover->stor_var);
done_fast:
atomic_dec(&kvm->mm->context.protected_count);
return 0;
}
/**
* kvm_s390_destroy_lower_2g - Destroy the first 2GB of protected guest memory.
* @kvm: the VM whose memory is to be cleared.
*
* Destroy the first 2GB of guest memory, to avoid prefix issues after reboot.
* The CPUs of the protected VM need to be destroyed beforehand.
*/
static void kvm_s390_destroy_lower_2g(struct kvm *kvm)
{
const unsigned long pages_2g = SZ_2G / PAGE_SIZE;
struct kvm_memory_slot *slot;
unsigned long len;
int srcu_idx;
srcu_idx = srcu_read_lock(&kvm->srcu);
/* Take the memslot containing guest absolute address 0 */
slot = gfn_to_memslot(kvm, 0);
/* Clear all slots or parts thereof that are below 2GB */
while (slot && slot->base_gfn < pages_2g) {
len = min_t(u64, slot->npages, pages_2g - slot->base_gfn) * PAGE_SIZE;
s390_uv_destroy_range(kvm->mm, slot->userspace_addr, slot->userspace_addr + len);
/* Take the next memslot */
slot = gfn_to_memslot(kvm, slot->base_gfn + slot->npages);
}
srcu_read_unlock(&kvm->srcu, srcu_idx);
}
static int kvm_s390_pv_deinit_vm_fast(struct kvm *kvm, u16 *rc, u16 *rrc)
{
struct uv_cb_destroy_fast uvcb = {
.header.cmd = UVC_CMD_DESTROY_SEC_CONF_FAST,
.header.len = sizeof(uvcb),
.handle = kvm_s390_pv_get_handle(kvm),
};
int cc;
cc = uv_call_sched(0, (u64)&uvcb);
if (rc)
*rc = uvcb.header.rc;
if (rrc)
*rrc = uvcb.header.rrc;
WRITE_ONCE(kvm->arch.gmap->guest_handle, 0);
KVM_UV_EVENT(kvm, 3, "PROTVIRT DESTROY VM FAST: rc %x rrc %x",
uvcb.header.rc, uvcb.header.rrc);
WARN_ONCE(cc, "protvirt destroy vm fast failed handle %llx rc %x rrc %x",
kvm_s390_pv_get_handle(kvm), uvcb.header.rc, uvcb.header.rrc);
/* Inteded memory leak on "impossible" error */
if (!cc)
kvm_s390_pv_dealloc_vm(kvm);
return cc ? -EIO : 0;
}
static inline bool is_destroy_fast_available(void)
{
return test_bit_inv(BIT_UVC_CMD_DESTROY_SEC_CONF_FAST, uv_info.inst_calls_list);
}
/**
* kvm_s390_pv_set_aside - Set aside a protected VM for later teardown.
* @kvm: the VM
* @rc: return value for the RC field of the UVCB
* @rrc: return value for the RRC field of the UVCB
*
* Set aside the protected VM for a subsequent teardown. The VM will be able
* to continue immediately as a non-secure VM, and the information needed to
* properly tear down the protected VM is set aside. If another protected VM
* was already set aside without starting its teardown, this function will
* fail.
* The CPUs of the protected VM need to be destroyed beforehand.
*
* Context: kvm->lock needs to be held
*
* Return: 0 in case of success, -EINVAL if another protected VM was already set
* aside, -ENOMEM if the system ran out of memory.
*/
int kvm_s390_pv_set_aside(struct kvm *kvm, u16 *rc, u16 *rrc)
{
struct pv_vm_to_be_destroyed *priv;
int res = 0;
lockdep_assert_held(&kvm->lock);
/*
* If another protected VM was already prepared for teardown, refuse.
* A normal deinitialization has to be performed instead.
*/
if (kvm->arch.pv.set_aside)
return -EINVAL;
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
if (is_destroy_fast_available()) {
res = kvm_s390_pv_deinit_vm_fast(kvm, rc, rrc);
} else {
priv->stor_var = kvm->arch.pv.stor_var;
priv->stor_base = kvm->arch.pv.stor_base;
priv->handle = kvm_s390_pv_get_handle(kvm);
priv->old_gmap_table = (unsigned long)kvm->arch.gmap->table;
WRITE_ONCE(kvm->arch.gmap->guest_handle, 0);
if (s390_replace_asce(kvm->arch.gmap))
res = -ENOMEM;
}
if (res) {
kfree(priv);
return res;
}
kvm_s390_destroy_lower_2g(kvm);
kvm_s390_clear_pv_state(kvm);
kvm->arch.pv.set_aside = priv;
*rc = UVC_RC_EXECUTED;
*rrc = 42;
return 0;
}
/**
* kvm_s390_pv_deinit_vm - Deinitialize the current protected VM
* @kvm: the KVM whose protected VM needs to be deinitialized
* @rc: the RC code of the UVC
* @rrc: the RRC code of the UVC
*
* Deinitialize the current protected VM. This function will destroy and
* cleanup the current protected VM, but it will not cleanup the guest
* memory. This function should only be called when the protected VM has
* just been created and therefore does not have any guest memory, or when
* the caller cleans up the guest memory separately.
*
* This function should not fail, but if it does, the donated memory must
* not be freed.
*
* Context: kvm->lock needs to be held
*
* Return: 0 in case of success, otherwise -EIO
*/
int kvm_s390_pv_deinit_vm(struct kvm *kvm, u16 *rc, u16 *rrc)
{
int cc;
@ -167,15 +370,6 @@ int kvm_s390_pv_deinit_vm(struct kvm *kvm, u16 *rc, u16 *rrc)
cc = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
UVC_CMD_DESTROY_SEC_CONF, rc, rrc);
WRITE_ONCE(kvm->arch.gmap->guest_handle, 0);
/*
* if the mm still has a mapping, make all its pages accessible
* before destroying the guest
*/
if (mmget_not_zero(kvm->mm)) {
s390_uv_destroy_range(kvm->mm, 0, TASK_SIZE);
mmput(kvm->mm);
}
if (!cc) {
atomic_dec(&kvm->mm->context.protected_count);
kvm_s390_pv_dealloc_vm(kvm);
@ -189,11 +383,137 @@ int kvm_s390_pv_deinit_vm(struct kvm *kvm, u16 *rc, u16 *rrc)
return cc ? -EIO : 0;
}
/**
* kvm_s390_pv_deinit_cleanup_all - Clean up all protected VMs associated
* with a specific KVM.
* @kvm: the KVM to be cleaned up
* @rc: the RC code of the first failing UVC
* @rrc: the RRC code of the first failing UVC
*
* This function will clean up all protected VMs associated with a KVM.
* This includes the active one, the one prepared for deinitialization with
* kvm_s390_pv_set_aside, and any still pending in the need_cleanup list.
*
* Context: kvm->lock needs to be held unless being called from
* kvm_arch_destroy_vm.
*
* Return: 0 if all VMs are successfully cleaned up, otherwise -EIO
*/
int kvm_s390_pv_deinit_cleanup_all(struct kvm *kvm, u16 *rc, u16 *rrc)
{
struct pv_vm_to_be_destroyed *cur;
bool need_zap = false;
u16 _rc, _rrc;
int cc = 0;
/* Make sure the counter does not reach 0 before calling s390_uv_destroy_range */
atomic_inc(&kvm->mm->context.protected_count);
*rc = 1;
/* If the current VM is protected, destroy it */
if (kvm_s390_pv_get_handle(kvm)) {
cc = kvm_s390_pv_deinit_vm(kvm, rc, rrc);
need_zap = true;
}
/* If a previous protected VM was set aside, put it in the need_cleanup list */
if (kvm->arch.pv.set_aside) {
list_add(kvm->arch.pv.set_aside, &kvm->arch.pv.need_cleanup);
kvm->arch.pv.set_aside = NULL;
}
/* Cleanup all protected VMs in the need_cleanup list */
while (!list_empty(&kvm->arch.pv.need_cleanup)) {
cur = list_first_entry(&kvm->arch.pv.need_cleanup, typeof(*cur), list);
need_zap = true;
if (kvm_s390_pv_dispose_one_leftover(kvm, cur, &_rc, &_rrc)) {
cc = 1;
/*
* Only return the first error rc and rrc, so make
* sure it is not overwritten. All destroys will
* additionally be reported via KVM_UV_EVENT().
*/
if (*rc == UVC_RC_EXECUTED) {
*rc = _rc;
*rrc = _rrc;
}
}
list_del(&cur->list);
kfree(cur);
}
/*
* If the mm still has a mapping, try to mark all its pages as
* accessible. The counter should not reach zero before this
* cleanup has been performed.
*/
if (need_zap && mmget_not_zero(kvm->mm)) {
s390_uv_destroy_range(kvm->mm, 0, TASK_SIZE);
mmput(kvm->mm);
}
/* Now the counter can safely reach 0 */
atomic_dec(&kvm->mm->context.protected_count);
return cc ? -EIO : 0;
}
/**
* kvm_s390_pv_deinit_aside_vm - Teardown a previously set aside protected VM.
* @kvm: the VM previously associated with the protected VM
* @rc: return value for the RC field of the UVCB
* @rrc: return value for the RRC field of the UVCB
*
* Tear down the protected VM that had been previously prepared for teardown
* using kvm_s390_pv_set_aside_vm. Ideally this should be called by
* userspace asynchronously from a separate thread.
*
* Context: kvm->lock must not be held.
*
* Return: 0 in case of success, -EINVAL if no protected VM had been
* prepared for asynchronous teardowm, -EIO in case of other errors.
*/
int kvm_s390_pv_deinit_aside_vm(struct kvm *kvm, u16 *rc, u16 *rrc)
{
struct pv_vm_to_be_destroyed *p;
int ret = 0;
lockdep_assert_not_held(&kvm->lock);
mutex_lock(&kvm->lock);
p = kvm->arch.pv.set_aside;
kvm->arch.pv.set_aside = NULL;
mutex_unlock(&kvm->lock);
if (!p)
return -EINVAL;
/* When a fatal signal is received, stop immediately */
if (s390_uv_destroy_range_interruptible(kvm->mm, 0, TASK_SIZE_MAX))
goto done;
if (kvm_s390_pv_dispose_one_leftover(kvm, p, rc, rrc))
ret = -EIO;
kfree(p);
p = NULL;
done:
/*
* p is not NULL if we aborted because of a fatal signal, in which
* case queue the leftover for later cleanup.
*/
if (p) {
mutex_lock(&kvm->lock);
list_add(&p->list, &kvm->arch.pv.need_cleanup);
mutex_unlock(&kvm->lock);
/* Did not finish, but pretend things went well */
*rc = UVC_RC_EXECUTED;
*rrc = 42;
}
return ret;
}
static void kvm_s390_pv_mmu_notifier_release(struct mmu_notifier *subscription,
struct mm_struct *mm)
{
struct kvm *kvm = container_of(subscription, struct kvm, arch.pv.mmu_notifier);
u16 dummy;
int r;
/*
* No locking is needed since this is the last thread of the last user of this
@ -202,7 +522,9 @@ static void kvm_s390_pv_mmu_notifier_release(struct mmu_notifier *subscription,
* unregistered. This means that if this notifier runs, then the
* struct kvm is still valid.
*/
kvm_s390_cpus_from_pv(kvm, &dummy, &dummy);
r = kvm_s390_cpus_from_pv(kvm, &dummy, &dummy);
if (!r && is_destroy_fast_available() && kvm_s390_pv_get_handle(kvm))
kvm_s390_pv_deinit_vm_fast(kvm, &dummy, &dummy);
}
static const struct mmu_notifier_ops kvm_s390_pv_mmu_notifier_ops = {
@ -226,8 +548,9 @@ int kvm_s390_pv_init_vm(struct kvm *kvm, u16 *rc, u16 *rrc)
uvcb.guest_stor_origin = 0; /* MSO is 0 for KVM */
uvcb.guest_stor_len = kvm->arch.pv.guest_len;
uvcb.guest_asce = kvm->arch.gmap->asce;
uvcb.guest_sca = (unsigned long)kvm->arch.sca;
uvcb.conf_base_stor_origin = (u64)kvm->arch.pv.stor_base;
uvcb.guest_sca = virt_to_phys(kvm->arch.sca);
uvcb.conf_base_stor_origin =
virt_to_phys((void *)kvm->arch.pv.stor_base);
uvcb.conf_virt_stor_origin = (u64)kvm->arch.pv.stor_var;
cc = uv_call_sched(0, (u64)&uvcb);

View File

@ -654,7 +654,7 @@ static int pin_guest_page(struct kvm *kvm, gpa_t gpa, hpa_t *hpa)
page = gfn_to_page(kvm, gpa_to_gfn(gpa));
if (is_error_page(page))
return -EINVAL;
*hpa = (hpa_t) page_to_virt(page) + (gpa & ~PAGE_MASK);
*hpa = (hpa_t)page_to_phys(page) + (gpa & ~PAGE_MASK);
return 0;
}
@ -869,7 +869,7 @@ static int pin_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page,
WARN_ON_ONCE(rc);
return 1;
}
vsie_page->scb_o = (struct kvm_s390_sie_block *) hpa;
vsie_page->scb_o = phys_to_virt(hpa);
return 0;
}

View File

@ -72,7 +72,7 @@ static struct gmap *gmap_alloc(unsigned long limit)
goto out_free;
page->index = 0;
list_add(&page->lru, &gmap->crst_list);
table = (unsigned long *) page_to_phys(page);
table = page_to_virt(page);
crst_table_init(table, etype);
gmap->table = table;
gmap->asce = atype | _ASCE_TABLE_LENGTH |
@ -311,12 +311,12 @@ static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
if (!page)
return -ENOMEM;
new = (unsigned long *) page_to_phys(page);
new = page_to_virt(page);
crst_table_init(new, init);
spin_lock(&gmap->guest_table_lock);
if (*table & _REGION_ENTRY_INVALID) {
list_add(&page->lru, &gmap->crst_list);
*table = (unsigned long) new | _REGION_ENTRY_LENGTH |
*table = __pa(new) | _REGION_ENTRY_LENGTH |
(*table & _REGION_ENTRY_TYPE_MASK);
page->index = gaddr;
page = NULL;
@ -557,7 +557,7 @@ int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
gaddr & _REGION1_MASK))
return -ENOMEM;
table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
table = __va(*table & _REGION_ENTRY_ORIGIN);
}
if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
@ -565,7 +565,7 @@ int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
gaddr & _REGION2_MASK))
return -ENOMEM;
table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
table = __va(*table & _REGION_ENTRY_ORIGIN);
}
if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
@ -573,7 +573,7 @@ int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
gaddr & _REGION3_MASK))
return -ENOMEM;
table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
table = __va(*table & _REGION_ENTRY_ORIGIN);
}
table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
/* Walk the parent mm page table */
@ -813,7 +813,7 @@ static inline unsigned long *gmap_table_walk(struct gmap *gmap,
break;
if (*table & _REGION_ENTRY_INVALID)
return NULL;
table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
table = __va(*table & _REGION_ENTRY_ORIGIN);
fallthrough;
case _ASCE_TYPE_REGION2:
table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
@ -821,7 +821,7 @@ static inline unsigned long *gmap_table_walk(struct gmap *gmap,
break;
if (*table & _REGION_ENTRY_INVALID)
return NULL;
table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
table = __va(*table & _REGION_ENTRY_ORIGIN);
fallthrough;
case _ASCE_TYPE_REGION3:
table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
@ -829,7 +829,7 @@ static inline unsigned long *gmap_table_walk(struct gmap *gmap,
break;
if (*table & _REGION_ENTRY_INVALID)
return NULL;
table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
table = __va(*table & _REGION_ENTRY_ORIGIN);
fallthrough;
case _ASCE_TYPE_SEGMENT:
table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
@ -837,7 +837,7 @@ static inline unsigned long *gmap_table_walk(struct gmap *gmap,
break;
if (*table & _REGION_ENTRY_INVALID)
return NULL;
table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
table = __va(*table & _SEGMENT_ENTRY_ORIGIN);
table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT;
}
return table;
@ -1150,7 +1150,7 @@ int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val)
if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) {
address = pte_val(pte) & PAGE_MASK;
address += gaddr & ~PAGE_MASK;
*val = *(unsigned long *) address;
*val = *(unsigned long *)__va(address);
set_pte(ptep, set_pte_bit(*ptep, __pgprot(_PAGE_YOUNG)));
/* Do *NOT* clear the _PAGE_INVALID bit! */
rc = 0;
@ -1335,7 +1335,8 @@ static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr,
*/
static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
{
unsigned long sto, *ste, *pgt;
unsigned long *ste;
phys_addr_t sto, pgt;
struct page *page;
BUG_ON(!gmap_is_shadow(sg));
@ -1343,13 +1344,13 @@ static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN))
return;
gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1);
sto = (unsigned long) (ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT));
sto = __pa(ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT));
gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr);
pgt = (unsigned long *)(*ste & _SEGMENT_ENTRY_ORIGIN);
pgt = *ste & _SEGMENT_ENTRY_ORIGIN;
*ste = _SEGMENT_ENTRY_EMPTY;
__gmap_unshadow_pgt(sg, raddr, pgt);
__gmap_unshadow_pgt(sg, raddr, __va(pgt));
/* Free page table */
page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
page = phys_to_page(pgt);
list_del(&page->lru);
page_table_free_pgste(page);
}
@ -1365,19 +1366,19 @@ static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
unsigned long *sgt)
{
unsigned long *pgt;
struct page *page;
phys_addr_t pgt;
int i;
BUG_ON(!gmap_is_shadow(sg));
for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) {
if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN))
continue;
pgt = (unsigned long *)(sgt[i] & _REGION_ENTRY_ORIGIN);
pgt = sgt[i] & _REGION_ENTRY_ORIGIN;
sgt[i] = _SEGMENT_ENTRY_EMPTY;
__gmap_unshadow_pgt(sg, raddr, pgt);
__gmap_unshadow_pgt(sg, raddr, __va(pgt));
/* Free page table */
page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
page = phys_to_page(pgt);
list_del(&page->lru);
page_table_free_pgste(page);
}
@ -1392,7 +1393,8 @@ static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
*/
static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
{
unsigned long r3o, *r3e, *sgt;
unsigned long r3o, *r3e;
phys_addr_t sgt;
struct page *page;
BUG_ON(!gmap_is_shadow(sg));
@ -1401,12 +1403,12 @@ static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
return;
gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1);
r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT));
gmap_idte_one(r3o | _ASCE_TYPE_REGION3, raddr);
sgt = (unsigned long *)(*r3e & _REGION_ENTRY_ORIGIN);
gmap_idte_one(__pa(r3o) | _ASCE_TYPE_REGION3, raddr);
sgt = *r3e & _REGION_ENTRY_ORIGIN;
*r3e = _REGION3_ENTRY_EMPTY;
__gmap_unshadow_sgt(sg, raddr, sgt);
__gmap_unshadow_sgt(sg, raddr, __va(sgt));
/* Free segment table */
page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
page = phys_to_page(sgt);
list_del(&page->lru);
__free_pages(page, CRST_ALLOC_ORDER);
}
@ -1422,19 +1424,19 @@ static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
unsigned long *r3t)
{
unsigned long *sgt;
struct page *page;
phys_addr_t sgt;
int i;
BUG_ON(!gmap_is_shadow(sg));
for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) {
if (!(r3t[i] & _REGION_ENTRY_ORIGIN))
continue;
sgt = (unsigned long *)(r3t[i] & _REGION_ENTRY_ORIGIN);
sgt = r3t[i] & _REGION_ENTRY_ORIGIN;
r3t[i] = _REGION3_ENTRY_EMPTY;
__gmap_unshadow_sgt(sg, raddr, sgt);
__gmap_unshadow_sgt(sg, raddr, __va(sgt));
/* Free segment table */
page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
page = phys_to_page(sgt);
list_del(&page->lru);
__free_pages(page, CRST_ALLOC_ORDER);
}
@ -1449,7 +1451,8 @@ static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
*/
static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
{
unsigned long r2o, *r2e, *r3t;
unsigned long r2o, *r2e;
phys_addr_t r3t;
struct page *page;
BUG_ON(!gmap_is_shadow(sg));
@ -1458,12 +1461,12 @@ static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
return;
gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1);
r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT));
gmap_idte_one(r2o | _ASCE_TYPE_REGION2, raddr);
r3t = (unsigned long *)(*r2e & _REGION_ENTRY_ORIGIN);
gmap_idte_one(__pa(r2o) | _ASCE_TYPE_REGION2, raddr);
r3t = *r2e & _REGION_ENTRY_ORIGIN;
*r2e = _REGION2_ENTRY_EMPTY;
__gmap_unshadow_r3t(sg, raddr, r3t);
__gmap_unshadow_r3t(sg, raddr, __va(r3t));
/* Free region 3 table */
page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
page = phys_to_page(r3t);
list_del(&page->lru);
__free_pages(page, CRST_ALLOC_ORDER);
}
@ -1479,7 +1482,7 @@ static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
unsigned long *r2t)
{
unsigned long *r3t;
phys_addr_t r3t;
struct page *page;
int i;
@ -1487,11 +1490,11 @@ static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) {
if (!(r2t[i] & _REGION_ENTRY_ORIGIN))
continue;
r3t = (unsigned long *)(r2t[i] & _REGION_ENTRY_ORIGIN);
r3t = r2t[i] & _REGION_ENTRY_ORIGIN;
r2t[i] = _REGION2_ENTRY_EMPTY;
__gmap_unshadow_r3t(sg, raddr, r3t);
__gmap_unshadow_r3t(sg, raddr, __va(r3t));
/* Free region 3 table */
page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
page = phys_to_page(r3t);
list_del(&page->lru);
__free_pages(page, CRST_ALLOC_ORDER);
}
@ -1506,8 +1509,9 @@ static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
*/
static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
{
unsigned long r1o, *r1e, *r2t;
unsigned long r1o, *r1e;
struct page *page;
phys_addr_t r2t;
BUG_ON(!gmap_is_shadow(sg));
r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */
@ -1515,12 +1519,12 @@ static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
return;
gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1);
r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT));
gmap_idte_one(r1o | _ASCE_TYPE_REGION1, raddr);
r2t = (unsigned long *)(*r1e & _REGION_ENTRY_ORIGIN);
gmap_idte_one(__pa(r1o) | _ASCE_TYPE_REGION1, raddr);
r2t = *r1e & _REGION_ENTRY_ORIGIN;
*r1e = _REGION1_ENTRY_EMPTY;
__gmap_unshadow_r2t(sg, raddr, r2t);
__gmap_unshadow_r2t(sg, raddr, __va(r2t));
/* Free region 2 table */
page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
page = phys_to_page(r2t);
list_del(&page->lru);
__free_pages(page, CRST_ALLOC_ORDER);
}
@ -1536,22 +1540,23 @@ static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr,
unsigned long *r1t)
{
unsigned long asce, *r2t;
unsigned long asce;
struct page *page;
phys_addr_t r2t;
int i;
BUG_ON(!gmap_is_shadow(sg));
asce = (unsigned long) r1t | _ASCE_TYPE_REGION1;
asce = __pa(r1t) | _ASCE_TYPE_REGION1;
for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) {
if (!(r1t[i] & _REGION_ENTRY_ORIGIN))
continue;
r2t = (unsigned long *)(r1t[i] & _REGION_ENTRY_ORIGIN);
__gmap_unshadow_r2t(sg, raddr, r2t);
r2t = r1t[i] & _REGION_ENTRY_ORIGIN;
__gmap_unshadow_r2t(sg, raddr, __va(r2t));
/* Clear entry and flush translation r1t -> r2t */
gmap_idte_one(asce, raddr);
r1t[i] = _REGION1_ENTRY_EMPTY;
/* Free region 2 table */
page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
page = phys_to_page(r2t);
list_del(&page->lru);
__free_pages(page, CRST_ALLOC_ORDER);
}
@ -1573,7 +1578,7 @@ static void gmap_unshadow(struct gmap *sg)
sg->removed = 1;
gmap_call_notifier(sg, 0, -1UL);
gmap_flush_tlb(sg);
table = (unsigned long *)(sg->asce & _ASCE_ORIGIN);
table = __va(sg->asce & _ASCE_ORIGIN);
switch (sg->asce & _ASCE_TYPE_MASK) {
case _ASCE_TYPE_REGION1:
__gmap_unshadow_r1t(sg, 0, table);
@ -1748,7 +1753,8 @@ int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
int fake)
{
unsigned long raddr, origin, offset, len;
unsigned long *s_r2t, *table;
unsigned long *table;
phys_addr_t s_r2t;
struct page *page;
int rc;
@ -1760,7 +1766,7 @@ int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
page->index = r2t & _REGION_ENTRY_ORIGIN;
if (fake)
page->index |= GMAP_SHADOW_FAKE_TABLE;
s_r2t = (unsigned long *) page_to_phys(page);
s_r2t = page_to_phys(page);
/* Install shadow region second table */
spin_lock(&sg->guest_table_lock);
table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */
@ -1775,9 +1781,9 @@ int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
rc = -EAGAIN; /* Race with shadow */
goto out_free;
}
crst_table_init(s_r2t, _REGION2_ENTRY_EMPTY);
crst_table_init(__va(s_r2t), _REGION2_ENTRY_EMPTY);
/* mark as invalid as long as the parent table is not protected */
*table = (unsigned long) s_r2t | _REGION_ENTRY_LENGTH |
*table = s_r2t | _REGION_ENTRY_LENGTH |
_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID;
if (sg->edat_level >= 1)
*table |= (r2t & _REGION_ENTRY_PROTECT);
@ -1798,8 +1804,7 @@ int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
spin_lock(&sg->guest_table_lock);
if (!rc) {
table = gmap_table_walk(sg, saddr, 4);
if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
(unsigned long) s_r2t)
if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_r2t)
rc = -EAGAIN; /* Race with unshadow */
else
*table &= ~_REGION_ENTRY_INVALID;
@ -1832,7 +1837,8 @@ int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
int fake)
{
unsigned long raddr, origin, offset, len;
unsigned long *s_r3t, *table;
unsigned long *table;
phys_addr_t s_r3t;
struct page *page;
int rc;
@ -1844,7 +1850,7 @@ int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
page->index = r3t & _REGION_ENTRY_ORIGIN;
if (fake)
page->index |= GMAP_SHADOW_FAKE_TABLE;
s_r3t = (unsigned long *) page_to_phys(page);
s_r3t = page_to_phys(page);
/* Install shadow region second table */
spin_lock(&sg->guest_table_lock);
table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */
@ -1859,9 +1865,9 @@ int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
rc = -EAGAIN; /* Race with shadow */
goto out_free;
}
crst_table_init(s_r3t, _REGION3_ENTRY_EMPTY);
crst_table_init(__va(s_r3t), _REGION3_ENTRY_EMPTY);
/* mark as invalid as long as the parent table is not protected */
*table = (unsigned long) s_r3t | _REGION_ENTRY_LENGTH |
*table = s_r3t | _REGION_ENTRY_LENGTH |
_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID;
if (sg->edat_level >= 1)
*table |= (r3t & _REGION_ENTRY_PROTECT);
@ -1882,8 +1888,7 @@ int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
spin_lock(&sg->guest_table_lock);
if (!rc) {
table = gmap_table_walk(sg, saddr, 3);
if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
(unsigned long) s_r3t)
if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_r3t)
rc = -EAGAIN; /* Race with unshadow */
else
*table &= ~_REGION_ENTRY_INVALID;
@ -1916,7 +1921,8 @@ int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
int fake)
{
unsigned long raddr, origin, offset, len;
unsigned long *s_sgt, *table;
unsigned long *table;
phys_addr_t s_sgt;
struct page *page;
int rc;
@ -1928,7 +1934,7 @@ int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
page->index = sgt & _REGION_ENTRY_ORIGIN;
if (fake)
page->index |= GMAP_SHADOW_FAKE_TABLE;
s_sgt = (unsigned long *) page_to_phys(page);
s_sgt = page_to_phys(page);
/* Install shadow region second table */
spin_lock(&sg->guest_table_lock);
table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */
@ -1943,9 +1949,9 @@ int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
rc = -EAGAIN; /* Race with shadow */
goto out_free;
}
crst_table_init(s_sgt, _SEGMENT_ENTRY_EMPTY);
crst_table_init(__va(s_sgt), _SEGMENT_ENTRY_EMPTY);
/* mark as invalid as long as the parent table is not protected */
*table = (unsigned long) s_sgt | _REGION_ENTRY_LENGTH |
*table = s_sgt | _REGION_ENTRY_LENGTH |
_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID;
if (sg->edat_level >= 1)
*table |= sgt & _REGION_ENTRY_PROTECT;
@ -1966,8 +1972,7 @@ int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
spin_lock(&sg->guest_table_lock);
if (!rc) {
table = gmap_table_walk(sg, saddr, 2);
if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
(unsigned long) s_sgt)
if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_sgt)
rc = -EAGAIN; /* Race with unshadow */
else
*table &= ~_REGION_ENTRY_INVALID;
@ -2040,8 +2045,9 @@ int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
int fake)
{
unsigned long raddr, origin;
unsigned long *s_pgt, *table;
unsigned long *table;
struct page *page;
phys_addr_t s_pgt;
int rc;
BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE));
@ -2052,7 +2058,7 @@ int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
page->index = pgt & _SEGMENT_ENTRY_ORIGIN;
if (fake)
page->index |= GMAP_SHADOW_FAKE_TABLE;
s_pgt = (unsigned long *) page_to_phys(page);
s_pgt = page_to_phys(page);
/* Install shadow page table */
spin_lock(&sg->guest_table_lock);
table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
@ -2085,8 +2091,7 @@ int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
spin_lock(&sg->guest_table_lock);
if (!rc) {
table = gmap_table_walk(sg, saddr, 1);
if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) !=
(unsigned long) s_pgt)
if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) != s_pgt)
rc = -EAGAIN; /* Race with unshadow */
else
*table &= ~_SEGMENT_ENTRY_INVALID;

View File

@ -140,25 +140,25 @@ void mark_rodata_ro(void)
debug_checkwx();
}
int set_memory_encrypted(unsigned long addr, int numpages)
int set_memory_encrypted(unsigned long vaddr, int numpages)
{
int i;
/* make specified pages unshared, (swiotlb, dma_free) */
for (i = 0; i < numpages; ++i) {
uv_remove_shared(addr);
addr += PAGE_SIZE;
uv_remove_shared(virt_to_phys((void *)vaddr));
vaddr += PAGE_SIZE;
}
return 0;
}
int set_memory_decrypted(unsigned long addr, int numpages)
int set_memory_decrypted(unsigned long vaddr, int numpages)
{
int i;
/* make specified pages shared (swiotlb, dma_alloca) */
for (i = 0; i < numpages; ++i) {
uv_set_shared(addr);
addr += PAGE_SIZE;
uv_set_shared(virt_to_phys((void *)vaddr));
vaddr += PAGE_SIZE;
}
return 0;
}

View File

@ -429,7 +429,7 @@ static struct ap_queue_status vfio_ap_irq_enable(struct vfio_ap_queue *q,
aqic_gisa.isc = nisc;
aqic_gisa.ir = 1;
aqic_gisa.gisa = (uint64_t)gisa >> 4;
aqic_gisa.gisa = virt_to_phys(gisa) >> 4;
status = ap_aqic(q->apqn, aqic_gisa, h_nib);
switch (status.response_code) {

View File

@ -1181,6 +1181,7 @@ struct kvm_ppc_resize_hpt {
#define KVM_CAP_S390_ZPCI_OP 221
#define KVM_CAP_S390_CPU_TOPOLOGY 222
#define KVM_CAP_DIRTY_LOG_RING_ACQ_REL 223
#define KVM_CAP_S390_PROTECTED_ASYNC_DISABLE 224
#ifdef KVM_CAP_IRQ_ROUTING
@ -1743,6 +1744,8 @@ enum pv_cmd_id {
KVM_PV_UNSHARE_ALL,
KVM_PV_INFO,
KVM_PV_DUMP,
KVM_PV_ASYNC_CLEANUP_PREPARE,
KVM_PV_ASYNC_CLEANUP_PERFORM,
};
struct kvm_pv_cmd {