mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-14 08:34:02 +08:00
905 lines
23 KiB
C
905 lines
23 KiB
C
|
/*****************************************************************************
|
||
|
*
|
||
|
* Author: Xilinx, Inc.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License as published by the
|
||
|
* Free Software Foundation; either version 2 of the License, or (at your
|
||
|
* option) any later version.
|
||
|
*
|
||
|
* XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
|
||
|
* AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
|
||
|
* SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
|
||
|
* OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
|
||
|
* APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
|
||
|
* THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
|
||
|
* AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
|
||
|
* FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
|
||
|
* WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
|
||
|
* IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
|
||
|
* REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
|
||
|
* INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
|
* FOR A PARTICULAR PURPOSE.
|
||
|
*
|
||
|
* Xilinx products are not intended for use in life support appliances,
|
||
|
* devices, or systems. Use in such applications is expressly prohibited.
|
||
|
*
|
||
|
* (c) Copyright 2002 Xilinx Inc., Systems Engineering Group
|
||
|
* (c) Copyright 2004 Xilinx Inc., Systems Engineering Group
|
||
|
* (c) Copyright 2007-2008 Xilinx Inc.
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License along
|
||
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
||
|
* 675 Mass Ave, Cambridge, MA 02139, USA.
|
||
|
*
|
||
|
*****************************************************************************/
|
||
|
|
||
|
/*
|
||
|
* This is the code behind /dev/xilinx_icap -- it allows a user-space
|
||
|
* application to use the Xilinx ICAP subsystem.
|
||
|
*
|
||
|
* The following operations are possible:
|
||
|
*
|
||
|
* open open the port and initialize for access.
|
||
|
* release release port
|
||
|
* write Write a bitstream to the configuration processor.
|
||
|
* read Read a data stream from the configuration processor.
|
||
|
*
|
||
|
* After being opened, the port is initialized and accessed to avoid a
|
||
|
* corrupted first read which may occur with some hardware. The port
|
||
|
* is left in a desynched state, requiring that a synch sequence be
|
||
|
* transmitted before any valid configuration data. A user will have
|
||
|
* exclusive access to the device while it remains open, and the state
|
||
|
* of the ICAP cannot be guaranteed after the device is closed. Note
|
||
|
* that a complete reset of the core and the state of the ICAP cannot
|
||
|
* be performed on many versions of the cores, hence users of this
|
||
|
* device should avoid making inconsistent accesses to the device. In
|
||
|
* particular, accessing the read interface, without first generating
|
||
|
* a write containing a readback packet can leave the ICAP in an
|
||
|
* inaccessible state.
|
||
|
*
|
||
|
* Note that in order to use the read interface, it is first necessary
|
||
|
* to write a request packet to the write interface. i.e., it is not
|
||
|
* possible to simply readback the bitstream (or any configuration
|
||
|
* bits) from a device without specifically requesting them first.
|
||
|
* The code to craft such packets is intended to be part of the
|
||
|
* user-space application code that uses this device. The simplest
|
||
|
* way to use this interface is simply:
|
||
|
*
|
||
|
* cp foo.bit /dev/xilinx_icap
|
||
|
*
|
||
|
* Note that unless foo.bit is an appropriately constructed partial
|
||
|
* bitstream, this has a high likelyhood of overwriting the design
|
||
|
* currently programmed in the FPGA.
|
||
|
*/
|
||
|
|
||
|
#include <linux/version.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/ioport.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/fcntl.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/poll.h>
|
||
|
#include <linux/proc_fs.h>
|
||
|
#include <asm/semaphore.h>
|
||
|
#include <linux/sysctl.h>
|
||
|
#include <linux/version.h>
|
||
|
#include <linux/fs.h>
|
||
|
#include <linux/cdev.h>
|
||
|
#include <linux/platform_device.h>
|
||
|
|
||
|
#include <asm/io.h>
|
||
|
#include <asm/uaccess.h>
|
||
|
#include <asm/system.h>
|
||
|
|
||
|
#ifdef CONFIG_OF
|
||
|
/* For open firmware. */
|
||
|
#include <linux/of_device.h>
|
||
|
#include <linux/of_platform.h>
|
||
|
#endif
|
||
|
|
||
|
#include "xilinx_hwicap.h"
|
||
|
#include "buffer_icap.h"
|
||
|
#include "fifo_icap.h"
|
||
|
|
||
|
#define DRIVER_NAME "xilinx_icap"
|
||
|
|
||
|
#define HWICAP_REGS (0x10000)
|
||
|
|
||
|
/* dynamically allocate device number */
|
||
|
static int xhwicap_major;
|
||
|
static int xhwicap_minor;
|
||
|
#define HWICAP_DEVICES 1
|
||
|
|
||
|
module_param(xhwicap_major, int, S_IRUGO);
|
||
|
module_param(xhwicap_minor, int, S_IRUGO);
|
||
|
|
||
|
/* An array, which is set to true when the device is registered. */
|
||
|
static bool probed_devices[HWICAP_DEVICES];
|
||
|
|
||
|
static struct class *icap_class;
|
||
|
|
||
|
#define UNIMPLEMENTED 0xFFFF
|
||
|
|
||
|
static const struct config_registers v2_config_registers = {
|
||
|
.CRC = 0,
|
||
|
.FAR = 1,
|
||
|
.FDRI = 2,
|
||
|
.FDRO = 3,
|
||
|
.CMD = 4,
|
||
|
.CTL = 5,
|
||
|
.MASK = 6,
|
||
|
.STAT = 7,
|
||
|
.LOUT = 8,
|
||
|
.COR = 9,
|
||
|
.MFWR = 10,
|
||
|
.FLR = 11,
|
||
|
.KEY = 12,
|
||
|
.CBC = 13,
|
||
|
.IDCODE = 14,
|
||
|
.AXSS = UNIMPLEMENTED,
|
||
|
.C0R_1 = UNIMPLEMENTED,
|
||
|
.CSOB = UNIMPLEMENTED,
|
||
|
.WBSTAR = UNIMPLEMENTED,
|
||
|
.TIMER = UNIMPLEMENTED,
|
||
|
.BOOTSTS = UNIMPLEMENTED,
|
||
|
.CTL_1 = UNIMPLEMENTED,
|
||
|
};
|
||
|
|
||
|
static const struct config_registers v4_config_registers = {
|
||
|
.CRC = 0,
|
||
|
.FAR = 1,
|
||
|
.FDRI = 2,
|
||
|
.FDRO = 3,
|
||
|
.CMD = 4,
|
||
|
.CTL = 5,
|
||
|
.MASK = 6,
|
||
|
.STAT = 7,
|
||
|
.LOUT = 8,
|
||
|
.COR = 9,
|
||
|
.MFWR = 10,
|
||
|
.FLR = UNIMPLEMENTED,
|
||
|
.KEY = UNIMPLEMENTED,
|
||
|
.CBC = 11,
|
||
|
.IDCODE = 12,
|
||
|
.AXSS = 13,
|
||
|
.C0R_1 = UNIMPLEMENTED,
|
||
|
.CSOB = UNIMPLEMENTED,
|
||
|
.WBSTAR = UNIMPLEMENTED,
|
||
|
.TIMER = UNIMPLEMENTED,
|
||
|
.BOOTSTS = UNIMPLEMENTED,
|
||
|
.CTL_1 = UNIMPLEMENTED,
|
||
|
};
|
||
|
static const struct config_registers v5_config_registers = {
|
||
|
.CRC = 0,
|
||
|
.FAR = 1,
|
||
|
.FDRI = 2,
|
||
|
.FDRO = 3,
|
||
|
.CMD = 4,
|
||
|
.CTL = 5,
|
||
|
.MASK = 6,
|
||
|
.STAT = 7,
|
||
|
.LOUT = 8,
|
||
|
.COR = 9,
|
||
|
.MFWR = 10,
|
||
|
.FLR = UNIMPLEMENTED,
|
||
|
.KEY = UNIMPLEMENTED,
|
||
|
.CBC = 11,
|
||
|
.IDCODE = 12,
|
||
|
.AXSS = 13,
|
||
|
.C0R_1 = 14,
|
||
|
.CSOB = 15,
|
||
|
.WBSTAR = 16,
|
||
|
.TIMER = 17,
|
||
|
.BOOTSTS = 18,
|
||
|
.CTL_1 = 19,
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* hwicap_command_desync: Send a DESYNC command to the ICAP port.
|
||
|
* @parameter drvdata: a pointer to the drvdata.
|
||
|
*
|
||
|
* This command desynchronizes the ICAP After this command, a
|
||
|
* bitstream containing a NULL packet, followed by a SYNCH packet is
|
||
|
* required before the ICAP will recognize commands.
|
||
|
*/
|
||
|
int hwicap_command_desync(struct hwicap_drvdata *drvdata)
|
||
|
{
|
||
|
u32 buffer[4];
|
||
|
u32 index = 0;
|
||
|
|
||
|
/*
|
||
|
* Create the data to be written to the ICAP.
|
||
|
*/
|
||
|
buffer[index++] = hwicap_type_1_write(drvdata->config_regs->CMD) | 1;
|
||
|
buffer[index++] = XHI_CMD_DESYNCH;
|
||
|
buffer[index++] = XHI_NOOP_PACKET;
|
||
|
buffer[index++] = XHI_NOOP_PACKET;
|
||
|
|
||
|
/*
|
||
|
* Write the data to the FIFO and intiate the transfer of data present
|
||
|
* in the FIFO to the ICAP device.
|
||
|
*/
|
||
|
return drvdata->config->set_configuration(drvdata,
|
||
|
&buffer[0], index);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* hwicap_command_capture: Send a CAPTURE command to the ICAP port.
|
||
|
* @parameter drvdata: a pointer to the drvdata.
|
||
|
*
|
||
|
* This command captures all of the flip flop states so they will be
|
||
|
* available during readback. One can use this command instead of
|
||
|
* enabling the CAPTURE block in the design.
|
||
|
*/
|
||
|
int hwicap_command_capture(struct hwicap_drvdata *drvdata)
|
||
|
{
|
||
|
u32 buffer[7];
|
||
|
u32 index = 0;
|
||
|
|
||
|
/*
|
||
|
* Create the data to be written to the ICAP.
|
||
|
*/
|
||
|
buffer[index++] = XHI_DUMMY_PACKET;
|
||
|
buffer[index++] = XHI_SYNC_PACKET;
|
||
|
buffer[index++] = XHI_NOOP_PACKET;
|
||
|
buffer[index++] = hwicap_type_1_write(drvdata->config_regs->CMD) | 1;
|
||
|
buffer[index++] = XHI_CMD_GCAPTURE;
|
||
|
buffer[index++] = XHI_DUMMY_PACKET;
|
||
|
buffer[index++] = XHI_DUMMY_PACKET;
|
||
|
|
||
|
/*
|
||
|
* Write the data to the FIFO and intiate the transfer of data
|
||
|
* present in the FIFO to the ICAP device.
|
||
|
*/
|
||
|
return drvdata->config->set_configuration(drvdata,
|
||
|
&buffer[0], index);
|
||
|
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* hwicap_get_configuration_register: Query a configuration register.
|
||
|
* @parameter drvdata: a pointer to the drvdata.
|
||
|
* @parameter reg: a constant which represents the configuration
|
||
|
* register value to be returned.
|
||
|
* Examples: XHI_IDCODE, XHI_FLR.
|
||
|
* @parameter RegData: returns the value of the register.
|
||
|
*
|
||
|
* Sends a query packet to the ICAP and then receives the response.
|
||
|
* The icap is left in Synched state.
|
||
|
*/
|
||
|
int hwicap_get_configuration_register(struct hwicap_drvdata *drvdata,
|
||
|
u32 reg, u32 *RegData)
|
||
|
{
|
||
|
int status;
|
||
|
u32 buffer[6];
|
||
|
u32 index = 0;
|
||
|
|
||
|
/*
|
||
|
* Create the data to be written to the ICAP.
|
||
|
*/
|
||
|
buffer[index++] = XHI_DUMMY_PACKET;
|
||
|
buffer[index++] = XHI_SYNC_PACKET;
|
||
|
buffer[index++] = XHI_NOOP_PACKET;
|
||
|
buffer[index++] = hwicap_type_1_read(reg) | 1;
|
||
|
buffer[index++] = XHI_NOOP_PACKET;
|
||
|
buffer[index++] = XHI_NOOP_PACKET;
|
||
|
|
||
|
/*
|
||
|
* Write the data to the FIFO and intiate the transfer of data present
|
||
|
* in the FIFO to the ICAP device.
|
||
|
*/
|
||
|
status = drvdata->config->set_configuration(drvdata,
|
||
|
&buffer[0], index);
|
||
|
if (status)
|
||
|
return status;
|
||
|
|
||
|
/*
|
||
|
* Read the configuration register
|
||
|
*/
|
||
|
status = drvdata->config->get_configuration(drvdata, RegData, 1);
|
||
|
if (status)
|
||
|
return status;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int hwicap_initialize_hwicap(struct hwicap_drvdata *drvdata)
|
||
|
{
|
||
|
int status;
|
||
|
u32 idcode;
|
||
|
|
||
|
dev_dbg(drvdata->dev, "initializing\n");
|
||
|
|
||
|
/* Abort any current transaction, to make sure we have the
|
||
|
* ICAP in a good state. */
|
||
|
dev_dbg(drvdata->dev, "Reset...\n");
|
||
|
drvdata->config->reset(drvdata);
|
||
|
|
||
|
dev_dbg(drvdata->dev, "Desync...\n");
|
||
|
status = hwicap_command_desync(drvdata);
|
||
|
if (status)
|
||
|
return status;
|
||
|
|
||
|
/* Attempt to read the IDCODE from ICAP. This
|
||
|
* may not be returned correctly, due to the design of the
|
||
|
* hardware.
|
||
|
*/
|
||
|
dev_dbg(drvdata->dev, "Reading IDCODE...\n");
|
||
|
status = hwicap_get_configuration_register(
|
||
|
drvdata, drvdata->config_regs->IDCODE, &idcode);
|
||
|
dev_dbg(drvdata->dev, "IDCODE = %x\n", idcode);
|
||
|
if (status)
|
||
|
return status;
|
||
|
|
||
|
dev_dbg(drvdata->dev, "Desync...\n");
|
||
|
status = hwicap_command_desync(drvdata);
|
||
|
if (status)
|
||
|
return status;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static ssize_t
|
||
|
hwicap_read(struct file *file, char *buf, size_t count, loff_t *ppos)
|
||
|
{
|
||
|
struct hwicap_drvdata *drvdata = file->private_data;
|
||
|
ssize_t bytes_to_read = 0;
|
||
|
u32 *kbuf;
|
||
|
u32 words;
|
||
|
u32 bytes_remaining;
|
||
|
int status;
|
||
|
|
||
|
if (down_interruptible(&drvdata->sem))
|
||
|
return -ERESTARTSYS;
|
||
|
|
||
|
if (drvdata->read_buffer_in_use) {
|
||
|
/* If there are leftover bytes in the buffer, just */
|
||
|
/* return them and don't try to read more from the */
|
||
|
/* ICAP device. */
|
||
|
bytes_to_read =
|
||
|
(count < drvdata->read_buffer_in_use) ? count :
|
||
|
drvdata->read_buffer_in_use;
|
||
|
|
||
|
/* Return the data currently in the read buffer. */
|
||
|
if (copy_to_user(buf, drvdata->read_buffer, bytes_to_read)) {
|
||
|
status = -EFAULT;
|
||
|
goto error;
|
||
|
}
|
||
|
drvdata->read_buffer_in_use -= bytes_to_read;
|
||
|
memcpy(drvdata->read_buffer + bytes_to_read,
|
||
|
drvdata->read_buffer, 4 - bytes_to_read);
|
||
|
} else {
|
||
|
/* Get new data from the ICAP, and return was was requested. */
|
||
|
kbuf = (u32 *) get_zeroed_page(GFP_KERNEL);
|
||
|
if (!kbuf) {
|
||
|
status = -ENOMEM;
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
/* The ICAP device is only able to read complete */
|
||
|
/* words. If a number of bytes that do not correspond */
|
||
|
/* to complete words is requested, then we read enough */
|
||
|
/* words to get the required number of bytes, and then */
|
||
|
/* save the remaining bytes for the next read. */
|
||
|
|
||
|
/* Determine the number of words to read, rounding up */
|
||
|
/* if necessary. */
|
||
|
words = ((count + 3) >> 2);
|
||
|
bytes_to_read = words << 2;
|
||
|
|
||
|
if (bytes_to_read > PAGE_SIZE)
|
||
|
bytes_to_read = PAGE_SIZE;
|
||
|
|
||
|
/* Ensure we only read a complete number of words. */
|
||
|
bytes_remaining = bytes_to_read & 3;
|
||
|
bytes_to_read &= ~3;
|
||
|
words = bytes_to_read >> 2;
|
||
|
|
||
|
status = drvdata->config->get_configuration(drvdata,
|
||
|
kbuf, words);
|
||
|
|
||
|
/* If we didn't read correctly, then bail out. */
|
||
|
if (status) {
|
||
|
free_page((unsigned long)kbuf);
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
/* If we fail to return the data to the user, then bail out. */
|
||
|
if (copy_to_user(buf, kbuf, bytes_to_read)) {
|
||
|
free_page((unsigned long)kbuf);
|
||
|
status = -EFAULT;
|
||
|
goto error;
|
||
|
}
|
||
|
memcpy(kbuf, drvdata->read_buffer, bytes_remaining);
|
||
|
drvdata->read_buffer_in_use = bytes_remaining;
|
||
|
free_page((unsigned long)kbuf);
|
||
|
}
|
||
|
status = bytes_to_read;
|
||
|
error:
|
||
|
up(&drvdata->sem);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
static ssize_t
|
||
|
hwicap_write(struct file *file, const char *buf,
|
||
|
size_t count, loff_t *ppos)
|
||
|
{
|
||
|
struct hwicap_drvdata *drvdata = file->private_data;
|
||
|
ssize_t written = 0;
|
||
|
ssize_t left = count;
|
||
|
u32 *kbuf;
|
||
|
ssize_t len;
|
||
|
ssize_t status;
|
||
|
|
||
|
if (down_interruptible(&drvdata->sem))
|
||
|
return -ERESTARTSYS;
|
||
|
|
||
|
left += drvdata->write_buffer_in_use;
|
||
|
|
||
|
/* Only write multiples of 4 bytes. */
|
||
|
if (left < 4) {
|
||
|
status = 0;
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
kbuf = (u32 *) __get_free_page(GFP_KERNEL);
|
||
|
if (!kbuf) {
|
||
|
status = -ENOMEM;
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
while (left > 3) {
|
||
|
/* only write multiples of 4 bytes, so there might */
|
||
|
/* be as many as 3 bytes left (at the end). */
|
||
|
len = left;
|
||
|
|
||
|
if (len > PAGE_SIZE)
|
||
|
len = PAGE_SIZE;
|
||
|
len &= ~3;
|
||
|
|
||
|
if (drvdata->write_buffer_in_use) {
|
||
|
memcpy(kbuf, drvdata->write_buffer,
|
||
|
drvdata->write_buffer_in_use);
|
||
|
if (copy_from_user(
|
||
|
(((char *)kbuf) + (drvdata->write_buffer_in_use)),
|
||
|
buf + written,
|
||
|
len - (drvdata->write_buffer_in_use))) {
|
||
|
free_page((unsigned long)kbuf);
|
||
|
status = -EFAULT;
|
||
|
goto error;
|
||
|
}
|
||
|
} else {
|
||
|
if (copy_from_user(kbuf, buf + written, len)) {
|
||
|
free_page((unsigned long)kbuf);
|
||
|
status = -EFAULT;
|
||
|
goto error;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
status = drvdata->config->set_configuration(drvdata,
|
||
|
kbuf, len >> 2);
|
||
|
|
||
|
if (status) {
|
||
|
free_page((unsigned long)kbuf);
|
||
|
status = -EFAULT;
|
||
|
goto error;
|
||
|
}
|
||
|
if (drvdata->write_buffer_in_use) {
|
||
|
len -= drvdata->write_buffer_in_use;
|
||
|
left -= drvdata->write_buffer_in_use;
|
||
|
drvdata->write_buffer_in_use = 0;
|
||
|
}
|
||
|
written += len;
|
||
|
left -= len;
|
||
|
}
|
||
|
if ((left > 0) && (left < 4)) {
|
||
|
if (!copy_from_user(drvdata->write_buffer,
|
||
|
buf + written, left)) {
|
||
|
drvdata->write_buffer_in_use = left;
|
||
|
written += left;
|
||
|
left = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
free_page((unsigned long)kbuf);
|
||
|
status = written;
|
||
|
error:
|
||
|
up(&drvdata->sem);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
static int hwicap_open(struct inode *inode, struct file *file)
|
||
|
{
|
||
|
struct hwicap_drvdata *drvdata;
|
||
|
int status;
|
||
|
|
||
|
drvdata = container_of(inode->i_cdev, struct hwicap_drvdata, cdev);
|
||
|
|
||
|
if (down_interruptible(&drvdata->sem))
|
||
|
return -ERESTARTSYS;
|
||
|
|
||
|
if (drvdata->is_open) {
|
||
|
status = -EBUSY;
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
status = hwicap_initialize_hwicap(drvdata);
|
||
|
if (status) {
|
||
|
dev_err(drvdata->dev, "Failed to open file");
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
file->private_data = drvdata;
|
||
|
drvdata->write_buffer_in_use = 0;
|
||
|
drvdata->read_buffer_in_use = 0;
|
||
|
drvdata->is_open = 1;
|
||
|
|
||
|
error:
|
||
|
up(&drvdata->sem);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
static int hwicap_release(struct inode *inode, struct file *file)
|
||
|
{
|
||
|
struct hwicap_drvdata *drvdata = file->private_data;
|
||
|
int i;
|
||
|
int status = 0;
|
||
|
|
||
|
if (down_interruptible(&drvdata->sem))
|
||
|
return -ERESTARTSYS;
|
||
|
|
||
|
if (drvdata->write_buffer_in_use) {
|
||
|
/* Flush write buffer. */
|
||
|
for (i = drvdata->write_buffer_in_use; i < 4; i++)
|
||
|
drvdata->write_buffer[i] = 0;
|
||
|
|
||
|
status = drvdata->config->set_configuration(drvdata,
|
||
|
(u32 *) drvdata->write_buffer, 1);
|
||
|
if (status)
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
status = hwicap_command_desync(drvdata);
|
||
|
if (status)
|
||
|
goto error;
|
||
|
|
||
|
error:
|
||
|
drvdata->is_open = 0;
|
||
|
up(&drvdata->sem);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
static struct file_operations hwicap_fops = {
|
||
|
.owner = THIS_MODULE,
|
||
|
.write = hwicap_write,
|
||
|
.read = hwicap_read,
|
||
|
.open = hwicap_open,
|
||
|
.release = hwicap_release,
|
||
|
};
|
||
|
|
||
|
static int __devinit hwicap_setup(struct device *dev, int id,
|
||
|
const struct resource *regs_res,
|
||
|
const struct hwicap_driver_config *config,
|
||
|
const struct config_registers *config_regs)
|
||
|
{
|
||
|
dev_t devt;
|
||
|
struct hwicap_drvdata *drvdata = NULL;
|
||
|
int retval = 0;
|
||
|
|
||
|
dev_info(dev, "Xilinx icap port driver\n");
|
||
|
|
||
|
if (id < 0) {
|
||
|
for (id = 0; id < HWICAP_DEVICES; id++)
|
||
|
if (!probed_devices[id])
|
||
|
break;
|
||
|
}
|
||
|
if (id < 0 || id >= HWICAP_DEVICES) {
|
||
|
dev_err(dev, "%s%i too large\n", DRIVER_NAME, id);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
if (probed_devices[id]) {
|
||
|
dev_err(dev, "cannot assign to %s%i; it is already in use\n",
|
||
|
DRIVER_NAME, id);
|
||
|
return -EBUSY;
|
||
|
}
|
||
|
|
||
|
probed_devices[id] = 1;
|
||
|
|
||
|
devt = MKDEV(xhwicap_major, xhwicap_minor + id);
|
||
|
|
||
|
drvdata = kmalloc(sizeof(struct hwicap_drvdata), GFP_KERNEL);
|
||
|
if (!drvdata) {
|
||
|
dev_err(dev, "Couldn't allocate device private record\n");
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
memset((void *)drvdata, 0, sizeof(struct hwicap_drvdata));
|
||
|
dev_set_drvdata(dev, (void *)drvdata);
|
||
|
|
||
|
if (!regs_res) {
|
||
|
dev_err(dev, "Couldn't get registers resource\n");
|
||
|
retval = -EFAULT;
|
||
|
goto failed1;
|
||
|
}
|
||
|
|
||
|
drvdata->mem_start = regs_res->start;
|
||
|
drvdata->mem_end = regs_res->end;
|
||
|
drvdata->mem_size = regs_res->end - regs_res->start + 1;
|
||
|
|
||
|
if (!request_mem_region(drvdata->mem_start,
|
||
|
drvdata->mem_size, DRIVER_NAME)) {
|
||
|
dev_err(dev, "Couldn't lock memory region at %p\n",
|
||
|
(void *)regs_res->start);
|
||
|
retval = -EBUSY;
|
||
|
goto failed1;
|
||
|
}
|
||
|
|
||
|
drvdata->devt = devt;
|
||
|
drvdata->dev = dev;
|
||
|
drvdata->base_address = ioremap(drvdata->mem_start, drvdata->mem_size);
|
||
|
if (!drvdata->base_address) {
|
||
|
dev_err(dev, "ioremap() failed\n");
|
||
|
goto failed2;
|
||
|
}
|
||
|
|
||
|
drvdata->config = config;
|
||
|
drvdata->config_regs = config_regs;
|
||
|
|
||
|
init_MUTEX(&drvdata->sem);
|
||
|
drvdata->is_open = 0;
|
||
|
|
||
|
dev_info(dev, "ioremap %lx to %p with size %x\n",
|
||
|
(unsigned long int)drvdata->mem_start,
|
||
|
drvdata->base_address, drvdata->mem_size);
|
||
|
|
||
|
cdev_init(&drvdata->cdev, &hwicap_fops);
|
||
|
drvdata->cdev.owner = THIS_MODULE;
|
||
|
retval = cdev_add(&drvdata->cdev, devt, 1);
|
||
|
if (retval) {
|
||
|
dev_err(dev, "cdev_add() failed\n");
|
||
|
goto failed3;
|
||
|
}
|
||
|
/* devfs_mk_cdev(devt, S_IFCHR|S_IRUGO|S_IWUGO, DRIVER_NAME); */
|
||
|
class_device_create(icap_class, NULL, devt, NULL, DRIVER_NAME);
|
||
|
return 0; /* success */
|
||
|
|
||
|
failed3:
|
||
|
iounmap(drvdata->base_address);
|
||
|
|
||
|
failed2:
|
||
|
release_mem_region(regs_res->start, drvdata->mem_size);
|
||
|
|
||
|
failed1:
|
||
|
kfree(drvdata);
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
static struct hwicap_driver_config buffer_icap_config = {
|
||
|
.get_configuration = buffer_icap_get_configuration,
|
||
|
.set_configuration = buffer_icap_set_configuration,
|
||
|
.reset = buffer_icap_reset,
|
||
|
};
|
||
|
|
||
|
static struct hwicap_driver_config fifo_icap_config = {
|
||
|
.get_configuration = fifo_icap_get_configuration,
|
||
|
.set_configuration = fifo_icap_set_configuration,
|
||
|
.reset = fifo_icap_reset,
|
||
|
};
|
||
|
|
||
|
static int __devexit hwicap_remove(struct device *dev)
|
||
|
{
|
||
|
struct hwicap_drvdata *drvdata;
|
||
|
|
||
|
drvdata = (struct hwicap_drvdata *)dev_get_drvdata(dev);
|
||
|
|
||
|
if (!drvdata)
|
||
|
return 0;
|
||
|
|
||
|
class_device_destroy(icap_class, drvdata->devt);
|
||
|
cdev_del(&drvdata->cdev);
|
||
|
iounmap(drvdata->base_address);
|
||
|
release_mem_region(drvdata->mem_start, drvdata->mem_size);
|
||
|
kfree(drvdata);
|
||
|
dev_set_drvdata(dev, NULL);
|
||
|
probed_devices[MINOR(dev->devt)-xhwicap_minor] = 0;
|
||
|
|
||
|
return 0; /* success */
|
||
|
}
|
||
|
|
||
|
static int __devinit hwicap_drv_probe(struct platform_device *pdev)
|
||
|
{
|
||
|
struct resource *res;
|
||
|
const struct config_registers *regs;
|
||
|
const char *family;
|
||
|
|
||
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
||
|
if (!res)
|
||
|
return -ENODEV;
|
||
|
|
||
|
/* It's most likely that we're using V4, if the family is not
|
||
|
specified */
|
||
|
regs = &v4_config_registers;
|
||
|
family = pdev->dev.platform_data;
|
||
|
|
||
|
if (family) {
|
||
|
if (!strcmp(family, "virtex2p")) {
|
||
|
regs = &v2_config_registers;
|
||
|
} else if (!strcmp(family, "virtex4")) {
|
||
|
regs = &v4_config_registers;
|
||
|
} else if (!strcmp(family, "virtex5")) {
|
||
|
regs = &v5_config_registers;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return hwicap_setup(&pdev->dev, pdev->id, res,
|
||
|
&buffer_icap_config, regs);
|
||
|
}
|
||
|
|
||
|
static int __devexit hwicap_drv_remove(struct platform_device *pdev)
|
||
|
{
|
||
|
return hwicap_remove(&pdev->dev);
|
||
|
}
|
||
|
|
||
|
static struct platform_driver hwicap_platform_driver = {
|
||
|
.probe = hwicap_drv_probe,
|
||
|
.remove = hwicap_drv_remove,
|
||
|
.driver = {
|
||
|
.owner = THIS_MODULE,
|
||
|
.name = DRIVER_NAME,
|
||
|
},
|
||
|
};
|
||
|
|
||
|
/* ---------------------------------------------------------------------
|
||
|
* OF bus binding
|
||
|
*/
|
||
|
|
||
|
#if defined(CONFIG_OF)
|
||
|
static int __devinit
|
||
|
hwicap_of_probe(struct of_device *op, const struct of_device_id *match)
|
||
|
{
|
||
|
struct resource res;
|
||
|
const unsigned int *id;
|
||
|
const char *family;
|
||
|
int rc;
|
||
|
const struct hwicap_driver_config *config = match->data;
|
||
|
const struct config_registers *regs;
|
||
|
|
||
|
dev_dbg(&op->dev, "hwicap_of_probe(%p, %p)\n", op, match);
|
||
|
|
||
|
rc = of_address_to_resource(op->node, 0, &res);
|
||
|
if (rc) {
|
||
|
dev_err(&op->dev, "invalid address\n");
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
id = of_get_property(op->node, "port-number", NULL);
|
||
|
|
||
|
/* It's most likely that we're using V4, if the family is not
|
||
|
specified */
|
||
|
regs = &v4_config_registers;
|
||
|
family = of_get_property(op->node, "xlnx,family", NULL);
|
||
|
|
||
|
if (family) {
|
||
|
if (!strcmp(family, "virtex2p")) {
|
||
|
regs = &v2_config_registers;
|
||
|
} else if (!strcmp(family, "virtex4")) {
|
||
|
regs = &v4_config_registers;
|
||
|
} else if (!strcmp(family, "virtex5")) {
|
||
|
regs = &v5_config_registers;
|
||
|
}
|
||
|
}
|
||
|
return hwicap_setup(&op->dev, id ? *id : -1, &res, config,
|
||
|
regs);
|
||
|
}
|
||
|
|
||
|
static int __devexit hwicap_of_remove(struct of_device *op)
|
||
|
{
|
||
|
return hwicap_remove(&op->dev);
|
||
|
}
|
||
|
|
||
|
/* Match table for of_platform binding */
|
||
|
static const struct of_device_id __devinit hwicap_of_match[] = {
|
||
|
{ .compatible = "xlnx,opb-hwicap-1.00.b", .data = &buffer_icap_config},
|
||
|
{ .compatible = "xlnx,xps-hwicap-1.00.a", .data = &fifo_icap_config},
|
||
|
{},
|
||
|
};
|
||
|
MODULE_DEVICE_TABLE(of, hwicap_of_match);
|
||
|
|
||
|
static struct of_platform_driver hwicap_of_driver = {
|
||
|
.owner = THIS_MODULE,
|
||
|
.name = DRIVER_NAME,
|
||
|
.match_table = hwicap_of_match,
|
||
|
.probe = hwicap_of_probe,
|
||
|
.remove = __devexit_p(hwicap_of_remove),
|
||
|
.driver = {
|
||
|
.name = DRIVER_NAME,
|
||
|
},
|
||
|
};
|
||
|
|
||
|
/* Registration helpers to keep the number of #ifdefs to a minimum */
|
||
|
static inline int __devinit hwicap_of_register(void)
|
||
|
{
|
||
|
pr_debug("hwicap: calling of_register_platform_driver()\n");
|
||
|
return of_register_platform_driver(&hwicap_of_driver);
|
||
|
}
|
||
|
|
||
|
static inline void __devexit hwicap_of_unregister(void)
|
||
|
{
|
||
|
of_unregister_platform_driver(&hwicap_of_driver);
|
||
|
}
|
||
|
#else /* CONFIG_OF */
|
||
|
/* CONFIG_OF not enabled; do nothing helpers */
|
||
|
static inline int __devinit hwicap_of_register(void) { return 0; }
|
||
|
static inline void __devexit hwicap_of_unregister(void) { }
|
||
|
#endif /* CONFIG_OF */
|
||
|
|
||
|
static int __devinit hwicap_module_init(void)
|
||
|
{
|
||
|
dev_t devt;
|
||
|
int retval;
|
||
|
|
||
|
icap_class = class_create(THIS_MODULE, "xilinx_config");
|
||
|
|
||
|
if (xhwicap_major) {
|
||
|
devt = MKDEV(xhwicap_major, xhwicap_minor);
|
||
|
retval = register_chrdev_region(
|
||
|
devt,
|
||
|
HWICAP_DEVICES,
|
||
|
DRIVER_NAME);
|
||
|
if (retval < 0)
|
||
|
return retval;
|
||
|
} else {
|
||
|
retval = alloc_chrdev_region(&devt,
|
||
|
xhwicap_minor,
|
||
|
HWICAP_DEVICES,
|
||
|
DRIVER_NAME);
|
||
|
if (retval < 0)
|
||
|
return retval;
|
||
|
xhwicap_major = MAJOR(devt);
|
||
|
}
|
||
|
|
||
|
retval = platform_driver_register(&hwicap_platform_driver);
|
||
|
|
||
|
if (retval)
|
||
|
goto failed1;
|
||
|
|
||
|
retval = hwicap_of_register();
|
||
|
|
||
|
if (retval)
|
||
|
goto failed2;
|
||
|
|
||
|
return retval;
|
||
|
|
||
|
failed2:
|
||
|
platform_driver_unregister(&hwicap_platform_driver);
|
||
|
|
||
|
failed1:
|
||
|
unregister_chrdev_region(devt, HWICAP_DEVICES);
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
static void __devexit hwicap_module_cleanup(void)
|
||
|
{
|
||
|
dev_t devt = MKDEV(xhwicap_major, xhwicap_minor);
|
||
|
|
||
|
class_destroy(icap_class);
|
||
|
|
||
|
platform_driver_unregister(&hwicap_platform_driver);
|
||
|
|
||
|
hwicap_of_unregister();
|
||
|
|
||
|
unregister_chrdev_region(devt, HWICAP_DEVICES);
|
||
|
}
|
||
|
|
||
|
module_init(hwicap_module_init);
|
||
|
module_exit(hwicap_module_cleanup);
|
||
|
|
||
|
MODULE_AUTHOR("Xilinx, Inc; Xilinx Research Labs Group");
|
||
|
MODULE_DESCRIPTION("Xilinx ICAP Port Driver");
|
||
|
MODULE_LICENSE("GPL");
|