2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-18 18:23:53 +08:00

ARM: local timers: Add A15 architected timer support

Add support for the A15 generic timer and clocksource.
As the timer generates interrupts on a different PPI depending
on the execution mode (normal or secure), it is possible to
register two different PPIs.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This commit is contained in:
Marc Zyngier 2012-01-11 17:25:17 +00:00
parent bfa05f4f33
commit 022c03a2d6
4 changed files with 314 additions and 0 deletions

View File

@ -1543,6 +1543,12 @@ config HAVE_ARM_SCU
help
This option enables support for the ARM system coherency unit
config ARM_ARCH_TIMER
bool "Architected timer support"
depends on CPU_V7
help
This option enables support for the ARM architected timer
config HAVE_ARM_TWD
bool
depends on SMP

View File

@ -0,0 +1,19 @@
#ifndef __ASMARM_ARCH_TIMER_H
#define __ASMARM_ARCH_TIMER_H
#include <linux/ioport.h>
struct arch_timer {
struct resource res[2];
};
#ifdef CONFIG_ARM_ARCH_TIMER
int arch_timer_register(struct arch_timer *);
#else
static inline int arch_timer_register(struct arch_timer *at)
{
return -ENXIO;
}
#endif
#endif

View File

@ -34,6 +34,7 @@ obj-$(CONFIG_ARM_CPU_SUSPEND) += sleep.o suspend.o
obj-$(CONFIG_SMP) += smp.o smp_tlb.o
obj-$(CONFIG_HAVE_ARM_SCU) += smp_scu.o
obj-$(CONFIG_HAVE_ARM_TWD) += smp_twd.o
obj-$(CONFIG_ARM_ARCH_TIMER) += arch_timer.o
obj-$(CONFIG_DYNAMIC_FTRACE) += ftrace.o insn.o
obj-$(CONFIG_FUNCTION_GRAPH_TRACER) += ftrace.o insn.o
obj-$(CONFIG_JUMP_LABEL) += jump_label.o insn.o patch.o

View File

@ -0,0 +1,288 @@
/*
* linux/arch/arm/kernel/arch_timer.c
*
* Copyright (C) 2011 ARM Ltd.
* All Rights Reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/smp.h>
#include <linux/cpu.h>
#include <linux/jiffies.h>
#include <linux/clockchips.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <asm/cputype.h>
#include <asm/localtimer.h>
#include <asm/arch_timer.h>
#include <asm/system_info.h>
static unsigned long arch_timer_rate;
static int arch_timer_ppi;
static int arch_timer_ppi2;
static struct clock_event_device __percpu **arch_timer_evt;
/*
* Architected system timer support.
*/
#define ARCH_TIMER_CTRL_ENABLE (1 << 0)
#define ARCH_TIMER_CTRL_IT_MASK (1 << 1)
#define ARCH_TIMER_CTRL_IT_STAT (1 << 2)
#define ARCH_TIMER_REG_CTRL 0
#define ARCH_TIMER_REG_FREQ 1
#define ARCH_TIMER_REG_TVAL 2
static void arch_timer_reg_write(int reg, u32 val)
{
switch (reg) {
case ARCH_TIMER_REG_CTRL:
asm volatile("mcr p15, 0, %0, c14, c2, 1" : : "r" (val));
break;
case ARCH_TIMER_REG_TVAL:
asm volatile("mcr p15, 0, %0, c14, c2, 0" : : "r" (val));
break;
}
isb();
}
static u32 arch_timer_reg_read(int reg)
{
u32 val;
switch (reg) {
case ARCH_TIMER_REG_CTRL:
asm volatile("mrc p15, 0, %0, c14, c2, 1" : "=r" (val));
break;
case ARCH_TIMER_REG_FREQ:
asm volatile("mrc p15, 0, %0, c14, c0, 0" : "=r" (val));
break;
case ARCH_TIMER_REG_TVAL:
asm volatile("mrc p15, 0, %0, c14, c2, 0" : "=r" (val));
break;
default:
BUG();
}
return val;
}
static irqreturn_t arch_timer_handler(int irq, void *dev_id)
{
struct clock_event_device *evt = *(struct clock_event_device **)dev_id;
unsigned long ctrl;
ctrl = arch_timer_reg_read(ARCH_TIMER_REG_CTRL);
if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
ctrl |= ARCH_TIMER_CTRL_IT_MASK;
arch_timer_reg_write(ARCH_TIMER_REG_CTRL, ctrl);
evt->event_handler(evt);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static void arch_timer_disable(void)
{
unsigned long ctrl;
ctrl = arch_timer_reg_read(ARCH_TIMER_REG_CTRL);
ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
arch_timer_reg_write(ARCH_TIMER_REG_CTRL, ctrl);
}
static void arch_timer_set_mode(enum clock_event_mode mode,
struct clock_event_device *clk)
{
switch (mode) {
case CLOCK_EVT_MODE_UNUSED:
case CLOCK_EVT_MODE_SHUTDOWN:
arch_timer_disable();
break;
default:
break;
}
}
static int arch_timer_set_next_event(unsigned long evt,
struct clock_event_device *unused)
{
unsigned long ctrl;
ctrl = arch_timer_reg_read(ARCH_TIMER_REG_CTRL);
ctrl |= ARCH_TIMER_CTRL_ENABLE;
ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
arch_timer_reg_write(ARCH_TIMER_REG_TVAL, evt);
arch_timer_reg_write(ARCH_TIMER_REG_CTRL, ctrl);
return 0;
}
static int __cpuinit arch_timer_setup(struct clock_event_device *clk)
{
/* Be safe... */
arch_timer_disable();
clk->features = CLOCK_EVT_FEAT_ONESHOT;
clk->name = "arch_sys_timer";
clk->rating = 450;
clk->set_mode = arch_timer_set_mode;
clk->set_next_event = arch_timer_set_next_event;
clk->irq = arch_timer_ppi;
clockevents_config_and_register(clk, arch_timer_rate,
0xf, 0x7fffffff);
*__this_cpu_ptr(arch_timer_evt) = clk;
enable_percpu_irq(clk->irq, 0);
if (arch_timer_ppi2)
enable_percpu_irq(arch_timer_ppi2, 0);
return 0;
}
/* Is the optional system timer available? */
static int local_timer_is_architected(void)
{
return (cpu_architecture() >= CPU_ARCH_ARMv7) &&
((read_cpuid_ext(CPUID_EXT_PFR1) >> 16) & 0xf) == 1;
}
static int arch_timer_available(void)
{
unsigned long freq;
if (!local_timer_is_architected())
return -ENXIO;
if (arch_timer_rate == 0) {
arch_timer_reg_write(ARCH_TIMER_REG_CTRL, 0);
freq = arch_timer_reg_read(ARCH_TIMER_REG_FREQ);
/* Check the timer frequency. */
if (freq == 0) {
pr_warn("Architected timer frequency not available\n");
return -EINVAL;
}
arch_timer_rate = freq;
}
pr_info_once("Architected local timer running at %lu.%02luMHz.\n",
arch_timer_rate / 1000000, (arch_timer_rate / 10000) % 100);
return 0;
}
static inline cycle_t arch_counter_get_cntpct(void)
{
u32 cvall, cvalh;
asm volatile("mrrc p15, 0, %0, %1, c14" : "=r" (cvall), "=r" (cvalh));
return ((cycle_t) cvalh << 32) | cvall;
}
static inline cycle_t arch_counter_get_cntvct(void)
{
u32 cvall, cvalh;
asm volatile("mrrc p15, 1, %0, %1, c14" : "=r" (cvall), "=r" (cvalh));
return ((cycle_t) cvalh << 32) | cvall;
}
static cycle_t arch_counter_read(struct clocksource *cs)
{
return arch_counter_get_cntpct();
}
static struct clocksource clocksource_counter = {
.name = "arch_sys_counter",
.rating = 400,
.read = arch_counter_read,
.mask = CLOCKSOURCE_MASK(56),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
static void __cpuinit arch_timer_stop(struct clock_event_device *clk)
{
pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
clk->irq, smp_processor_id());
disable_percpu_irq(clk->irq);
if (arch_timer_ppi2)
disable_percpu_irq(arch_timer_ppi2);
arch_timer_set_mode(CLOCK_EVT_MODE_UNUSED, clk);
}
static struct local_timer_ops arch_timer_ops __cpuinitdata = {
.setup = arch_timer_setup,
.stop = arch_timer_stop,
};
int __init arch_timer_register(struct arch_timer *at)
{
int err;
if (at->res[0].start <= 0 || !(at->res[0].flags & IORESOURCE_IRQ))
return -EINVAL;
err = arch_timer_available();
if (err)
return err;
arch_timer_evt = alloc_percpu(struct clock_event_device *);
if (!arch_timer_evt)
return -ENOMEM;
clocksource_register_hz(&clocksource_counter, arch_timer_rate);
arch_timer_ppi = at->res[0].start;
err = request_percpu_irq(arch_timer_ppi, arch_timer_handler,
"arch_timer", arch_timer_evt);
if (err) {
pr_err("arch_timer: can't register interrupt %d (%d)\n",
arch_timer_ppi, err);
goto out_free;
}
if (at->res[1].start > 0 || (at->res[1].flags & IORESOURCE_IRQ)) {
arch_timer_ppi2 = at->res[1].start;
err = request_percpu_irq(arch_timer_ppi2, arch_timer_handler,
"arch_timer", arch_timer_evt);
if (err) {
pr_err("arch_timer: can't register interrupt %d (%d)\n",
arch_timer_ppi2, err);
arch_timer_ppi2 = 0;
goto out_free_irq;
}
}
err = local_timer_register(&arch_timer_ops);
if (err)
goto out_free_irq;
return 0;
out_free_irq:
free_percpu_irq(arch_timer_ppi, arch_timer_evt);
if (arch_timer_ppi2)
free_percpu_irq(arch_timer_ppi2, arch_timer_evt);
out_free:
free_percpu(arch_timer_evt);
return err;
}