2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-22 20:43:56 +08:00

Merge remote-tracking branches 'asoc/topic/wm8960', 'asoc/topic/wm8988' and 'asoc/topic/xtfpga' into asoc-next

This commit is contained in:
Mark Brown 2015-02-04 20:57:26 +00:00
commit 16ca41c6cc
9 changed files with 756 additions and 5 deletions

View File

@ -0,0 +1,18 @@
Bindings for I2S controller built into xtfpga Xtensa bitstreams.
Required properties:
- compatible: shall be "cdns,xtfpga-i2s".
- reg: memory region (address and length) with device registers.
- interrupts: interrupt for the device.
- clocks: phandle to the clk used as master clock. I2S bus clock
is derived from it.
Examples:
i2s0: xtfpga-i2s@0d080000 {
#sound-dai-cells = <0>;
compatible = "cdns,xtfpga-i2s";
reg = <0x0d080000 0x40>;
interrupts = <2 1>;
clocks = <&cdce706 4>;
};

View File

@ -10669,6 +10669,7 @@ M: Max Filippov <jcmvbkbc@gmail.com>
L: linux-xtensa@linux-xtensa.org
S: Maintained
F: drivers/spi/spi-xtensa-xtfpga.c
F: sound/soc/xtensa/xtfpga-i2s.c
YAM DRIVER FOR AX.25
M: Jean-Paul Roubelat <jpr@f6fbb.org>

View File

@ -55,6 +55,7 @@ source "sound/soc/spear/Kconfig"
source "sound/soc/tegra/Kconfig"
source "sound/soc/txx9/Kconfig"
source "sound/soc/ux500/Kconfig"
source "sound/soc/xtensa/Kconfig"
# Supported codecs
source "sound/soc/codecs/Kconfig"

View File

@ -36,3 +36,4 @@ obj-$(CONFIG_SND_SOC) += spear/
obj-$(CONFIG_SND_SOC) += tegra/
obj-$(CONFIG_SND_SOC) += txx9/
obj-$(CONFIG_SND_SOC) += ux500/
obj-$(CONFIG_SND_SOC) += xtensa/

View File

@ -15,6 +15,7 @@
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/clk.h>
#include <linux/i2c.h>
#include <linux/slab.h>
#include <sound/core.h>
@ -117,6 +118,7 @@ static bool wm8960_volatile(struct device *dev, unsigned int reg)
}
struct wm8960_priv {
struct clk *mclk;
struct regmap *regmap;
int (*set_bias_level)(struct snd_soc_codec *,
enum snd_soc_bias_level level);
@ -618,16 +620,40 @@ static int wm8960_set_bias_level_out3(struct snd_soc_codec *codec,
enum snd_soc_bias_level level)
{
struct wm8960_priv *wm8960 = snd_soc_codec_get_drvdata(codec);
int ret;
switch (level) {
case SND_SOC_BIAS_ON:
break;
case SND_SOC_BIAS_PREPARE:
switch (codec->dapm.bias_level) {
case SND_SOC_BIAS_STANDBY:
if (!IS_ERR(wm8960->mclk)) {
ret = clk_prepare_enable(wm8960->mclk);
if (ret) {
dev_err(codec->dev,
"Failed to enable MCLK: %d\n",
ret);
return ret;
}
}
/* Set VMID to 2x50k */
snd_soc_update_bits(codec, WM8960_POWER1, 0x180, 0x80);
break;
case SND_SOC_BIAS_ON:
if (!IS_ERR(wm8960->mclk))
clk_disable_unprepare(wm8960->mclk);
break;
default:
break;
}
break;
case SND_SOC_BIAS_STANDBY:
if (codec->dapm.bias_level == SND_SOC_BIAS_OFF) {
regcache_sync(wm8960->regmap);
@ -674,7 +700,7 @@ static int wm8960_set_bias_level_capless(struct snd_soc_codec *codec,
enum snd_soc_bias_level level)
{
struct wm8960_priv *wm8960 = snd_soc_codec_get_drvdata(codec);
int reg;
int reg, ret;
switch (level) {
case SND_SOC_BIAS_ON:
@ -715,9 +741,22 @@ static int wm8960_set_bias_level_capless(struct snd_soc_codec *codec,
WM8960_VREF, WM8960_VREF);
msleep(100);
if (!IS_ERR(wm8960->mclk)) {
ret = clk_prepare_enable(wm8960->mclk);
if (ret) {
dev_err(codec->dev,
"Failed to enable MCLK: %d\n",
ret);
return ret;
}
}
break;
case SND_SOC_BIAS_ON:
if (!IS_ERR(wm8960->mclk))
clk_disable_unprepare(wm8960->mclk);
/* Enable anti-pop mode */
snd_soc_update_bits(codec, WM8960_APOP1,
WM8960_POBCTRL | WM8960_SOFT_ST |
@ -1002,6 +1041,12 @@ static int wm8960_i2c_probe(struct i2c_client *i2c,
if (wm8960 == NULL)
return -ENOMEM;
wm8960->mclk = devm_clk_get(&i2c->dev, "mclk");
if (IS_ERR(wm8960->mclk)) {
if (PTR_ERR(wm8960->mclk) == -EPROBE_DEFER)
return -EPROBE_DEFER;
}
wm8960->regmap = devm_regmap_init_i2c(i2c, &wm8960_regmap);
if (IS_ERR(wm8960->regmap))
return PTR_ERR(wm8960->regmap);

View File

@ -813,7 +813,7 @@ static int wm8988_probe(struct snd_soc_codec *codec)
return 0;
}
static struct snd_soc_codec_driver soc_codec_dev_wm8988 = {
static const struct snd_soc_codec_driver soc_codec_dev_wm8988 = {
.probe = wm8988_probe,
.set_bias_level = wm8988_set_bias_level,
.suspend_bias_off = true,
@ -826,7 +826,7 @@ static struct snd_soc_codec_driver soc_codec_dev_wm8988 = {
.num_dapm_routes = ARRAY_SIZE(wm8988_dapm_routes),
};
static struct regmap_config wm8988_regmap = {
static const struct regmap_config wm8988_regmap = {
.reg_bits = 7,
.val_bits = 9,

7
sound/soc/xtensa/Kconfig Normal file
View File

@ -0,0 +1,7 @@
config SND_SOC_XTFPGA_I2S
tristate "XTFPGA I2S master"
select REGMAP_MMIO
help
Say Y or M if you want to add support for codecs attached to the
I2S interface on XTFPGA daughter board. You will also need to select
the drivers for the rest of XTFPGA audio subsystem.

View File

@ -0,0 +1,3 @@
snd-soc-xtfpga-i2s-objs := xtfpga-i2s.o
obj-$(CONFIG_SND_SOC_XTFPGA_I2S) += snd-soc-xtfpga-i2s.o

View File

@ -0,0 +1,675 @@
/*
* Xtfpga I2S controller driver
*
* Copyright (c) 2014 Cadence Design Systems Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#define DRV_NAME "xtfpga-i2s"
#define XTFPGA_I2S_VERSION 0x00
#define XTFPGA_I2S_CONFIG 0x04
#define XTFPGA_I2S_INT_MASK 0x08
#define XTFPGA_I2S_INT_STATUS 0x0c
#define XTFPGA_I2S_CHAN0_DATA 0x10
#define XTFPGA_I2S_CHAN1_DATA 0x14
#define XTFPGA_I2S_CHAN2_DATA 0x18
#define XTFPGA_I2S_CHAN3_DATA 0x1c
#define XTFPGA_I2S_CONFIG_TX_ENABLE 0x1
#define XTFPGA_I2S_CONFIG_INT_ENABLE 0x2
#define XTFPGA_I2S_CONFIG_LEFT 0x4
#define XTFPGA_I2S_CONFIG_RATIO_BASE 8
#define XTFPGA_I2S_CONFIG_RATIO_MASK 0x0000ff00
#define XTFPGA_I2S_CONFIG_RES_BASE 16
#define XTFPGA_I2S_CONFIG_RES_MASK 0x003f0000
#define XTFPGA_I2S_CONFIG_LEVEL_BASE 24
#define XTFPGA_I2S_CONFIG_LEVEL_MASK 0x0f000000
#define XTFPGA_I2S_CONFIG_CHANNEL_BASE 28
#define XTFPGA_I2S_INT_UNDERRUN 0x1
#define XTFPGA_I2S_INT_LEVEL 0x2
#define XTFPGA_I2S_INT_VALID 0x3
#define XTFPGA_I2S_FIFO_SIZE 8192
/*
* I2S controller operation:
*
* Enabling TX: output 1 period of zeros (starting with left channel)
* and then queued data.
*
* Level status and interrupt: whenever FIFO level is below FIFO trigger,
* level status is 1 and an IRQ is asserted (if enabled).
*
* Underrun status and interrupt: whenever FIFO is empty, underrun status
* is 1 and an IRQ is asserted (if enabled).
*/
struct xtfpga_i2s {
struct device *dev;
struct clk *clk;
struct regmap *regmap;
void __iomem *regs;
/* current playback substream. NULL if not playing.
*
* Access to that field is synchronized between the interrupt handler
* and userspace through RCU.
*
* Interrupt handler (threaded part) does PIO on substream data in RCU
* read-side critical section. Trigger callback sets and clears the
* pointer when the playback is started and stopped with
* rcu_assign_pointer. When userspace is about to free the playback
* stream in the pcm_close callback it synchronizes with the interrupt
* handler by means of synchronize_rcu call.
*/
struct snd_pcm_substream *tx_substream;
unsigned (*tx_fn)(struct xtfpga_i2s *i2s,
struct snd_pcm_runtime *runtime,
unsigned tx_ptr);
unsigned tx_ptr; /* next frame index in the sample buffer */
/* current fifo level estimate.
* Doesn't have to be perfectly accurate, but must be not less than
* the actual FIFO level in order to avoid stall on push attempt.
*/
unsigned tx_fifo_level;
/* FIFO level at which level interrupt occurs */
unsigned tx_fifo_low;
/* maximal FIFO level */
unsigned tx_fifo_high;
};
static bool xtfpga_i2s_wr_reg(struct device *dev, unsigned int reg)
{
return reg >= XTFPGA_I2S_CONFIG;
}
static bool xtfpga_i2s_rd_reg(struct device *dev, unsigned int reg)
{
return reg < XTFPGA_I2S_CHAN0_DATA;
}
static bool xtfpga_i2s_volatile_reg(struct device *dev, unsigned int reg)
{
return reg == XTFPGA_I2S_INT_STATUS;
}
static const struct regmap_config xtfpga_i2s_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = XTFPGA_I2S_CHAN3_DATA,
.writeable_reg = xtfpga_i2s_wr_reg,
.readable_reg = xtfpga_i2s_rd_reg,
.volatile_reg = xtfpga_i2s_volatile_reg,
.cache_type = REGCACHE_FLAT,
};
/* Generate functions that do PIO from TX DMA area to FIFO for all supported
* stream formats.
* Functions will be called xtfpga_pcm_tx_<channels>x<sample bits>, e.g.
* xtfpga_pcm_tx_2x16 for 16-bit stereo.
*
* FIFO consists of 32-bit words, one word per channel, always 2 channels.
* If I2S interface is configured with smaller sample resolution, only
* the LSB of each word is used.
*/
#define xtfpga_pcm_tx_fn(channels, sample_bits) \
static unsigned xtfpga_pcm_tx_##channels##x##sample_bits( \
struct xtfpga_i2s *i2s, struct snd_pcm_runtime *runtime, \
unsigned tx_ptr) \
{ \
const u##sample_bits (*p)[channels] = \
(void *)runtime->dma_area; \
\
for (; i2s->tx_fifo_level < i2s->tx_fifo_high; \
i2s->tx_fifo_level += 2) { \
iowrite32(p[tx_ptr][0], \
i2s->regs + XTFPGA_I2S_CHAN0_DATA); \
iowrite32(p[tx_ptr][channels - 1], \
i2s->regs + XTFPGA_I2S_CHAN0_DATA); \
if (++tx_ptr >= runtime->buffer_size) \
tx_ptr = 0; \
} \
return tx_ptr; \
}
xtfpga_pcm_tx_fn(1, 16)
xtfpga_pcm_tx_fn(2, 16)
xtfpga_pcm_tx_fn(1, 32)
xtfpga_pcm_tx_fn(2, 32)
#undef xtfpga_pcm_tx_fn
static bool xtfpga_pcm_push_tx(struct xtfpga_i2s *i2s)
{
struct snd_pcm_substream *tx_substream;
bool tx_active;
rcu_read_lock();
tx_substream = rcu_dereference(i2s->tx_substream);
tx_active = tx_substream && snd_pcm_running(tx_substream);
if (tx_active) {
unsigned tx_ptr = ACCESS_ONCE(i2s->tx_ptr);
unsigned new_tx_ptr = i2s->tx_fn(i2s, tx_substream->runtime,
tx_ptr);
cmpxchg(&i2s->tx_ptr, tx_ptr, new_tx_ptr);
}
rcu_read_unlock();
return tx_active;
}
static void xtfpga_pcm_refill_fifo(struct xtfpga_i2s *i2s)
{
unsigned int_status;
unsigned i;
regmap_read(i2s->regmap, XTFPGA_I2S_INT_STATUS,
&int_status);
for (i = 0; i < 2; ++i) {
bool tx_active = xtfpga_pcm_push_tx(i2s);
regmap_write(i2s->regmap, XTFPGA_I2S_INT_STATUS,
XTFPGA_I2S_INT_VALID);
if (tx_active)
regmap_read(i2s->regmap, XTFPGA_I2S_INT_STATUS,
&int_status);
if (!tx_active ||
!(int_status & XTFPGA_I2S_INT_LEVEL))
break;
/* After the push the level IRQ is still asserted,
* means FIFO level is below tx_fifo_low. Estimate
* it as tx_fifo_low.
*/
i2s->tx_fifo_level = i2s->tx_fifo_low;
}
if (!(int_status & XTFPGA_I2S_INT_LEVEL))
regmap_write(i2s->regmap, XTFPGA_I2S_INT_MASK,
XTFPGA_I2S_INT_VALID);
else if (!(int_status & XTFPGA_I2S_INT_UNDERRUN))
regmap_write(i2s->regmap, XTFPGA_I2S_INT_MASK,
XTFPGA_I2S_INT_UNDERRUN);
if (!(int_status & XTFPGA_I2S_INT_UNDERRUN))
regmap_update_bits(i2s->regmap, XTFPGA_I2S_CONFIG,
XTFPGA_I2S_CONFIG_INT_ENABLE |
XTFPGA_I2S_CONFIG_TX_ENABLE,
XTFPGA_I2S_CONFIG_INT_ENABLE |
XTFPGA_I2S_CONFIG_TX_ENABLE);
else
regmap_update_bits(i2s->regmap, XTFPGA_I2S_CONFIG,
XTFPGA_I2S_CONFIG_INT_ENABLE |
XTFPGA_I2S_CONFIG_TX_ENABLE, 0);
}
static irqreturn_t xtfpga_i2s_threaded_irq_handler(int irq, void *dev_id)
{
struct xtfpga_i2s *i2s = dev_id;
struct snd_pcm_substream *tx_substream;
unsigned config, int_status, int_mask;
regmap_read(i2s->regmap, XTFPGA_I2S_CONFIG, &config);
regmap_read(i2s->regmap, XTFPGA_I2S_INT_MASK, &int_mask);
regmap_read(i2s->regmap, XTFPGA_I2S_INT_STATUS, &int_status);
if (!(config & XTFPGA_I2S_CONFIG_INT_ENABLE) ||
!(int_status & int_mask & XTFPGA_I2S_INT_VALID))
return IRQ_NONE;
/* Update FIFO level estimate in accordance with interrupt status
* register.
*/
if (int_status & XTFPGA_I2S_INT_UNDERRUN) {
i2s->tx_fifo_level = 0;
regmap_update_bits(i2s->regmap, XTFPGA_I2S_CONFIG,
XTFPGA_I2S_CONFIG_TX_ENABLE, 0);
} else {
/* The FIFO isn't empty, but is below tx_fifo_low. Estimate
* it as tx_fifo_low.
*/
i2s->tx_fifo_level = i2s->tx_fifo_low;
}
rcu_read_lock();
tx_substream = rcu_dereference(i2s->tx_substream);
if (tx_substream && snd_pcm_running(tx_substream)) {
snd_pcm_period_elapsed(tx_substream);
if (int_status & XTFPGA_I2S_INT_UNDERRUN)
dev_dbg_ratelimited(i2s->dev, "%s: underrun\n",
__func__);
}
rcu_read_unlock();
/* Refill FIFO, update allowed IRQ reasons, enable IRQ if FIFO is
* not empty.
*/
xtfpga_pcm_refill_fifo(i2s);
return IRQ_HANDLED;
}
static int xtfpga_i2s_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct xtfpga_i2s *i2s = snd_soc_dai_get_drvdata(dai);
snd_soc_dai_set_dma_data(dai, substream, i2s);
return 0;
}
static int xtfpga_i2s_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct xtfpga_i2s *i2s = snd_soc_dai_get_drvdata(dai);
unsigned srate = params_rate(params);
unsigned channels = params_channels(params);
unsigned period_size = params_period_size(params);
unsigned sample_size = snd_pcm_format_width(params_format(params));
unsigned freq, ratio, level;
int err;
regmap_update_bits(i2s->regmap, XTFPGA_I2S_CONFIG,
XTFPGA_I2S_CONFIG_RES_MASK,
sample_size << XTFPGA_I2S_CONFIG_RES_BASE);
freq = 256 * srate;
err = clk_set_rate(i2s->clk, freq);
if (err < 0)
return err;
/* ratio field of the config register controls MCLK->I2S clock
* derivation: I2S clock = MCLK / (2 * (ratio + 2)).
*
* So with MCLK = 256 * sample rate ratio is 0 for 32 bit stereo
* and 2 for 16 bit stereo.
*/
ratio = (freq - (srate * sample_size * 8)) /
(srate * sample_size * 4);
regmap_update_bits(i2s->regmap, XTFPGA_I2S_CONFIG,
XTFPGA_I2S_CONFIG_RATIO_MASK,
ratio << XTFPGA_I2S_CONFIG_RATIO_BASE);
i2s->tx_fifo_low = XTFPGA_I2S_FIFO_SIZE / 2;
/* period_size * 2: FIFO always gets 2 samples per frame */
for (level = 1;
i2s->tx_fifo_low / 2 >= period_size * 2 &&
level < (XTFPGA_I2S_CONFIG_LEVEL_MASK >>
XTFPGA_I2S_CONFIG_LEVEL_BASE); ++level)
i2s->tx_fifo_low /= 2;
i2s->tx_fifo_high = 2 * i2s->tx_fifo_low;
regmap_update_bits(i2s->regmap, XTFPGA_I2S_CONFIG,
XTFPGA_I2S_CONFIG_LEVEL_MASK,
level << XTFPGA_I2S_CONFIG_LEVEL_BASE);
dev_dbg(i2s->dev,
"%s srate: %u, channels: %u, sample_size: %u, period_size: %u\n",
__func__, srate, channels, sample_size, period_size);
dev_dbg(i2s->dev, "%s freq: %u, ratio: %u, level: %u\n",
__func__, freq, ratio, level);
return 0;
}
static int xtfpga_i2s_set_fmt(struct snd_soc_dai *cpu_dai,
unsigned int fmt)
{
if ((fmt & SND_SOC_DAIFMT_INV_MASK) != SND_SOC_DAIFMT_NB_NF)
return -EINVAL;
if ((fmt & SND_SOC_DAIFMT_MASTER_MASK) != SND_SOC_DAIFMT_CBS_CFS)
return -EINVAL;
if ((fmt & SND_SOC_DAIFMT_FORMAT_MASK) != SND_SOC_DAIFMT_I2S)
return -EINVAL;
return 0;
}
/* PCM */
static const struct snd_pcm_hardware xtfpga_pcm_hardware = {
.info = SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_BLOCK_TRANSFER,
.formats = SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S32_LE,
.channels_min = 1,
.channels_max = 2,
.period_bytes_min = 2,
.period_bytes_max = XTFPGA_I2S_FIFO_SIZE / 2 * 8,
.periods_min = 2,
.periods_max = XTFPGA_I2S_FIFO_SIZE * 8 / 2,
.buffer_bytes_max = XTFPGA_I2S_FIFO_SIZE * 8,
.fifo_size = 16,
};
static int xtfpga_pcm_open(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_soc_pcm_runtime *rtd = substream->private_data;
void *p;
snd_soc_set_runtime_hwparams(substream, &xtfpga_pcm_hardware);
p = snd_soc_dai_get_dma_data(rtd->cpu_dai, substream);
runtime->private_data = p;
return 0;
}
static int xtfpga_pcm_close(struct snd_pcm_substream *substream)
{
synchronize_rcu();
return 0;
}
static int xtfpga_pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
int ret;
struct snd_pcm_runtime *runtime = substream->runtime;
struct xtfpga_i2s *i2s = runtime->private_data;
unsigned channels = params_channels(hw_params);
switch (channels) {
case 1:
case 2:
break;
default:
return -EINVAL;
}
switch (params_format(hw_params)) {
case SNDRV_PCM_FORMAT_S16_LE:
i2s->tx_fn = (channels == 1) ?
xtfpga_pcm_tx_1x16 :
xtfpga_pcm_tx_2x16;
break;
case SNDRV_PCM_FORMAT_S32_LE:
i2s->tx_fn = (channels == 1) ?
xtfpga_pcm_tx_1x32 :
xtfpga_pcm_tx_2x32;
break;
default:
return -EINVAL;
}
ret = snd_pcm_lib_malloc_pages(substream,
params_buffer_bytes(hw_params));
return ret;
}
static int xtfpga_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
int ret = 0;
struct snd_pcm_runtime *runtime = substream->runtime;
struct xtfpga_i2s *i2s = runtime->private_data;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
ACCESS_ONCE(i2s->tx_ptr) = 0;
rcu_assign_pointer(i2s->tx_substream, substream);
xtfpga_pcm_refill_fifo(i2s);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
rcu_assign_pointer(i2s->tx_substream, NULL);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static snd_pcm_uframes_t xtfpga_pcm_pointer(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct xtfpga_i2s *i2s = runtime->private_data;
snd_pcm_uframes_t pos = ACCESS_ONCE(i2s->tx_ptr);
return pos < runtime->buffer_size ? pos : 0;
}
static int xtfpga_pcm_new(struct snd_soc_pcm_runtime *rtd)
{
struct snd_card *card = rtd->card->snd_card;
size_t size = xtfpga_pcm_hardware.buffer_bytes_max;
return snd_pcm_lib_preallocate_pages_for_all(rtd->pcm,
SNDRV_DMA_TYPE_DEV,
card->dev, size, size);
}
static void xtfpga_pcm_free(struct snd_pcm *pcm)
{
snd_pcm_lib_preallocate_free_for_all(pcm);
}
static const struct snd_pcm_ops xtfpga_pcm_ops = {
.open = xtfpga_pcm_open,
.close = xtfpga_pcm_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = xtfpga_pcm_hw_params,
.trigger = xtfpga_pcm_trigger,
.pointer = xtfpga_pcm_pointer,
};
static const struct snd_soc_platform_driver xtfpga_soc_platform = {
.pcm_new = xtfpga_pcm_new,
.pcm_free = xtfpga_pcm_free,
.ops = &xtfpga_pcm_ops,
};
static const struct snd_soc_component_driver xtfpga_i2s_component = {
.name = DRV_NAME,
};
static const struct snd_soc_dai_ops xtfpga_i2s_dai_ops = {
.startup = xtfpga_i2s_startup,
.hw_params = xtfpga_i2s_hw_params,
.set_fmt = xtfpga_i2s_set_fmt,
};
static struct snd_soc_dai_driver xtfpga_i2s_dai[] = {
{
.name = "xtfpga-i2s",
.id = 0,
.playback = {
.channels_min = 1,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_8000_96000,
.formats = SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S32_LE,
},
.ops = &xtfpga_i2s_dai_ops,
},
};
static int xtfpga_i2s_runtime_suspend(struct device *dev)
{
struct xtfpga_i2s *i2s = dev_get_drvdata(dev);
clk_disable_unprepare(i2s->clk);
return 0;
}
static int xtfpga_i2s_runtime_resume(struct device *dev)
{
struct xtfpga_i2s *i2s = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(i2s->clk);
if (ret) {
dev_err(dev, "clk_prepare_enable failed: %d\n", ret);
return ret;
}
return 0;
}
static int xtfpga_i2s_probe(struct platform_device *pdev)
{
struct xtfpga_i2s *i2s;
struct resource *mem;
int err, irq;
i2s = devm_kzalloc(&pdev->dev, sizeof(*i2s), GFP_KERNEL);
if (!i2s) {
err = -ENOMEM;
goto err;
}
platform_set_drvdata(pdev, i2s);
i2s->dev = &pdev->dev;
dev_dbg(&pdev->dev, "dev: %p, i2s: %p\n", &pdev->dev, i2s);
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
i2s->regs = devm_ioremap_resource(&pdev->dev, mem);
if (IS_ERR(i2s->regs)) {
err = PTR_ERR(i2s->regs);
goto err;
}
i2s->regmap = devm_regmap_init_mmio(&pdev->dev, i2s->regs,
&xtfpga_i2s_regmap_config);
if (IS_ERR(i2s->regmap)) {
dev_err(&pdev->dev, "regmap init failed\n");
err = PTR_ERR(i2s->regmap);
goto err;
}
i2s->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(i2s->clk)) {
dev_err(&pdev->dev, "couldn't get clock\n");
err = PTR_ERR(i2s->clk);
goto err;
}
regmap_write(i2s->regmap, XTFPGA_I2S_CONFIG,
(0x1 << XTFPGA_I2S_CONFIG_CHANNEL_BASE));
regmap_write(i2s->regmap, XTFPGA_I2S_INT_STATUS, XTFPGA_I2S_INT_VALID);
regmap_write(i2s->regmap, XTFPGA_I2S_INT_MASK, XTFPGA_I2S_INT_UNDERRUN);
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "No IRQ resource\n");
err = irq;
goto err;
}
err = devm_request_threaded_irq(&pdev->dev, irq, NULL,
xtfpga_i2s_threaded_irq_handler,
IRQF_SHARED | IRQF_ONESHOT,
pdev->name, i2s);
if (err < 0) {
dev_err(&pdev->dev, "request_irq failed\n");
goto err;
}
err = snd_soc_register_platform(&pdev->dev, &xtfpga_soc_platform);
if (err < 0) {
dev_err(&pdev->dev, "couldn't register platform\n");
goto err;
}
err = devm_snd_soc_register_component(&pdev->dev,
&xtfpga_i2s_component,
xtfpga_i2s_dai,
ARRAY_SIZE(xtfpga_i2s_dai));
if (err < 0) {
dev_err(&pdev->dev, "couldn't register component\n");
goto err_unregister_platform;
}
pm_runtime_enable(&pdev->dev);
if (!pm_runtime_enabled(&pdev->dev)) {
err = xtfpga_i2s_runtime_resume(&pdev->dev);
if (err)
goto err_pm_disable;
}
return 0;
err_pm_disable:
pm_runtime_disable(&pdev->dev);
err_unregister_platform:
snd_soc_unregister_platform(&pdev->dev);
err:
dev_err(&pdev->dev, "%s: err = %d\n", __func__, err);
return err;
}
static int xtfpga_i2s_remove(struct platform_device *pdev)
{
struct xtfpga_i2s *i2s = dev_get_drvdata(&pdev->dev);
snd_soc_unregister_platform(&pdev->dev);
if (i2s->regmap && !IS_ERR(i2s->regmap)) {
regmap_write(i2s->regmap, XTFPGA_I2S_CONFIG, 0);
regmap_write(i2s->regmap, XTFPGA_I2S_INT_MASK, 0);
regmap_write(i2s->regmap, XTFPGA_I2S_INT_STATUS,
XTFPGA_I2S_INT_VALID);
}
pm_runtime_disable(&pdev->dev);
if (!pm_runtime_status_suspended(&pdev->dev))
xtfpga_i2s_runtime_suspend(&pdev->dev);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id xtfpga_i2s_of_match[] = {
{ .compatible = "cdns,xtfpga-i2s", },
{},
};
MODULE_DEVICE_TABLE(of, xtfpga_i2s_of_match);
#endif
static const struct dev_pm_ops xtfpga_i2s_pm_ops = {
SET_RUNTIME_PM_OPS(xtfpga_i2s_runtime_suspend,
xtfpga_i2s_runtime_resume, NULL)
};
static struct platform_driver xtfpga_i2s_driver = {
.probe = xtfpga_i2s_probe,
.remove = xtfpga_i2s_remove,
.driver = {
.name = "xtfpga-i2s",
.of_match_table = of_match_ptr(xtfpga_i2s_of_match),
.pm = &xtfpga_i2s_pm_ops,
},
};
module_platform_driver(xtfpga_i2s_driver);
MODULE_AUTHOR("Max Filippov <jcmvbkbc@gmail.com>");
MODULE_DESCRIPTION("xtfpga I2S controller driver");
MODULE_LICENSE("GPL v2");