mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-23 04:54:01 +08:00
Merge branch 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking fixes from Ingo Molnar: "Misc fixes: - a file-based futex fix - one more spin_unlock_wait() fix - a ww-mutex deadlock detection improvement/fix - and a raw_read_seqcount_latch() barrier fix" * 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: futex: Calculate the futex key based on a tail page for file-based futexes locking/qspinlock: Fix spin_unlock_wait() some more locking/ww_mutex: Report recursive ww_mutex locking early locking/seqcount: Re-fix raw_read_seqcount_latch()
This commit is contained in:
commit
02b07bde61
@ -21,38 +21,34 @@
|
||||
|
||||
#include <asm-generic/qspinlock_types.h>
|
||||
|
||||
/**
|
||||
* queued_spin_unlock_wait - wait until the _current_ lock holder releases the lock
|
||||
* @lock : Pointer to queued spinlock structure
|
||||
*
|
||||
* There is a very slight possibility of live-lock if the lockers keep coming
|
||||
* and the waiter is just unfortunate enough to not see any unlock state.
|
||||
*/
|
||||
#ifndef queued_spin_unlock_wait
|
||||
extern void queued_spin_unlock_wait(struct qspinlock *lock);
|
||||
#endif
|
||||
|
||||
/**
|
||||
* queued_spin_is_locked - is the spinlock locked?
|
||||
* @lock: Pointer to queued spinlock structure
|
||||
* Return: 1 if it is locked, 0 otherwise
|
||||
*/
|
||||
#ifndef queued_spin_is_locked
|
||||
static __always_inline int queued_spin_is_locked(struct qspinlock *lock)
|
||||
{
|
||||
/*
|
||||
* queued_spin_lock_slowpath() can ACQUIRE the lock before
|
||||
* issuing the unordered store that sets _Q_LOCKED_VAL.
|
||||
* See queued_spin_unlock_wait().
|
||||
*
|
||||
* See both smp_cond_acquire() sites for more detail.
|
||||
*
|
||||
* This however means that in code like:
|
||||
*
|
||||
* spin_lock(A) spin_lock(B)
|
||||
* spin_unlock_wait(B) spin_is_locked(A)
|
||||
* do_something() do_something()
|
||||
*
|
||||
* Both CPUs can end up running do_something() because the store
|
||||
* setting _Q_LOCKED_VAL will pass through the loads in
|
||||
* spin_unlock_wait() and/or spin_is_locked().
|
||||
*
|
||||
* Avoid this by issuing a full memory barrier between the spin_lock()
|
||||
* and the loads in spin_unlock_wait() and spin_is_locked().
|
||||
*
|
||||
* Note that regular mutual exclusion doesn't care about this
|
||||
* delayed store.
|
||||
* Any !0 state indicates it is locked, even if _Q_LOCKED_VAL
|
||||
* isn't immediately observable.
|
||||
*/
|
||||
smp_mb();
|
||||
return atomic_read(&lock->val) & _Q_LOCKED_MASK;
|
||||
return atomic_read(&lock->val);
|
||||
}
|
||||
#endif
|
||||
|
||||
/**
|
||||
* queued_spin_value_unlocked - is the spinlock structure unlocked?
|
||||
@ -122,21 +118,6 @@ static __always_inline void queued_spin_unlock(struct qspinlock *lock)
|
||||
}
|
||||
#endif
|
||||
|
||||
/**
|
||||
* queued_spin_unlock_wait - wait until current lock holder releases the lock
|
||||
* @lock : Pointer to queued spinlock structure
|
||||
*
|
||||
* There is a very slight possibility of live-lock if the lockers keep coming
|
||||
* and the waiter is just unfortunate enough to not see any unlock state.
|
||||
*/
|
||||
static inline void queued_spin_unlock_wait(struct qspinlock *lock)
|
||||
{
|
||||
/* See queued_spin_is_locked() */
|
||||
smp_mb();
|
||||
while (atomic_read(&lock->val) & _Q_LOCKED_MASK)
|
||||
cpu_relax();
|
||||
}
|
||||
|
||||
#ifndef virt_spin_lock
|
||||
static __always_inline bool virt_spin_lock(struct qspinlock *lock)
|
||||
{
|
||||
|
@ -277,7 +277,10 @@ static inline void raw_write_seqcount_barrier(seqcount_t *s)
|
||||
|
||||
static inline int raw_read_seqcount_latch(seqcount_t *s)
|
||||
{
|
||||
return lockless_dereference(s)->sequence;
|
||||
int seq = READ_ONCE(s->sequence);
|
||||
/* Pairs with the first smp_wmb() in raw_write_seqcount_latch() */
|
||||
smp_read_barrier_depends();
|
||||
return seq;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -331,7 +334,7 @@ static inline int raw_read_seqcount_latch(seqcount_t *s)
|
||||
* unsigned seq, idx;
|
||||
*
|
||||
* do {
|
||||
* seq = lockless_dereference(latch)->seq;
|
||||
* seq = raw_read_seqcount_latch(&latch->seq);
|
||||
*
|
||||
* idx = seq & 0x01;
|
||||
* entry = data_query(latch->data[idx], ...);
|
||||
|
@ -469,7 +469,7 @@ get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
|
||||
{
|
||||
unsigned long address = (unsigned long)uaddr;
|
||||
struct mm_struct *mm = current->mm;
|
||||
struct page *page;
|
||||
struct page *page, *tail;
|
||||
struct address_space *mapping;
|
||||
int err, ro = 0;
|
||||
|
||||
@ -530,7 +530,15 @@ again:
|
||||
* considered here and page lock forces unnecessarily serialization
|
||||
* From this point on, mapping will be re-verified if necessary and
|
||||
* page lock will be acquired only if it is unavoidable
|
||||
*
|
||||
* Mapping checks require the head page for any compound page so the
|
||||
* head page and mapping is looked up now. For anonymous pages, it
|
||||
* does not matter if the page splits in the future as the key is
|
||||
* based on the address. For filesystem-backed pages, the tail is
|
||||
* required as the index of the page determines the key. For
|
||||
* base pages, there is no tail page and tail == page.
|
||||
*/
|
||||
tail = page;
|
||||
page = compound_head(page);
|
||||
mapping = READ_ONCE(page->mapping);
|
||||
|
||||
@ -654,7 +662,7 @@ again:
|
||||
|
||||
key->both.offset |= FUT_OFF_INODE; /* inode-based key */
|
||||
key->shared.inode = inode;
|
||||
key->shared.pgoff = basepage_index(page);
|
||||
key->shared.pgoff = basepage_index(tail);
|
||||
rcu_read_unlock();
|
||||
}
|
||||
|
||||
|
@ -486,9 +486,6 @@ __ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
|
||||
if (!hold_ctx)
|
||||
return 0;
|
||||
|
||||
if (unlikely(ctx == hold_ctx))
|
||||
return -EALREADY;
|
||||
|
||||
if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
|
||||
(ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
|
||||
#ifdef CONFIG_DEBUG_MUTEXES
|
||||
@ -514,6 +511,12 @@ __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
|
||||
unsigned long flags;
|
||||
int ret;
|
||||
|
||||
if (use_ww_ctx) {
|
||||
struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
|
||||
if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
|
||||
return -EALREADY;
|
||||
}
|
||||
|
||||
preempt_disable();
|
||||
mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
|
||||
|
||||
|
@ -267,6 +267,66 @@ static __always_inline u32 __pv_wait_head_or_lock(struct qspinlock *lock,
|
||||
#define queued_spin_lock_slowpath native_queued_spin_lock_slowpath
|
||||
#endif
|
||||
|
||||
/*
|
||||
* queued_spin_lock_slowpath() can (load-)ACQUIRE the lock before
|
||||
* issuing an _unordered_ store to set _Q_LOCKED_VAL.
|
||||
*
|
||||
* This means that the store can be delayed, but no later than the
|
||||
* store-release from the unlock. This means that simply observing
|
||||
* _Q_LOCKED_VAL is not sufficient to determine if the lock is acquired.
|
||||
*
|
||||
* There are two paths that can issue the unordered store:
|
||||
*
|
||||
* (1) clear_pending_set_locked(): *,1,0 -> *,0,1
|
||||
*
|
||||
* (2) set_locked(): t,0,0 -> t,0,1 ; t != 0
|
||||
* atomic_cmpxchg_relaxed(): t,0,0 -> 0,0,1
|
||||
*
|
||||
* However, in both cases we have other !0 state we've set before to queue
|
||||
* ourseves:
|
||||
*
|
||||
* For (1) we have the atomic_cmpxchg_acquire() that set _Q_PENDING_VAL, our
|
||||
* load is constrained by that ACQUIRE to not pass before that, and thus must
|
||||
* observe the store.
|
||||
*
|
||||
* For (2) we have a more intersting scenario. We enqueue ourselves using
|
||||
* xchg_tail(), which ends up being a RELEASE. This in itself is not
|
||||
* sufficient, however that is followed by an smp_cond_acquire() on the same
|
||||
* word, giving a RELEASE->ACQUIRE ordering. This again constrains our load and
|
||||
* guarantees we must observe that store.
|
||||
*
|
||||
* Therefore both cases have other !0 state that is observable before the
|
||||
* unordered locked byte store comes through. This means we can use that to
|
||||
* wait for the lock store, and then wait for an unlock.
|
||||
*/
|
||||
#ifndef queued_spin_unlock_wait
|
||||
void queued_spin_unlock_wait(struct qspinlock *lock)
|
||||
{
|
||||
u32 val;
|
||||
|
||||
for (;;) {
|
||||
val = atomic_read(&lock->val);
|
||||
|
||||
if (!val) /* not locked, we're done */
|
||||
goto done;
|
||||
|
||||
if (val & _Q_LOCKED_MASK) /* locked, go wait for unlock */
|
||||
break;
|
||||
|
||||
/* not locked, but pending, wait until we observe the lock */
|
||||
cpu_relax();
|
||||
}
|
||||
|
||||
/* any unlock is good */
|
||||
while (atomic_read(&lock->val) & _Q_LOCKED_MASK)
|
||||
cpu_relax();
|
||||
|
||||
done:
|
||||
smp_rmb(); /* CTRL + RMB -> ACQUIRE */
|
||||
}
|
||||
EXPORT_SYMBOL(queued_spin_unlock_wait);
|
||||
#endif
|
||||
|
||||
#endif /* _GEN_PV_LOCK_SLOWPATH */
|
||||
|
||||
/**
|
||||
|
Loading…
Reference in New Issue
Block a user