mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-15 08:44:14 +08:00
mm, thp: respect MPOL_PREFERRED policy with non-local node
Since commit077fcf116c
("mm/thp: allocate transparent hugepages on local node"), we handle THP allocations on page fault in a special way - for non-interleave memory policies, the allocation is only attempted on the node local to the current CPU, if the policy's nodemask allows the node. This is motivated by the assumption that THP benefits cannot offset the cost of remote accesses, so it's better to fallback to base pages on the local node (which might still be available, while huge pages are not due to fragmentation) than to allocate huge pages on a remote node. The nodemask check prevents us from violating e.g. MPOL_BIND policies where the local node is not among the allowed nodes. However, the current implementation can still give surprising results for the MPOL_PREFERRED policy when the preferred node is different than the current CPU's local node. In such case we should honor the preferred node and not use the local node, which is what this patch does. If hugepage allocation on the preferred node fails, we fall back to base pages and don't try other nodes, with the same motivation as is done for the local node hugepage allocations. The patch also moves the MPOL_INTERLEAVE check around to simplify the hugepage specific test. The difference can be demonstrated using in-tree transhuge-stress test on the following 2-node machine where half memory on one node was occupied to show the difference. > numactl --hardware available: 2 nodes (0-1) node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 24 25 26 27 28 29 30 31 32 33 34 35 node 0 size: 7878 MB node 0 free: 3623 MB node 1 cpus: 12 13 14 15 16 17 18 19 20 21 22 23 36 37 38 39 40 41 42 43 44 45 46 47 node 1 size: 8045 MB node 1 free: 7818 MB node distances: node 0 1 0: 10 21 1: 21 10 Before the patch: > numactl -p0 -C0 ./transhuge-stress transhuge-stress: 2.197 s/loop, 0.276 ms/page, 7249.168 MiB/s 7962 succeed, 0 failed, 1786 different pages > numactl -p0 -C12 ./transhuge-stress transhuge-stress: 2.962 s/loop, 0.372 ms/page, 5376.172 MiB/s 7962 succeed, 0 failed, 3873 different pages Number of successful THP allocations corresponds to free memory on node 0 in the first case and node 1 in the second case, i.e. -p parameter is ignored and cpu binding "wins". After the patch: > numactl -p0 -C0 ./transhuge-stress transhuge-stress: 2.183 s/loop, 0.274 ms/page, 7295.516 MiB/s 7962 succeed, 0 failed, 1760 different pages > numactl -p0 -C12 ./transhuge-stress transhuge-stress: 2.878 s/loop, 0.361 ms/page, 5533.638 MiB/s 7962 succeed, 0 failed, 1750 different pages > numactl -p1 -C0 ./transhuge-stress transhuge-stress: 4.628 s/loop, 0.581 ms/page, 3440.893 MiB/s 7962 succeed, 0 failed, 3918 different pages The -p parameter is respected regardless of cpu binding. > numactl -C0 ./transhuge-stress transhuge-stress: 2.202 s/loop, 0.277 ms/page, 7230.003 MiB/s 7962 succeed, 0 failed, 1750 different pages > numactl -C12 ./transhuge-stress transhuge-stress: 3.020 s/loop, 0.379 ms/page, 5273.324 MiB/s 7962 succeed, 0 failed, 3916 different pages Without -p parameter, hugepage restriction to CPU-local node works as before. Fixes:077fcf116c
("mm/thp: allocate transparent hugepages on local node") Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: <stable@vger.kernel.org> [4.0+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
parent
afa2db2fb6
commit
0867a57c4f
@ -1972,26 +1972,6 @@ retry_cpuset:
|
||||
pol = get_vma_policy(vma, addr);
|
||||
cpuset_mems_cookie = read_mems_allowed_begin();
|
||||
|
||||
if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage &&
|
||||
pol->mode != MPOL_INTERLEAVE)) {
|
||||
/*
|
||||
* For hugepage allocation and non-interleave policy which
|
||||
* allows the current node, we only try to allocate from the
|
||||
* current node and don't fall back to other nodes, as the
|
||||
* cost of remote accesses would likely offset THP benefits.
|
||||
*
|
||||
* If the policy is interleave, or does not allow the current
|
||||
* node in its nodemask, we allocate the standard way.
|
||||
*/
|
||||
nmask = policy_nodemask(gfp, pol);
|
||||
if (!nmask || node_isset(node, *nmask)) {
|
||||
mpol_cond_put(pol);
|
||||
page = alloc_pages_exact_node(node,
|
||||
gfp | __GFP_THISNODE, order);
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
|
||||
if (pol->mode == MPOL_INTERLEAVE) {
|
||||
unsigned nid;
|
||||
|
||||
@ -2001,6 +1981,32 @@ retry_cpuset:
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
|
||||
int hpage_node = node;
|
||||
|
||||
/*
|
||||
* For hugepage allocation and non-interleave policy which
|
||||
* allows the current node (or other explicitly preferred
|
||||
* node) we only try to allocate from the current/preferred
|
||||
* node and don't fall back to other nodes, as the cost of
|
||||
* remote accesses would likely offset THP benefits.
|
||||
*
|
||||
* If the policy is interleave, or does not allow the current
|
||||
* node in its nodemask, we allocate the standard way.
|
||||
*/
|
||||
if (pol->mode == MPOL_PREFERRED &&
|
||||
!(pol->flags & MPOL_F_LOCAL))
|
||||
hpage_node = pol->v.preferred_node;
|
||||
|
||||
nmask = policy_nodemask(gfp, pol);
|
||||
if (!nmask || node_isset(hpage_node, *nmask)) {
|
||||
mpol_cond_put(pol);
|
||||
page = alloc_pages_exact_node(hpage_node,
|
||||
gfp | __GFP_THISNODE, order);
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
|
||||
nmask = policy_nodemask(gfp, pol);
|
||||
zl = policy_zonelist(gfp, pol, node);
|
||||
mpol_cond_put(pol);
|
||||
|
Loading…
Reference in New Issue
Block a user