2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-05 20:24:09 +08:00
linux-next/kernel/livepatch/core.c

961 lines
22 KiB
C
Raw Normal View History

/*
* core.c - Kernel Live Patching Core
*
* Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
* Copyright (C) 2014 SUSE
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/kallsyms.h>
#include <linux/livepatch.h>
#include <linux/elf.h>
#include <linux/moduleloader.h>
livepatch: allow removal of a disabled patch Currently we do not allow patch module to unload since there is no method to determine if a task is still running in the patched code. The consistency model gives us the way because when the unpatching finishes we know that all tasks were marked as safe to call an original function. Thus every new call to the function calls the original code and at the same time no task can be somewhere in the patched code, because it had to leave that code to be marked as safe. We can safely let the patch module go after that. Completion is used for synchronization between module removal and sysfs infrastructure in a similar way to commit 942e443127e9 ("module: Fix mod->mkobj.kobj potentially freed too early"). Note that we still do not allow the removal for immediate model, that is no consistency model. The module refcount may increase in this case if somebody disables and enables the patch several times. This should not cause any harm. With this change a call to try_module_get() is moved to __klp_enable_patch from klp_register_patch to make module reference counting symmetric (module_put() is in a patch disable path) and to allow to take a new reference to a disabled module when being enabled. Finally, we need to be very careful about possible races between klp_unregister_patch(), kobject_put() functions and operations on the related sysfs files. kobject_put(&patch->kobj) must be called without klp_mutex. Otherwise, it might be blocked by enabled_store() that needs the mutex as well. In addition, enabled_store() must check if the patch was not unregisted in the meantime. There is no need to do the same for other kobject_put() callsites at the moment. Their sysfs operations neither take the lock nor they access any data that might be freed in the meantime. There was an attempt to use kobjects the right way and prevent these races by design. But it made the patch definition more complicated and opened another can of worms. See https://lkml.kernel.org/r/1464018848-4303-1-git-send-email-pmladek@suse.com [Thanks to Petr Mladek for improving the commit message.] Signed-off-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-03-07 01:20:29 +08:00
#include <linux/completion.h>
#include <asm/cacheflush.h>
#include "core.h"
#include "patch.h"
livepatch: change to a per-task consistency model Change livepatch to use a basic per-task consistency model. This is the foundation which will eventually enable us to patch those ~10% of security patches which change function or data semantics. This is the biggest remaining piece needed to make livepatch more generally useful. This code stems from the design proposal made by Vojtech [1] in November 2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task consistency and syscall barrier switching combined with kpatch's stack trace switching. There are also a number of fallback options which make it quite flexible. Patches are applied on a per-task basis, when the task is deemed safe to switch over. When a patch is enabled, livepatch enters into a transition state where tasks are converging to the patched state. Usually this transition state can complete in a few seconds. The same sequence occurs when a patch is disabled, except the tasks converge from the patched state to the unpatched state. An interrupt handler inherits the patched state of the task it interrupts. The same is true for forked tasks: the child inherits the patched state of the parent. Livepatch uses several complementary approaches to determine when it's safe to patch tasks: 1. The first and most effective approach is stack checking of sleeping tasks. If no affected functions are on the stack of a given task, the task is patched. In most cases this will patch most or all of the tasks on the first try. Otherwise it'll keep trying periodically. This option is only available if the architecture has reliable stacks (HAVE_RELIABLE_STACKTRACE). 2. The second approach, if needed, is kernel exit switching. A task is switched when it returns to user space from a system call, a user space IRQ, or a signal. It's useful in the following cases: a) Patching I/O-bound user tasks which are sleeping on an affected function. In this case you have to send SIGSTOP and SIGCONT to force it to exit the kernel and be patched. b) Patching CPU-bound user tasks. If the task is highly CPU-bound then it will get patched the next time it gets interrupted by an IRQ. c) In the future it could be useful for applying patches for architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In this case you would have to signal most of the tasks on the system. However this isn't supported yet because there's currently no way to patch kthreads without HAVE_RELIABLE_STACKTRACE. 3. For idle "swapper" tasks, since they don't ever exit the kernel, they instead have a klp_update_patch_state() call in the idle loop which allows them to be patched before the CPU enters the idle state. (Note there's not yet such an approach for kthreads.) All the above approaches may be skipped by setting the 'immediate' flag in the 'klp_patch' struct, which will disable per-task consistency and patch all tasks immediately. This can be useful if the patch doesn't change any function or data semantics. Note that, even with this flag set, it's possible that some tasks may still be running with an old version of the function, until that function returns. There's also an 'immediate' flag in the 'klp_func' struct which allows you to specify that certain functions in the patch can be applied without per-task consistency. This might be useful if you want to patch a common function like schedule(), and the function change doesn't need consistency but the rest of the patch does. For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user must set patch->immediate which causes all tasks to be patched immediately. This option should be used with care, only when the patch doesn't change any function or data semantics. In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE may be allowed to use per-task consistency if we can come up with another way to patch kthreads. The /sys/kernel/livepatch/<patch>/transition file shows whether a patch is in transition. Only a single patch (the topmost patch on the stack) can be in transition at a given time. A patch can remain in transition indefinitely, if any of the tasks are stuck in the initial patch state. A transition can be reversed and effectively canceled by writing the opposite value to the /sys/kernel/livepatch/<patch>/enabled file while the transition is in progress. Then all the tasks will attempt to converge back to the original patch state. [1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 09:42:40 +08:00
#include "transition.h"
/*
livepatch: change to a per-task consistency model Change livepatch to use a basic per-task consistency model. This is the foundation which will eventually enable us to patch those ~10% of security patches which change function or data semantics. This is the biggest remaining piece needed to make livepatch more generally useful. This code stems from the design proposal made by Vojtech [1] in November 2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task consistency and syscall barrier switching combined with kpatch's stack trace switching. There are also a number of fallback options which make it quite flexible. Patches are applied on a per-task basis, when the task is deemed safe to switch over. When a patch is enabled, livepatch enters into a transition state where tasks are converging to the patched state. Usually this transition state can complete in a few seconds. The same sequence occurs when a patch is disabled, except the tasks converge from the patched state to the unpatched state. An interrupt handler inherits the patched state of the task it interrupts. The same is true for forked tasks: the child inherits the patched state of the parent. Livepatch uses several complementary approaches to determine when it's safe to patch tasks: 1. The first and most effective approach is stack checking of sleeping tasks. If no affected functions are on the stack of a given task, the task is patched. In most cases this will patch most or all of the tasks on the first try. Otherwise it'll keep trying periodically. This option is only available if the architecture has reliable stacks (HAVE_RELIABLE_STACKTRACE). 2. The second approach, if needed, is kernel exit switching. A task is switched when it returns to user space from a system call, a user space IRQ, or a signal. It's useful in the following cases: a) Patching I/O-bound user tasks which are sleeping on an affected function. In this case you have to send SIGSTOP and SIGCONT to force it to exit the kernel and be patched. b) Patching CPU-bound user tasks. If the task is highly CPU-bound then it will get patched the next time it gets interrupted by an IRQ. c) In the future it could be useful for applying patches for architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In this case you would have to signal most of the tasks on the system. However this isn't supported yet because there's currently no way to patch kthreads without HAVE_RELIABLE_STACKTRACE. 3. For idle "swapper" tasks, since they don't ever exit the kernel, they instead have a klp_update_patch_state() call in the idle loop which allows them to be patched before the CPU enters the idle state. (Note there's not yet such an approach for kthreads.) All the above approaches may be skipped by setting the 'immediate' flag in the 'klp_patch' struct, which will disable per-task consistency and patch all tasks immediately. This can be useful if the patch doesn't change any function or data semantics. Note that, even with this flag set, it's possible that some tasks may still be running with an old version of the function, until that function returns. There's also an 'immediate' flag in the 'klp_func' struct which allows you to specify that certain functions in the patch can be applied without per-task consistency. This might be useful if you want to patch a common function like schedule(), and the function change doesn't need consistency but the rest of the patch does. For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user must set patch->immediate which causes all tasks to be patched immediately. This option should be used with care, only when the patch doesn't change any function or data semantics. In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE may be allowed to use per-task consistency if we can come up with another way to patch kthreads. The /sys/kernel/livepatch/<patch>/transition file shows whether a patch is in transition. Only a single patch (the topmost patch on the stack) can be in transition at a given time. A patch can remain in transition indefinitely, if any of the tasks are stuck in the initial patch state. A transition can be reversed and effectively canceled by writing the opposite value to the /sys/kernel/livepatch/<patch>/enabled file while the transition is in progress. Then all the tasks will attempt to converge back to the original patch state. [1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 09:42:40 +08:00
* klp_mutex is a coarse lock which serializes access to klp data. All
* accesses to klp-related variables and structures must have mutex protection,
* except within the following functions which carefully avoid the need for it:
*
* - klp_ftrace_handler()
* - klp_update_patch_state()
*/
livepatch: change to a per-task consistency model Change livepatch to use a basic per-task consistency model. This is the foundation which will eventually enable us to patch those ~10% of security patches which change function or data semantics. This is the biggest remaining piece needed to make livepatch more generally useful. This code stems from the design proposal made by Vojtech [1] in November 2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task consistency and syscall barrier switching combined with kpatch's stack trace switching. There are also a number of fallback options which make it quite flexible. Patches are applied on a per-task basis, when the task is deemed safe to switch over. When a patch is enabled, livepatch enters into a transition state where tasks are converging to the patched state. Usually this transition state can complete in a few seconds. The same sequence occurs when a patch is disabled, except the tasks converge from the patched state to the unpatched state. An interrupt handler inherits the patched state of the task it interrupts. The same is true for forked tasks: the child inherits the patched state of the parent. Livepatch uses several complementary approaches to determine when it's safe to patch tasks: 1. The first and most effective approach is stack checking of sleeping tasks. If no affected functions are on the stack of a given task, the task is patched. In most cases this will patch most or all of the tasks on the first try. Otherwise it'll keep trying periodically. This option is only available if the architecture has reliable stacks (HAVE_RELIABLE_STACKTRACE). 2. The second approach, if needed, is kernel exit switching. A task is switched when it returns to user space from a system call, a user space IRQ, or a signal. It's useful in the following cases: a) Patching I/O-bound user tasks which are sleeping on an affected function. In this case you have to send SIGSTOP and SIGCONT to force it to exit the kernel and be patched. b) Patching CPU-bound user tasks. If the task is highly CPU-bound then it will get patched the next time it gets interrupted by an IRQ. c) In the future it could be useful for applying patches for architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In this case you would have to signal most of the tasks on the system. However this isn't supported yet because there's currently no way to patch kthreads without HAVE_RELIABLE_STACKTRACE. 3. For idle "swapper" tasks, since they don't ever exit the kernel, they instead have a klp_update_patch_state() call in the idle loop which allows them to be patched before the CPU enters the idle state. (Note there's not yet such an approach for kthreads.) All the above approaches may be skipped by setting the 'immediate' flag in the 'klp_patch' struct, which will disable per-task consistency and patch all tasks immediately. This can be useful if the patch doesn't change any function or data semantics. Note that, even with this flag set, it's possible that some tasks may still be running with an old version of the function, until that function returns. There's also an 'immediate' flag in the 'klp_func' struct which allows you to specify that certain functions in the patch can be applied without per-task consistency. This might be useful if you want to patch a common function like schedule(), and the function change doesn't need consistency but the rest of the patch does. For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user must set patch->immediate which causes all tasks to be patched immediately. This option should be used with care, only when the patch doesn't change any function or data semantics. In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE may be allowed to use per-task consistency if we can come up with another way to patch kthreads. The /sys/kernel/livepatch/<patch>/transition file shows whether a patch is in transition. Only a single patch (the topmost patch on the stack) can be in transition at a given time. A patch can remain in transition indefinitely, if any of the tasks are stuck in the initial patch state. A transition can be reversed and effectively canceled by writing the opposite value to the /sys/kernel/livepatch/<patch>/enabled file while the transition is in progress. Then all the tasks will attempt to converge back to the original patch state. [1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 09:42:40 +08:00
DEFINE_MUTEX(klp_mutex);
static LIST_HEAD(klp_patches);
static struct kobject *klp_root_kobj;
static bool klp_is_module(struct klp_object *obj)
{
return obj->name;
}
static bool klp_is_object_loaded(struct klp_object *obj)
{
return !obj->name || obj->mod;
}
/* sets obj->mod if object is not vmlinux and module is found */
static void klp_find_object_module(struct klp_object *obj)
{
livepatch: Fix subtle race with coming and going modules There is a notifier that handles live patches for coming and going modules. It takes klp_mutex lock to avoid races with coming and going patches but it does not keep the lock all the time. Therefore the following races are possible: 1. The notifier is called sometime in STATE_MODULE_COMING. The module is visible by find_module() in this state all the time. It means that new patch can be registered and enabled even before the notifier is called. It might create wrong order of stacked patches, see below for an example. 2. New patch could still see the module in the GOING state even after the notifier has been called. It will try to initialize the related object structures but the module could disappear at any time. There will stay mess in the structures. It might even cause an invalid memory access. This patch solves the problem by adding a boolean variable into struct module. The value is true after the coming and before the going handler is called. New patches need to be applied when the value is true and they need to ignore the module when the value is false. Note that we need to know state of all modules on the system. The races are related to new patches. Therefore we do not know what modules will get patched. Also note that we could not simply ignore going modules. The code from the module could be called even in the GOING state until mod->exit() finishes. If we start supporting patches with semantic changes between function calls, we need to apply new patches to any still usable code. See below for an example. Finally note that the patch solves only the situation when a new patch is registered. There are no such problems when the patch is being removed. It does not matter who disable the patch first, whether the normal disable_patch() or the module notifier. There is nothing to do once the patch is disabled. Alternative solutions: ====================== + reject new patches when a patched module is coming or going; this is ugly + wait with adding new patch until the module leaves the COMING and GOING states; this might be dangerous and complicated; we would need to release kgr_lock in the middle of the patch registration to avoid a deadlock with the coming and going handlers; also we might need a waitqueue for each module which seems to be even bigger overhead than the boolean + stop modules from entering COMING and GOING states; wait until modules leave these states when they are already there; looks complicated; we would need to ignore the module that asked to stop the others to avoid a deadlock; also it is unclear what to do when two modules asked to stop others and both are in COMING state (situation when two new patches are applied) + always register/enable new patches and fix up the potential mess (registered patches order) in klp_module_init(); this is nasty and prone to regressions in the future development + add another MODULE_STATE where the kallsyms are visible but the module is not used yet; this looks too complex; the module states are checked on "many" locations Example of patch stacking breakage: =================================== The notifier could _not_ _simply_ ignore already initialized module objects. For example, let's have three patches (P1, P2, P3) for functions a() and b() where a() is from vmcore and b() is from a module M. Something like: a() b() P1 a1() b1() P2 a2() b2() P3 a3() b3(3) If you load the module M after all patches are registered and enabled. The ftrace ops for function a() and b() has listed the functions in this order: ops_a->func_stack -> list(a3,a2,a1) ops_b->func_stack -> list(b3,b2,b1) , so the pointer to b3() is the first and will be used. Then you might have the following scenario. Let's start with state when patches P1 and P2 are registered and enabled but the module M is not loaded. Then ftrace ops for b() does not exist. Then we get into the following race: CPU0 CPU1 load_module(M) complete_formation() mod->state = MODULE_STATE_COMING; mutex_unlock(&module_mutex); klp_register_patch(P3); klp_enable_patch(P3); # STATE 1 klp_module_notify(M) klp_module_notify_coming(P1); klp_module_notify_coming(P2); klp_module_notify_coming(P3); # STATE 2 The ftrace ops for a() and b() then looks: STATE1: ops_a->func_stack -> list(a3,a2,a1); ops_b->func_stack -> list(b3); STATE2: ops_a->func_stack -> list(a3,a2,a1); ops_b->func_stack -> list(b2,b1,b3); therefore, b2() is used for the module but a3() is used for vmcore because they were the last added. Example of the race with going modules: ======================================= CPU0 CPU1 delete_module() #SYSCALL try_stop_module() mod->state = MODULE_STATE_GOING; mutex_unlock(&module_mutex); klp_register_patch() klp_enable_patch() #save place to switch universe b() # from module that is going a() # from core (patched) mod->exit(); Note that the function b() can be called until we call mod->exit(). If we do not apply patch against b() because it is in MODULE_STATE_GOING, it will call patched a() with modified semantic and things might get wrong. [jpoimboe@redhat.com: use one boolean instead of two] Signed-off-by: Petr Mladek <pmladek@suse.cz> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2015-03-12 19:55:13 +08:00
struct module *mod;
if (!klp_is_module(obj))
return;
mutex_lock(&module_mutex);
/*
livepatch: Fix subtle race with coming and going modules There is a notifier that handles live patches for coming and going modules. It takes klp_mutex lock to avoid races with coming and going patches but it does not keep the lock all the time. Therefore the following races are possible: 1. The notifier is called sometime in STATE_MODULE_COMING. The module is visible by find_module() in this state all the time. It means that new patch can be registered and enabled even before the notifier is called. It might create wrong order of stacked patches, see below for an example. 2. New patch could still see the module in the GOING state even after the notifier has been called. It will try to initialize the related object structures but the module could disappear at any time. There will stay mess in the structures. It might even cause an invalid memory access. This patch solves the problem by adding a boolean variable into struct module. The value is true after the coming and before the going handler is called. New patches need to be applied when the value is true and they need to ignore the module when the value is false. Note that we need to know state of all modules on the system. The races are related to new patches. Therefore we do not know what modules will get patched. Also note that we could not simply ignore going modules. The code from the module could be called even in the GOING state until mod->exit() finishes. If we start supporting patches with semantic changes between function calls, we need to apply new patches to any still usable code. See below for an example. Finally note that the patch solves only the situation when a new patch is registered. There are no such problems when the patch is being removed. It does not matter who disable the patch first, whether the normal disable_patch() or the module notifier. There is nothing to do once the patch is disabled. Alternative solutions: ====================== + reject new patches when a patched module is coming or going; this is ugly + wait with adding new patch until the module leaves the COMING and GOING states; this might be dangerous and complicated; we would need to release kgr_lock in the middle of the patch registration to avoid a deadlock with the coming and going handlers; also we might need a waitqueue for each module which seems to be even bigger overhead than the boolean + stop modules from entering COMING and GOING states; wait until modules leave these states when they are already there; looks complicated; we would need to ignore the module that asked to stop the others to avoid a deadlock; also it is unclear what to do when two modules asked to stop others and both are in COMING state (situation when two new patches are applied) + always register/enable new patches and fix up the potential mess (registered patches order) in klp_module_init(); this is nasty and prone to regressions in the future development + add another MODULE_STATE where the kallsyms are visible but the module is not used yet; this looks too complex; the module states are checked on "many" locations Example of patch stacking breakage: =================================== The notifier could _not_ _simply_ ignore already initialized module objects. For example, let's have three patches (P1, P2, P3) for functions a() and b() where a() is from vmcore and b() is from a module M. Something like: a() b() P1 a1() b1() P2 a2() b2() P3 a3() b3(3) If you load the module M after all patches are registered and enabled. The ftrace ops for function a() and b() has listed the functions in this order: ops_a->func_stack -> list(a3,a2,a1) ops_b->func_stack -> list(b3,b2,b1) , so the pointer to b3() is the first and will be used. Then you might have the following scenario. Let's start with state when patches P1 and P2 are registered and enabled but the module M is not loaded. Then ftrace ops for b() does not exist. Then we get into the following race: CPU0 CPU1 load_module(M) complete_formation() mod->state = MODULE_STATE_COMING; mutex_unlock(&module_mutex); klp_register_patch(P3); klp_enable_patch(P3); # STATE 1 klp_module_notify(M) klp_module_notify_coming(P1); klp_module_notify_coming(P2); klp_module_notify_coming(P3); # STATE 2 The ftrace ops for a() and b() then looks: STATE1: ops_a->func_stack -> list(a3,a2,a1); ops_b->func_stack -> list(b3); STATE2: ops_a->func_stack -> list(a3,a2,a1); ops_b->func_stack -> list(b2,b1,b3); therefore, b2() is used for the module but a3() is used for vmcore because they were the last added. Example of the race with going modules: ======================================= CPU0 CPU1 delete_module() #SYSCALL try_stop_module() mod->state = MODULE_STATE_GOING; mutex_unlock(&module_mutex); klp_register_patch() klp_enable_patch() #save place to switch universe b() # from module that is going a() # from core (patched) mod->exit(); Note that the function b() can be called until we call mod->exit(). If we do not apply patch against b() because it is in MODULE_STATE_GOING, it will call patched a() with modified semantic and things might get wrong. [jpoimboe@redhat.com: use one boolean instead of two] Signed-off-by: Petr Mladek <pmladek@suse.cz> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2015-03-12 19:55:13 +08:00
* We do not want to block removal of patched modules and therefore
* we do not take a reference here. The patches are removed by
* klp_module_going() instead.
livepatch: Fix subtle race with coming and going modules There is a notifier that handles live patches for coming and going modules. It takes klp_mutex lock to avoid races with coming and going patches but it does not keep the lock all the time. Therefore the following races are possible: 1. The notifier is called sometime in STATE_MODULE_COMING. The module is visible by find_module() in this state all the time. It means that new patch can be registered and enabled even before the notifier is called. It might create wrong order of stacked patches, see below for an example. 2. New patch could still see the module in the GOING state even after the notifier has been called. It will try to initialize the related object structures but the module could disappear at any time. There will stay mess in the structures. It might even cause an invalid memory access. This patch solves the problem by adding a boolean variable into struct module. The value is true after the coming and before the going handler is called. New patches need to be applied when the value is true and they need to ignore the module when the value is false. Note that we need to know state of all modules on the system. The races are related to new patches. Therefore we do not know what modules will get patched. Also note that we could not simply ignore going modules. The code from the module could be called even in the GOING state until mod->exit() finishes. If we start supporting patches with semantic changes between function calls, we need to apply new patches to any still usable code. See below for an example. Finally note that the patch solves only the situation when a new patch is registered. There are no such problems when the patch is being removed. It does not matter who disable the patch first, whether the normal disable_patch() or the module notifier. There is nothing to do once the patch is disabled. Alternative solutions: ====================== + reject new patches when a patched module is coming or going; this is ugly + wait with adding new patch until the module leaves the COMING and GOING states; this might be dangerous and complicated; we would need to release kgr_lock in the middle of the patch registration to avoid a deadlock with the coming and going handlers; also we might need a waitqueue for each module which seems to be even bigger overhead than the boolean + stop modules from entering COMING and GOING states; wait until modules leave these states when they are already there; looks complicated; we would need to ignore the module that asked to stop the others to avoid a deadlock; also it is unclear what to do when two modules asked to stop others and both are in COMING state (situation when two new patches are applied) + always register/enable new patches and fix up the potential mess (registered patches order) in klp_module_init(); this is nasty and prone to regressions in the future development + add another MODULE_STATE where the kallsyms are visible but the module is not used yet; this looks too complex; the module states are checked on "many" locations Example of patch stacking breakage: =================================== The notifier could _not_ _simply_ ignore already initialized module objects. For example, let's have three patches (P1, P2, P3) for functions a() and b() where a() is from vmcore and b() is from a module M. Something like: a() b() P1 a1() b1() P2 a2() b2() P3 a3() b3(3) If you load the module M after all patches are registered and enabled. The ftrace ops for function a() and b() has listed the functions in this order: ops_a->func_stack -> list(a3,a2,a1) ops_b->func_stack -> list(b3,b2,b1) , so the pointer to b3() is the first and will be used. Then you might have the following scenario. Let's start with state when patches P1 and P2 are registered and enabled but the module M is not loaded. Then ftrace ops for b() does not exist. Then we get into the following race: CPU0 CPU1 load_module(M) complete_formation() mod->state = MODULE_STATE_COMING; mutex_unlock(&module_mutex); klp_register_patch(P3); klp_enable_patch(P3); # STATE 1 klp_module_notify(M) klp_module_notify_coming(P1); klp_module_notify_coming(P2); klp_module_notify_coming(P3); # STATE 2 The ftrace ops for a() and b() then looks: STATE1: ops_a->func_stack -> list(a3,a2,a1); ops_b->func_stack -> list(b3); STATE2: ops_a->func_stack -> list(a3,a2,a1); ops_b->func_stack -> list(b2,b1,b3); therefore, b2() is used for the module but a3() is used for vmcore because they were the last added. Example of the race with going modules: ======================================= CPU0 CPU1 delete_module() #SYSCALL try_stop_module() mod->state = MODULE_STATE_GOING; mutex_unlock(&module_mutex); klp_register_patch() klp_enable_patch() #save place to switch universe b() # from module that is going a() # from core (patched) mod->exit(); Note that the function b() can be called until we call mod->exit(). If we do not apply patch against b() because it is in MODULE_STATE_GOING, it will call patched a() with modified semantic and things might get wrong. [jpoimboe@redhat.com: use one boolean instead of two] Signed-off-by: Petr Mladek <pmladek@suse.cz> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2015-03-12 19:55:13 +08:00
*/
mod = find_module(obj->name);
/*
* Do not mess work of klp_module_coming() and klp_module_going().
* Note that the patch might still be needed before klp_module_going()
livepatch: Fix subtle race with coming and going modules There is a notifier that handles live patches for coming and going modules. It takes klp_mutex lock to avoid races with coming and going patches but it does not keep the lock all the time. Therefore the following races are possible: 1. The notifier is called sometime in STATE_MODULE_COMING. The module is visible by find_module() in this state all the time. It means that new patch can be registered and enabled even before the notifier is called. It might create wrong order of stacked patches, see below for an example. 2. New patch could still see the module in the GOING state even after the notifier has been called. It will try to initialize the related object structures but the module could disappear at any time. There will stay mess in the structures. It might even cause an invalid memory access. This patch solves the problem by adding a boolean variable into struct module. The value is true after the coming and before the going handler is called. New patches need to be applied when the value is true and they need to ignore the module when the value is false. Note that we need to know state of all modules on the system. The races are related to new patches. Therefore we do not know what modules will get patched. Also note that we could not simply ignore going modules. The code from the module could be called even in the GOING state until mod->exit() finishes. If we start supporting patches with semantic changes between function calls, we need to apply new patches to any still usable code. See below for an example. Finally note that the patch solves only the situation when a new patch is registered. There are no such problems when the patch is being removed. It does not matter who disable the patch first, whether the normal disable_patch() or the module notifier. There is nothing to do once the patch is disabled. Alternative solutions: ====================== + reject new patches when a patched module is coming or going; this is ugly + wait with adding new patch until the module leaves the COMING and GOING states; this might be dangerous and complicated; we would need to release kgr_lock in the middle of the patch registration to avoid a deadlock with the coming and going handlers; also we might need a waitqueue for each module which seems to be even bigger overhead than the boolean + stop modules from entering COMING and GOING states; wait until modules leave these states when they are already there; looks complicated; we would need to ignore the module that asked to stop the others to avoid a deadlock; also it is unclear what to do when two modules asked to stop others and both are in COMING state (situation when two new patches are applied) + always register/enable new patches and fix up the potential mess (registered patches order) in klp_module_init(); this is nasty and prone to regressions in the future development + add another MODULE_STATE where the kallsyms are visible but the module is not used yet; this looks too complex; the module states are checked on "many" locations Example of patch stacking breakage: =================================== The notifier could _not_ _simply_ ignore already initialized module objects. For example, let's have three patches (P1, P2, P3) for functions a() and b() where a() is from vmcore and b() is from a module M. Something like: a() b() P1 a1() b1() P2 a2() b2() P3 a3() b3(3) If you load the module M after all patches are registered and enabled. The ftrace ops for function a() and b() has listed the functions in this order: ops_a->func_stack -> list(a3,a2,a1) ops_b->func_stack -> list(b3,b2,b1) , so the pointer to b3() is the first and will be used. Then you might have the following scenario. Let's start with state when patches P1 and P2 are registered and enabled but the module M is not loaded. Then ftrace ops for b() does not exist. Then we get into the following race: CPU0 CPU1 load_module(M) complete_formation() mod->state = MODULE_STATE_COMING; mutex_unlock(&module_mutex); klp_register_patch(P3); klp_enable_patch(P3); # STATE 1 klp_module_notify(M) klp_module_notify_coming(P1); klp_module_notify_coming(P2); klp_module_notify_coming(P3); # STATE 2 The ftrace ops for a() and b() then looks: STATE1: ops_a->func_stack -> list(a3,a2,a1); ops_b->func_stack -> list(b3); STATE2: ops_a->func_stack -> list(a3,a2,a1); ops_b->func_stack -> list(b2,b1,b3); therefore, b2() is used for the module but a3() is used for vmcore because they were the last added. Example of the race with going modules: ======================================= CPU0 CPU1 delete_module() #SYSCALL try_stop_module() mod->state = MODULE_STATE_GOING; mutex_unlock(&module_mutex); klp_register_patch() klp_enable_patch() #save place to switch universe b() # from module that is going a() # from core (patched) mod->exit(); Note that the function b() can be called until we call mod->exit(). If we do not apply patch against b() because it is in MODULE_STATE_GOING, it will call patched a() with modified semantic and things might get wrong. [jpoimboe@redhat.com: use one boolean instead of two] Signed-off-by: Petr Mladek <pmladek@suse.cz> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2015-03-12 19:55:13 +08:00
* is called. Module functions can be called even in the GOING state
* until mod->exit() finishes. This is especially important for
* patches that modify semantic of the functions.
*/
livepatch: Fix subtle race with coming and going modules There is a notifier that handles live patches for coming and going modules. It takes klp_mutex lock to avoid races with coming and going patches but it does not keep the lock all the time. Therefore the following races are possible: 1. The notifier is called sometime in STATE_MODULE_COMING. The module is visible by find_module() in this state all the time. It means that new patch can be registered and enabled even before the notifier is called. It might create wrong order of stacked patches, see below for an example. 2. New patch could still see the module in the GOING state even after the notifier has been called. It will try to initialize the related object structures but the module could disappear at any time. There will stay mess in the structures. It might even cause an invalid memory access. This patch solves the problem by adding a boolean variable into struct module. The value is true after the coming and before the going handler is called. New patches need to be applied when the value is true and they need to ignore the module when the value is false. Note that we need to know state of all modules on the system. The races are related to new patches. Therefore we do not know what modules will get patched. Also note that we could not simply ignore going modules. The code from the module could be called even in the GOING state until mod->exit() finishes. If we start supporting patches with semantic changes between function calls, we need to apply new patches to any still usable code. See below for an example. Finally note that the patch solves only the situation when a new patch is registered. There are no such problems when the patch is being removed. It does not matter who disable the patch first, whether the normal disable_patch() or the module notifier. There is nothing to do once the patch is disabled. Alternative solutions: ====================== + reject new patches when a patched module is coming or going; this is ugly + wait with adding new patch until the module leaves the COMING and GOING states; this might be dangerous and complicated; we would need to release kgr_lock in the middle of the patch registration to avoid a deadlock with the coming and going handlers; also we might need a waitqueue for each module which seems to be even bigger overhead than the boolean + stop modules from entering COMING and GOING states; wait until modules leave these states when they are already there; looks complicated; we would need to ignore the module that asked to stop the others to avoid a deadlock; also it is unclear what to do when two modules asked to stop others and both are in COMING state (situation when two new patches are applied) + always register/enable new patches and fix up the potential mess (registered patches order) in klp_module_init(); this is nasty and prone to regressions in the future development + add another MODULE_STATE where the kallsyms are visible but the module is not used yet; this looks too complex; the module states are checked on "many" locations Example of patch stacking breakage: =================================== The notifier could _not_ _simply_ ignore already initialized module objects. For example, let's have three patches (P1, P2, P3) for functions a() and b() where a() is from vmcore and b() is from a module M. Something like: a() b() P1 a1() b1() P2 a2() b2() P3 a3() b3(3) If you load the module M after all patches are registered and enabled. The ftrace ops for function a() and b() has listed the functions in this order: ops_a->func_stack -> list(a3,a2,a1) ops_b->func_stack -> list(b3,b2,b1) , so the pointer to b3() is the first and will be used. Then you might have the following scenario. Let's start with state when patches P1 and P2 are registered and enabled but the module M is not loaded. Then ftrace ops for b() does not exist. Then we get into the following race: CPU0 CPU1 load_module(M) complete_formation() mod->state = MODULE_STATE_COMING; mutex_unlock(&module_mutex); klp_register_patch(P3); klp_enable_patch(P3); # STATE 1 klp_module_notify(M) klp_module_notify_coming(P1); klp_module_notify_coming(P2); klp_module_notify_coming(P3); # STATE 2 The ftrace ops for a() and b() then looks: STATE1: ops_a->func_stack -> list(a3,a2,a1); ops_b->func_stack -> list(b3); STATE2: ops_a->func_stack -> list(a3,a2,a1); ops_b->func_stack -> list(b2,b1,b3); therefore, b2() is used for the module but a3() is used for vmcore because they were the last added. Example of the race with going modules: ======================================= CPU0 CPU1 delete_module() #SYSCALL try_stop_module() mod->state = MODULE_STATE_GOING; mutex_unlock(&module_mutex); klp_register_patch() klp_enable_patch() #save place to switch universe b() # from module that is going a() # from core (patched) mod->exit(); Note that the function b() can be called until we call mod->exit(). If we do not apply patch against b() because it is in MODULE_STATE_GOING, it will call patched a() with modified semantic and things might get wrong. [jpoimboe@redhat.com: use one boolean instead of two] Signed-off-by: Petr Mladek <pmladek@suse.cz> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2015-03-12 19:55:13 +08:00
if (mod && mod->klp_alive)
obj->mod = mod;
mutex_unlock(&module_mutex);
}
static bool klp_is_patch_registered(struct klp_patch *patch)
{
struct klp_patch *mypatch;
list_for_each_entry(mypatch, &klp_patches, list)
if (mypatch == patch)
return true;
return false;
}
static bool klp_initialized(void)
{
return !!klp_root_kobj;
}
struct klp_find_arg {
const char *objname;
const char *name;
unsigned long addr;
unsigned long count;
livepatch: add old_sympos as disambiguator field to klp_func Currently, patching objects with duplicate symbol names fail because the creation of the sysfs function directory collides with the previous attempt. Appending old_addr to the function name is problematic as it reveals the address of the function being patch to a normal user. Using the symbol's occurrence in kallsyms to postfix the function name in the sysfs directory solves the issue of having consistent unique names and ensuring that the address is not exposed to a normal user. In addition, using the symbol position as the user's method to disambiguate symbols instead of addr allows for disambiguating symbols in modules as well for both function addresses and for relocs. This also simplifies much of the code. Special handling for kASLR is no longer needed and can be removed. The klp_find_verify_func_addr function can be replaced by klp_find_object_symbol, and klp_verify_vmlinux_symbol and its callback can be removed completely. In cases of duplicate symbols, old_sympos will be used to disambiguate instead of old_addr. By default old_sympos will be 0, and patching will only succeed if the symbol is unique. Specifying a positive value will ensure that occurrence of the symbol in kallsyms for the patched object will be used for patching if it is valid. In addition, make old_addr an internal structure field not to be specified by the user. Finally, remove klp_find_verify_func_addr as it can be replaced by klp_find_object_symbol directly. Support for symbol position disambiguation for relocations is added in the next patch in this series. Signed-off-by: Chris J Arges <chris.j.arges@canonical.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2015-12-02 10:40:54 +08:00
unsigned long pos;
};
static int klp_find_callback(void *data, const char *name,
struct module *mod, unsigned long addr)
{
struct klp_find_arg *args = data;
if ((mod && !args->objname) || (!mod && args->objname))
return 0;
if (strcmp(args->name, name))
return 0;
if (args->objname && strcmp(args->objname, mod->name))
return 0;
args->addr = addr;
args->count++;
livepatch: add old_sympos as disambiguator field to klp_func Currently, patching objects with duplicate symbol names fail because the creation of the sysfs function directory collides with the previous attempt. Appending old_addr to the function name is problematic as it reveals the address of the function being patch to a normal user. Using the symbol's occurrence in kallsyms to postfix the function name in the sysfs directory solves the issue of having consistent unique names and ensuring that the address is not exposed to a normal user. In addition, using the symbol position as the user's method to disambiguate symbols instead of addr allows for disambiguating symbols in modules as well for both function addresses and for relocs. This also simplifies much of the code. Special handling for kASLR is no longer needed and can be removed. The klp_find_verify_func_addr function can be replaced by klp_find_object_symbol, and klp_verify_vmlinux_symbol and its callback can be removed completely. In cases of duplicate symbols, old_sympos will be used to disambiguate instead of old_addr. By default old_sympos will be 0, and patching will only succeed if the symbol is unique. Specifying a positive value will ensure that occurrence of the symbol in kallsyms for the patched object will be used for patching if it is valid. In addition, make old_addr an internal structure field not to be specified by the user. Finally, remove klp_find_verify_func_addr as it can be replaced by klp_find_object_symbol directly. Support for symbol position disambiguation for relocations is added in the next patch in this series. Signed-off-by: Chris J Arges <chris.j.arges@canonical.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2015-12-02 10:40:54 +08:00
/*
* Finish the search when the symbol is found for the desired position
* or the position is not defined for a non-unique symbol.
*/
if ((args->pos && (args->count == args->pos)) ||
(!args->pos && (args->count > 1)))
return 1;
return 0;
}
static int klp_find_object_symbol(const char *objname, const char *name,
livepatch: add old_sympos as disambiguator field to klp_func Currently, patching objects with duplicate symbol names fail because the creation of the sysfs function directory collides with the previous attempt. Appending old_addr to the function name is problematic as it reveals the address of the function being patch to a normal user. Using the symbol's occurrence in kallsyms to postfix the function name in the sysfs directory solves the issue of having consistent unique names and ensuring that the address is not exposed to a normal user. In addition, using the symbol position as the user's method to disambiguate symbols instead of addr allows for disambiguating symbols in modules as well for both function addresses and for relocs. This also simplifies much of the code. Special handling for kASLR is no longer needed and can be removed. The klp_find_verify_func_addr function can be replaced by klp_find_object_symbol, and klp_verify_vmlinux_symbol and its callback can be removed completely. In cases of duplicate symbols, old_sympos will be used to disambiguate instead of old_addr. By default old_sympos will be 0, and patching will only succeed if the symbol is unique. Specifying a positive value will ensure that occurrence of the symbol in kallsyms for the patched object will be used for patching if it is valid. In addition, make old_addr an internal structure field not to be specified by the user. Finally, remove klp_find_verify_func_addr as it can be replaced by klp_find_object_symbol directly. Support for symbol position disambiguation for relocations is added in the next patch in this series. Signed-off-by: Chris J Arges <chris.j.arges@canonical.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2015-12-02 10:40:54 +08:00
unsigned long sympos, unsigned long *addr)
{
struct klp_find_arg args = {
.objname = objname,
.name = name,
.addr = 0,
livepatch: add old_sympos as disambiguator field to klp_func Currently, patching objects with duplicate symbol names fail because the creation of the sysfs function directory collides with the previous attempt. Appending old_addr to the function name is problematic as it reveals the address of the function being patch to a normal user. Using the symbol's occurrence in kallsyms to postfix the function name in the sysfs directory solves the issue of having consistent unique names and ensuring that the address is not exposed to a normal user. In addition, using the symbol position as the user's method to disambiguate symbols instead of addr allows for disambiguating symbols in modules as well for both function addresses and for relocs. This also simplifies much of the code. Special handling for kASLR is no longer needed and can be removed. The klp_find_verify_func_addr function can be replaced by klp_find_object_symbol, and klp_verify_vmlinux_symbol and its callback can be removed completely. In cases of duplicate symbols, old_sympos will be used to disambiguate instead of old_addr. By default old_sympos will be 0, and patching will only succeed if the symbol is unique. Specifying a positive value will ensure that occurrence of the symbol in kallsyms for the patched object will be used for patching if it is valid. In addition, make old_addr an internal structure field not to be specified by the user. Finally, remove klp_find_verify_func_addr as it can be replaced by klp_find_object_symbol directly. Support for symbol position disambiguation for relocations is added in the next patch in this series. Signed-off-by: Chris J Arges <chris.j.arges@canonical.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2015-12-02 10:40:54 +08:00
.count = 0,
.pos = sympos,
};
mutex_lock(&module_mutex);
if (objname)
module_kallsyms_on_each_symbol(klp_find_callback, &args);
else
kallsyms_on_each_symbol(klp_find_callback, &args);
mutex_unlock(&module_mutex);
livepatch: add old_sympos as disambiguator field to klp_func Currently, patching objects with duplicate symbol names fail because the creation of the sysfs function directory collides with the previous attempt. Appending old_addr to the function name is problematic as it reveals the address of the function being patch to a normal user. Using the symbol's occurrence in kallsyms to postfix the function name in the sysfs directory solves the issue of having consistent unique names and ensuring that the address is not exposed to a normal user. In addition, using the symbol position as the user's method to disambiguate symbols instead of addr allows for disambiguating symbols in modules as well for both function addresses and for relocs. This also simplifies much of the code. Special handling for kASLR is no longer needed and can be removed. The klp_find_verify_func_addr function can be replaced by klp_find_object_symbol, and klp_verify_vmlinux_symbol and its callback can be removed completely. In cases of duplicate symbols, old_sympos will be used to disambiguate instead of old_addr. By default old_sympos will be 0, and patching will only succeed if the symbol is unique. Specifying a positive value will ensure that occurrence of the symbol in kallsyms for the patched object will be used for patching if it is valid. In addition, make old_addr an internal structure field not to be specified by the user. Finally, remove klp_find_verify_func_addr as it can be replaced by klp_find_object_symbol directly. Support for symbol position disambiguation for relocations is added in the next patch in this series. Signed-off-by: Chris J Arges <chris.j.arges@canonical.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2015-12-02 10:40:54 +08:00
/*
* Ensure an address was found. If sympos is 0, ensure symbol is unique;
* otherwise ensure the symbol position count matches sympos.
*/
if (args.addr == 0)
pr_err("symbol '%s' not found in symbol table\n", name);
livepatch: add old_sympos as disambiguator field to klp_func Currently, patching objects with duplicate symbol names fail because the creation of the sysfs function directory collides with the previous attempt. Appending old_addr to the function name is problematic as it reveals the address of the function being patch to a normal user. Using the symbol's occurrence in kallsyms to postfix the function name in the sysfs directory solves the issue of having consistent unique names and ensuring that the address is not exposed to a normal user. In addition, using the symbol position as the user's method to disambiguate symbols instead of addr allows for disambiguating symbols in modules as well for both function addresses and for relocs. This also simplifies much of the code. Special handling for kASLR is no longer needed and can be removed. The klp_find_verify_func_addr function can be replaced by klp_find_object_symbol, and klp_verify_vmlinux_symbol and its callback can be removed completely. In cases of duplicate symbols, old_sympos will be used to disambiguate instead of old_addr. By default old_sympos will be 0, and patching will only succeed if the symbol is unique. Specifying a positive value will ensure that occurrence of the symbol in kallsyms for the patched object will be used for patching if it is valid. In addition, make old_addr an internal structure field not to be specified by the user. Finally, remove klp_find_verify_func_addr as it can be replaced by klp_find_object_symbol directly. Support for symbol position disambiguation for relocations is added in the next patch in this series. Signed-off-by: Chris J Arges <chris.j.arges@canonical.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2015-12-02 10:40:54 +08:00
else if (args.count > 1 && sympos == 0) {
pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n",
name, objname);
livepatch: add old_sympos as disambiguator field to klp_func Currently, patching objects with duplicate symbol names fail because the creation of the sysfs function directory collides with the previous attempt. Appending old_addr to the function name is problematic as it reveals the address of the function being patch to a normal user. Using the symbol's occurrence in kallsyms to postfix the function name in the sysfs directory solves the issue of having consistent unique names and ensuring that the address is not exposed to a normal user. In addition, using the symbol position as the user's method to disambiguate symbols instead of addr allows for disambiguating symbols in modules as well for both function addresses and for relocs. This also simplifies much of the code. Special handling for kASLR is no longer needed and can be removed. The klp_find_verify_func_addr function can be replaced by klp_find_object_symbol, and klp_verify_vmlinux_symbol and its callback can be removed completely. In cases of duplicate symbols, old_sympos will be used to disambiguate instead of old_addr. By default old_sympos will be 0, and patching will only succeed if the symbol is unique. Specifying a positive value will ensure that occurrence of the symbol in kallsyms for the patched object will be used for patching if it is valid. In addition, make old_addr an internal structure field not to be specified by the user. Finally, remove klp_find_verify_func_addr as it can be replaced by klp_find_object_symbol directly. Support for symbol position disambiguation for relocations is added in the next patch in this series. Signed-off-by: Chris J Arges <chris.j.arges@canonical.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2015-12-02 10:40:54 +08:00
} else if (sympos != args.count && sympos > 0) {
pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n",
sympos, name, objname ? objname : "vmlinux");
} else {
*addr = args.addr;
return 0;
}
*addr = 0;
return -EINVAL;
}
static int klp_resolve_symbols(Elf_Shdr *relasec, struct module *pmod)
{
int i, cnt, vmlinux, ret;
char objname[MODULE_NAME_LEN];
char symname[KSYM_NAME_LEN];
char *strtab = pmod->core_kallsyms.strtab;
Elf_Rela *relas;
Elf_Sym *sym;
unsigned long sympos, addr;
livepatch: add old_sympos as disambiguator field to klp_func Currently, patching objects with duplicate symbol names fail because the creation of the sysfs function directory collides with the previous attempt. Appending old_addr to the function name is problematic as it reveals the address of the function being patch to a normal user. Using the symbol's occurrence in kallsyms to postfix the function name in the sysfs directory solves the issue of having consistent unique names and ensuring that the address is not exposed to a normal user. In addition, using the symbol position as the user's method to disambiguate symbols instead of addr allows for disambiguating symbols in modules as well for both function addresses and for relocs. This also simplifies much of the code. Special handling for kASLR is no longer needed and can be removed. The klp_find_verify_func_addr function can be replaced by klp_find_object_symbol, and klp_verify_vmlinux_symbol and its callback can be removed completely. In cases of duplicate symbols, old_sympos will be used to disambiguate instead of old_addr. By default old_sympos will be 0, and patching will only succeed if the symbol is unique. Specifying a positive value will ensure that occurrence of the symbol in kallsyms for the patched object will be used for patching if it is valid. In addition, make old_addr an internal structure field not to be specified by the user. Finally, remove klp_find_verify_func_addr as it can be replaced by klp_find_object_symbol directly. Support for symbol position disambiguation for relocations is added in the next patch in this series. Signed-off-by: Chris J Arges <chris.j.arges@canonical.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2015-12-02 10:40:54 +08:00
/*
* Since the field widths for objname and symname in the sscanf()
* call are hard-coded and correspond to MODULE_NAME_LEN and
* KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN
* and KSYM_NAME_LEN have the values we expect them to have.
*
* Because the value of MODULE_NAME_LEN can differ among architectures,
* we use the smallest/strictest upper bound possible (56, based on
* the current definition of MODULE_NAME_LEN) to prevent overflows.
livepatch: add old_sympos as disambiguator field to klp_func Currently, patching objects with duplicate symbol names fail because the creation of the sysfs function directory collides with the previous attempt. Appending old_addr to the function name is problematic as it reveals the address of the function being patch to a normal user. Using the symbol's occurrence in kallsyms to postfix the function name in the sysfs directory solves the issue of having consistent unique names and ensuring that the address is not exposed to a normal user. In addition, using the symbol position as the user's method to disambiguate symbols instead of addr allows for disambiguating symbols in modules as well for both function addresses and for relocs. This also simplifies much of the code. Special handling for kASLR is no longer needed and can be removed. The klp_find_verify_func_addr function can be replaced by klp_find_object_symbol, and klp_verify_vmlinux_symbol and its callback can be removed completely. In cases of duplicate symbols, old_sympos will be used to disambiguate instead of old_addr. By default old_sympos will be 0, and patching will only succeed if the symbol is unique. Specifying a positive value will ensure that occurrence of the symbol in kallsyms for the patched object will be used for patching if it is valid. In addition, make old_addr an internal structure field not to be specified by the user. Finally, remove klp_find_verify_func_addr as it can be replaced by klp_find_object_symbol directly. Support for symbol position disambiguation for relocations is added in the next patch in this series. Signed-off-by: Chris J Arges <chris.j.arges@canonical.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2015-12-02 10:40:54 +08:00
*/
BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 128);
relas = (Elf_Rela *) relasec->sh_addr;
/* For each rela in this klp relocation section */
for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) {
sym = pmod->core_kallsyms.symtab + ELF_R_SYM(relas[i].r_info);
if (sym->st_shndx != SHN_LIVEPATCH) {
pr_err("symbol %s is not marked as a livepatch symbol\n",
strtab + sym->st_name);
return -EINVAL;
}
/* Format: .klp.sym.objname.symname,sympos */
cnt = sscanf(strtab + sym->st_name,
".klp.sym.%55[^.].%127[^,],%lu",
objname, symname, &sympos);
if (cnt != 3) {
pr_err("symbol %s has an incorrectly formatted name\n",
strtab + sym->st_name);
return -EINVAL;
}
/* klp_find_object_symbol() treats a NULL objname as vmlinux */
vmlinux = !strcmp(objname, "vmlinux");
ret = klp_find_object_symbol(vmlinux ? NULL : objname,
symname, sympos, &addr);
if (ret)
return ret;
sym->st_value = addr;
}
return 0;
}
static int klp_write_object_relocations(struct module *pmod,
struct klp_object *obj)
{
int i, cnt, ret = 0;
const char *objname, *secname;
char sec_objname[MODULE_NAME_LEN];
Elf_Shdr *sec;
if (WARN_ON(!klp_is_object_loaded(obj)))
return -EINVAL;
objname = klp_is_module(obj) ? obj->name : "vmlinux";
/* For each klp relocation section */
for (i = 1; i < pmod->klp_info->hdr.e_shnum; i++) {
sec = pmod->klp_info->sechdrs + i;
secname = pmod->klp_info->secstrings + sec->sh_name;
if (!(sec->sh_flags & SHF_RELA_LIVEPATCH))
continue;
/*
* Format: .klp.rela.sec_objname.section_name
* See comment in klp_resolve_symbols() for an explanation
* of the selected field width value.
*/
cnt = sscanf(secname, ".klp.rela.%55[^.]", sec_objname);
if (cnt != 1) {
pr_err("section %s has an incorrectly formatted name\n",
secname);
ret = -EINVAL;
break;
}
if (strcmp(objname, sec_objname))
continue;
ret = klp_resolve_symbols(sec, pmod);
if (ret)
break;
ret = apply_relocate_add(pmod->klp_info->sechdrs,
pmod->core_kallsyms.strtab,
pmod->klp_info->symndx, i, pmod);
if (ret)
break;
}
return ret;
}
static int __klp_disable_patch(struct klp_patch *patch)
{
livepatch: change to a per-task consistency model Change livepatch to use a basic per-task consistency model. This is the foundation which will eventually enable us to patch those ~10% of security patches which change function or data semantics. This is the biggest remaining piece needed to make livepatch more generally useful. This code stems from the design proposal made by Vojtech [1] in November 2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task consistency and syscall barrier switching combined with kpatch's stack trace switching. There are also a number of fallback options which make it quite flexible. Patches are applied on a per-task basis, when the task is deemed safe to switch over. When a patch is enabled, livepatch enters into a transition state where tasks are converging to the patched state. Usually this transition state can complete in a few seconds. The same sequence occurs when a patch is disabled, except the tasks converge from the patched state to the unpatched state. An interrupt handler inherits the patched state of the task it interrupts. The same is true for forked tasks: the child inherits the patched state of the parent. Livepatch uses several complementary approaches to determine when it's safe to patch tasks: 1. The first and most effective approach is stack checking of sleeping tasks. If no affected functions are on the stack of a given task, the task is patched. In most cases this will patch most or all of the tasks on the first try. Otherwise it'll keep trying periodically. This option is only available if the architecture has reliable stacks (HAVE_RELIABLE_STACKTRACE). 2. The second approach, if needed, is kernel exit switching. A task is switched when it returns to user space from a system call, a user space IRQ, or a signal. It's useful in the following cases: a) Patching I/O-bound user tasks which are sleeping on an affected function. In this case you have to send SIGSTOP and SIGCONT to force it to exit the kernel and be patched. b) Patching CPU-bound user tasks. If the task is highly CPU-bound then it will get patched the next time it gets interrupted by an IRQ. c) In the future it could be useful for applying patches for architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In this case you would have to signal most of the tasks on the system. However this isn't supported yet because there's currently no way to patch kthreads without HAVE_RELIABLE_STACKTRACE. 3. For idle "swapper" tasks, since they don't ever exit the kernel, they instead have a klp_update_patch_state() call in the idle loop which allows them to be patched before the CPU enters the idle state. (Note there's not yet such an approach for kthreads.) All the above approaches may be skipped by setting the 'immediate' flag in the 'klp_patch' struct, which will disable per-task consistency and patch all tasks immediately. This can be useful if the patch doesn't change any function or data semantics. Note that, even with this flag set, it's possible that some tasks may still be running with an old version of the function, until that function returns. There's also an 'immediate' flag in the 'klp_func' struct which allows you to specify that certain functions in the patch can be applied without per-task consistency. This might be useful if you want to patch a common function like schedule(), and the function change doesn't need consistency but the rest of the patch does. For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user must set patch->immediate which causes all tasks to be patched immediately. This option should be used with care, only when the patch doesn't change any function or data semantics. In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE may be allowed to use per-task consistency if we can come up with another way to patch kthreads. The /sys/kernel/livepatch/<patch>/transition file shows whether a patch is in transition. Only a single patch (the topmost patch on the stack) can be in transition at a given time. A patch can remain in transition indefinitely, if any of the tasks are stuck in the initial patch state. A transition can be reversed and effectively canceled by writing the opposite value to the /sys/kernel/livepatch/<patch>/enabled file while the transition is in progress. Then all the tasks will attempt to converge back to the original patch state. [1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 09:42:40 +08:00
if (klp_transition_patch)
return -EBUSY;
/* enforce stacking: only the last enabled patch can be disabled */
if (!list_is_last(&patch->list, &klp_patches) &&
list_next_entry(patch, list)->enabled)
return -EBUSY;
livepatch: change to a per-task consistency model Change livepatch to use a basic per-task consistency model. This is the foundation which will eventually enable us to patch those ~10% of security patches which change function or data semantics. This is the biggest remaining piece needed to make livepatch more generally useful. This code stems from the design proposal made by Vojtech [1] in November 2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task consistency and syscall barrier switching combined with kpatch's stack trace switching. There are also a number of fallback options which make it quite flexible. Patches are applied on a per-task basis, when the task is deemed safe to switch over. When a patch is enabled, livepatch enters into a transition state where tasks are converging to the patched state. Usually this transition state can complete in a few seconds. The same sequence occurs when a patch is disabled, except the tasks converge from the patched state to the unpatched state. An interrupt handler inherits the patched state of the task it interrupts. The same is true for forked tasks: the child inherits the patched state of the parent. Livepatch uses several complementary approaches to determine when it's safe to patch tasks: 1. The first and most effective approach is stack checking of sleeping tasks. If no affected functions are on the stack of a given task, the task is patched. In most cases this will patch most or all of the tasks on the first try. Otherwise it'll keep trying periodically. This option is only available if the architecture has reliable stacks (HAVE_RELIABLE_STACKTRACE). 2. The second approach, if needed, is kernel exit switching. A task is switched when it returns to user space from a system call, a user space IRQ, or a signal. It's useful in the following cases: a) Patching I/O-bound user tasks which are sleeping on an affected function. In this case you have to send SIGSTOP and SIGCONT to force it to exit the kernel and be patched. b) Patching CPU-bound user tasks. If the task is highly CPU-bound then it will get patched the next time it gets interrupted by an IRQ. c) In the future it could be useful for applying patches for architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In this case you would have to signal most of the tasks on the system. However this isn't supported yet because there's currently no way to patch kthreads without HAVE_RELIABLE_STACKTRACE. 3. For idle "swapper" tasks, since they don't ever exit the kernel, they instead have a klp_update_patch_state() call in the idle loop which allows them to be patched before the CPU enters the idle state. (Note there's not yet such an approach for kthreads.) All the above approaches may be skipped by setting the 'immediate' flag in the 'klp_patch' struct, which will disable per-task consistency and patch all tasks immediately. This can be useful if the patch doesn't change any function or data semantics. Note that, even with this flag set, it's possible that some tasks may still be running with an old version of the function, until that function returns. There's also an 'immediate' flag in the 'klp_func' struct which allows you to specify that certain functions in the patch can be applied without per-task consistency. This might be useful if you want to patch a common function like schedule(), and the function change doesn't need consistency but the rest of the patch does. For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user must set patch->immediate which causes all tasks to be patched immediately. This option should be used with care, only when the patch doesn't change any function or data semantics. In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE may be allowed to use per-task consistency if we can come up with another way to patch kthreads. The /sys/kernel/livepatch/<patch>/transition file shows whether a patch is in transition. Only a single patch (the topmost patch on the stack) can be in transition at a given time. A patch can remain in transition indefinitely, if any of the tasks are stuck in the initial patch state. A transition can be reversed and effectively canceled by writing the opposite value to the /sys/kernel/livepatch/<patch>/enabled file while the transition is in progress. Then all the tasks will attempt to converge back to the original patch state. [1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 09:42:40 +08:00
klp_init_transition(patch, KLP_UNPATCHED);
livepatch: change to a per-task consistency model Change livepatch to use a basic per-task consistency model. This is the foundation which will eventually enable us to patch those ~10% of security patches which change function or data semantics. This is the biggest remaining piece needed to make livepatch more generally useful. This code stems from the design proposal made by Vojtech [1] in November 2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task consistency and syscall barrier switching combined with kpatch's stack trace switching. There are also a number of fallback options which make it quite flexible. Patches are applied on a per-task basis, when the task is deemed safe to switch over. When a patch is enabled, livepatch enters into a transition state where tasks are converging to the patched state. Usually this transition state can complete in a few seconds. The same sequence occurs when a patch is disabled, except the tasks converge from the patched state to the unpatched state. An interrupt handler inherits the patched state of the task it interrupts. The same is true for forked tasks: the child inherits the patched state of the parent. Livepatch uses several complementary approaches to determine when it's safe to patch tasks: 1. The first and most effective approach is stack checking of sleeping tasks. If no affected functions are on the stack of a given task, the task is patched. In most cases this will patch most or all of the tasks on the first try. Otherwise it'll keep trying periodically. This option is only available if the architecture has reliable stacks (HAVE_RELIABLE_STACKTRACE). 2. The second approach, if needed, is kernel exit switching. A task is switched when it returns to user space from a system call, a user space IRQ, or a signal. It's useful in the following cases: a) Patching I/O-bound user tasks which are sleeping on an affected function. In this case you have to send SIGSTOP and SIGCONT to force it to exit the kernel and be patched. b) Patching CPU-bound user tasks. If the task is highly CPU-bound then it will get patched the next time it gets interrupted by an IRQ. c) In the future it could be useful for applying patches for architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In this case you would have to signal most of the tasks on the system. However this isn't supported yet because there's currently no way to patch kthreads without HAVE_RELIABLE_STACKTRACE. 3. For idle "swapper" tasks, since they don't ever exit the kernel, they instead have a klp_update_patch_state() call in the idle loop which allows them to be patched before the CPU enters the idle state. (Note there's not yet such an approach for kthreads.) All the above approaches may be skipped by setting the 'immediate' flag in the 'klp_patch' struct, which will disable per-task consistency and patch all tasks immediately. This can be useful if the patch doesn't change any function or data semantics. Note that, even with this flag set, it's possible that some tasks may still be running with an old version of the function, until that function returns. There's also an 'immediate' flag in the 'klp_func' struct which allows you to specify that certain functions in the patch can be applied without per-task consistency. This might be useful if you want to patch a common function like schedule(), and the function change doesn't need consistency but the rest of the patch does. For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user must set patch->immediate which causes all tasks to be patched immediately. This option should be used with care, only when the patch doesn't change any function or data semantics. In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE may be allowed to use per-task consistency if we can come up with another way to patch kthreads. The /sys/kernel/livepatch/<patch>/transition file shows whether a patch is in transition. Only a single patch (the topmost patch on the stack) can be in transition at a given time. A patch can remain in transition indefinitely, if any of the tasks are stuck in the initial patch state. A transition can be reversed and effectively canceled by writing the opposite value to the /sys/kernel/livepatch/<patch>/enabled file while the transition is in progress. Then all the tasks will attempt to converge back to the original patch state. [1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 09:42:40 +08:00
/*
* Enforce the order of the func->transition writes in
* klp_init_transition() and the TIF_PATCH_PENDING writes in
* klp_start_transition(). In the rare case where klp_ftrace_handler()
* is called shortly after klp_update_patch_state() switches the task,
* this ensures the handler sees that func->transition is set.
*/
smp_wmb();
livepatch: change to a per-task consistency model Change livepatch to use a basic per-task consistency model. This is the foundation which will eventually enable us to patch those ~10% of security patches which change function or data semantics. This is the biggest remaining piece needed to make livepatch more generally useful. This code stems from the design proposal made by Vojtech [1] in November 2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task consistency and syscall barrier switching combined with kpatch's stack trace switching. There are also a number of fallback options which make it quite flexible. Patches are applied on a per-task basis, when the task is deemed safe to switch over. When a patch is enabled, livepatch enters into a transition state where tasks are converging to the patched state. Usually this transition state can complete in a few seconds. The same sequence occurs when a patch is disabled, except the tasks converge from the patched state to the unpatched state. An interrupt handler inherits the patched state of the task it interrupts. The same is true for forked tasks: the child inherits the patched state of the parent. Livepatch uses several complementary approaches to determine when it's safe to patch tasks: 1. The first and most effective approach is stack checking of sleeping tasks. If no affected functions are on the stack of a given task, the task is patched. In most cases this will patch most or all of the tasks on the first try. Otherwise it'll keep trying periodically. This option is only available if the architecture has reliable stacks (HAVE_RELIABLE_STACKTRACE). 2. The second approach, if needed, is kernel exit switching. A task is switched when it returns to user space from a system call, a user space IRQ, or a signal. It's useful in the following cases: a) Patching I/O-bound user tasks which are sleeping on an affected function. In this case you have to send SIGSTOP and SIGCONT to force it to exit the kernel and be patched. b) Patching CPU-bound user tasks. If the task is highly CPU-bound then it will get patched the next time it gets interrupted by an IRQ. c) In the future it could be useful for applying patches for architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In this case you would have to signal most of the tasks on the system. However this isn't supported yet because there's currently no way to patch kthreads without HAVE_RELIABLE_STACKTRACE. 3. For idle "swapper" tasks, since they don't ever exit the kernel, they instead have a klp_update_patch_state() call in the idle loop which allows them to be patched before the CPU enters the idle state. (Note there's not yet such an approach for kthreads.) All the above approaches may be skipped by setting the 'immediate' flag in the 'klp_patch' struct, which will disable per-task consistency and patch all tasks immediately. This can be useful if the patch doesn't change any function or data semantics. Note that, even with this flag set, it's possible that some tasks may still be running with an old version of the function, until that function returns. There's also an 'immediate' flag in the 'klp_func' struct which allows you to specify that certain functions in the patch can be applied without per-task consistency. This might be useful if you want to patch a common function like schedule(), and the function change doesn't need consistency but the rest of the patch does. For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user must set patch->immediate which causes all tasks to be patched immediately. This option should be used with care, only when the patch doesn't change any function or data semantics. In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE may be allowed to use per-task consistency if we can come up with another way to patch kthreads. The /sys/kernel/livepatch/<patch>/transition file shows whether a patch is in transition. Only a single patch (the topmost patch on the stack) can be in transition at a given time. A patch can remain in transition indefinitely, if any of the tasks are stuck in the initial patch state. A transition can be reversed and effectively canceled by writing the opposite value to the /sys/kernel/livepatch/<patch>/enabled file while the transition is in progress. Then all the tasks will attempt to converge back to the original patch state. [1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 09:42:40 +08:00
klp_start_transition();
klp_try_complete_transition();
patch->enabled = false;
return 0;
}
/**
* klp_disable_patch() - disables a registered patch
* @patch: The registered, enabled patch to be disabled
*
* Unregisters the patched functions from ftrace.
*
* Return: 0 on success, otherwise error
*/
int klp_disable_patch(struct klp_patch *patch)
{
int ret;
mutex_lock(&klp_mutex);
if (!klp_is_patch_registered(patch)) {
ret = -EINVAL;
goto err;
}
if (!patch->enabled) {
ret = -EINVAL;
goto err;
}
ret = __klp_disable_patch(patch);
err:
mutex_unlock(&klp_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(klp_disable_patch);
static int __klp_enable_patch(struct klp_patch *patch)
{
struct klp_object *obj;
int ret;
livepatch: change to a per-task consistency model Change livepatch to use a basic per-task consistency model. This is the foundation which will eventually enable us to patch those ~10% of security patches which change function or data semantics. This is the biggest remaining piece needed to make livepatch more generally useful. This code stems from the design proposal made by Vojtech [1] in November 2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task consistency and syscall barrier switching combined with kpatch's stack trace switching. There are also a number of fallback options which make it quite flexible. Patches are applied on a per-task basis, when the task is deemed safe to switch over. When a patch is enabled, livepatch enters into a transition state where tasks are converging to the patched state. Usually this transition state can complete in a few seconds. The same sequence occurs when a patch is disabled, except the tasks converge from the patched state to the unpatched state. An interrupt handler inherits the patched state of the task it interrupts. The same is true for forked tasks: the child inherits the patched state of the parent. Livepatch uses several complementary approaches to determine when it's safe to patch tasks: 1. The first and most effective approach is stack checking of sleeping tasks. If no affected functions are on the stack of a given task, the task is patched. In most cases this will patch most or all of the tasks on the first try. Otherwise it'll keep trying periodically. This option is only available if the architecture has reliable stacks (HAVE_RELIABLE_STACKTRACE). 2. The second approach, if needed, is kernel exit switching. A task is switched when it returns to user space from a system call, a user space IRQ, or a signal. It's useful in the following cases: a) Patching I/O-bound user tasks which are sleeping on an affected function. In this case you have to send SIGSTOP and SIGCONT to force it to exit the kernel and be patched. b) Patching CPU-bound user tasks. If the task is highly CPU-bound then it will get patched the next time it gets interrupted by an IRQ. c) In the future it could be useful for applying patches for architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In this case you would have to signal most of the tasks on the system. However this isn't supported yet because there's currently no way to patch kthreads without HAVE_RELIABLE_STACKTRACE. 3. For idle "swapper" tasks, since they don't ever exit the kernel, they instead have a klp_update_patch_state() call in the idle loop which allows them to be patched before the CPU enters the idle state. (Note there's not yet such an approach for kthreads.) All the above approaches may be skipped by setting the 'immediate' flag in the 'klp_patch' struct, which will disable per-task consistency and patch all tasks immediately. This can be useful if the patch doesn't change any function or data semantics. Note that, even with this flag set, it's possible that some tasks may still be running with an old version of the function, until that function returns. There's also an 'immediate' flag in the 'klp_func' struct which allows you to specify that certain functions in the patch can be applied without per-task consistency. This might be useful if you want to patch a common function like schedule(), and the function change doesn't need consistency but the rest of the patch does. For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user must set patch->immediate which causes all tasks to be patched immediately. This option should be used with care, only when the patch doesn't change any function or data semantics. In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE may be allowed to use per-task consistency if we can come up with another way to patch kthreads. The /sys/kernel/livepatch/<patch>/transition file shows whether a patch is in transition. Only a single patch (the topmost patch on the stack) can be in transition at a given time. A patch can remain in transition indefinitely, if any of the tasks are stuck in the initial patch state. A transition can be reversed and effectively canceled by writing the opposite value to the /sys/kernel/livepatch/<patch>/enabled file while the transition is in progress. Then all the tasks will attempt to converge back to the original patch state. [1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 09:42:40 +08:00
if (klp_transition_patch)
return -EBUSY;
if (WARN_ON(patch->enabled))
return -EINVAL;
/* enforce stacking: only the first disabled patch can be enabled */
if (patch->list.prev != &klp_patches &&
!list_prev_entry(patch, list)->enabled)
return -EBUSY;
livepatch: allow removal of a disabled patch Currently we do not allow patch module to unload since there is no method to determine if a task is still running in the patched code. The consistency model gives us the way because when the unpatching finishes we know that all tasks were marked as safe to call an original function. Thus every new call to the function calls the original code and at the same time no task can be somewhere in the patched code, because it had to leave that code to be marked as safe. We can safely let the patch module go after that. Completion is used for synchronization between module removal and sysfs infrastructure in a similar way to commit 942e443127e9 ("module: Fix mod->mkobj.kobj potentially freed too early"). Note that we still do not allow the removal for immediate model, that is no consistency model. The module refcount may increase in this case if somebody disables and enables the patch several times. This should not cause any harm. With this change a call to try_module_get() is moved to __klp_enable_patch from klp_register_patch to make module reference counting symmetric (module_put() is in a patch disable path) and to allow to take a new reference to a disabled module when being enabled. Finally, we need to be very careful about possible races between klp_unregister_patch(), kobject_put() functions and operations on the related sysfs files. kobject_put(&patch->kobj) must be called without klp_mutex. Otherwise, it might be blocked by enabled_store() that needs the mutex as well. In addition, enabled_store() must check if the patch was not unregisted in the meantime. There is no need to do the same for other kobject_put() callsites at the moment. Their sysfs operations neither take the lock nor they access any data that might be freed in the meantime. There was an attempt to use kobjects the right way and prevent these races by design. But it made the patch definition more complicated and opened another can of worms. See https://lkml.kernel.org/r/1464018848-4303-1-git-send-email-pmladek@suse.com [Thanks to Petr Mladek for improving the commit message.] Signed-off-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-03-07 01:20:29 +08:00
/*
* A reference is taken on the patch module to prevent it from being
* unloaded.
*
* Note: For immediate (no consistency model) patches we don't allow
* patch modules to unload since there is no safe/sane method to
* determine if a thread is still running in the patched code contained
* in the patch module once the ftrace registration is successful.
*/
if (!try_module_get(patch->mod))
return -ENODEV;
pr_notice("enabling patch '%s'\n", patch->mod->name);
livepatch: change to a per-task consistency model Change livepatch to use a basic per-task consistency model. This is the foundation which will eventually enable us to patch those ~10% of security patches which change function or data semantics. This is the biggest remaining piece needed to make livepatch more generally useful. This code stems from the design proposal made by Vojtech [1] in November 2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task consistency and syscall barrier switching combined with kpatch's stack trace switching. There are also a number of fallback options which make it quite flexible. Patches are applied on a per-task basis, when the task is deemed safe to switch over. When a patch is enabled, livepatch enters into a transition state where tasks are converging to the patched state. Usually this transition state can complete in a few seconds. The same sequence occurs when a patch is disabled, except the tasks converge from the patched state to the unpatched state. An interrupt handler inherits the patched state of the task it interrupts. The same is true for forked tasks: the child inherits the patched state of the parent. Livepatch uses several complementary approaches to determine when it's safe to patch tasks: 1. The first and most effective approach is stack checking of sleeping tasks. If no affected functions are on the stack of a given task, the task is patched. In most cases this will patch most or all of the tasks on the first try. Otherwise it'll keep trying periodically. This option is only available if the architecture has reliable stacks (HAVE_RELIABLE_STACKTRACE). 2. The second approach, if needed, is kernel exit switching. A task is switched when it returns to user space from a system call, a user space IRQ, or a signal. It's useful in the following cases: a) Patching I/O-bound user tasks which are sleeping on an affected function. In this case you have to send SIGSTOP and SIGCONT to force it to exit the kernel and be patched. b) Patching CPU-bound user tasks. If the task is highly CPU-bound then it will get patched the next time it gets interrupted by an IRQ. c) In the future it could be useful for applying patches for architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In this case you would have to signal most of the tasks on the system. However this isn't supported yet because there's currently no way to patch kthreads without HAVE_RELIABLE_STACKTRACE. 3. For idle "swapper" tasks, since they don't ever exit the kernel, they instead have a klp_update_patch_state() call in the idle loop which allows them to be patched before the CPU enters the idle state. (Note there's not yet such an approach for kthreads.) All the above approaches may be skipped by setting the 'immediate' flag in the 'klp_patch' struct, which will disable per-task consistency and patch all tasks immediately. This can be useful if the patch doesn't change any function or data semantics. Note that, even with this flag set, it's possible that some tasks may still be running with an old version of the function, until that function returns. There's also an 'immediate' flag in the 'klp_func' struct which allows you to specify that certain functions in the patch can be applied without per-task consistency. This might be useful if you want to patch a common function like schedule(), and the function change doesn't need consistency but the rest of the patch does. For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user must set patch->immediate which causes all tasks to be patched immediately. This option should be used with care, only when the patch doesn't change any function or data semantics. In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE may be allowed to use per-task consistency if we can come up with another way to patch kthreads. The /sys/kernel/livepatch/<patch>/transition file shows whether a patch is in transition. Only a single patch (the topmost patch on the stack) can be in transition at a given time. A patch can remain in transition indefinitely, if any of the tasks are stuck in the initial patch state. A transition can be reversed and effectively canceled by writing the opposite value to the /sys/kernel/livepatch/<patch>/enabled file while the transition is in progress. Then all the tasks will attempt to converge back to the original patch state. [1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 09:42:40 +08:00
klp_init_transition(patch, KLP_PATCHED);
/*
* Enforce the order of the func->transition writes in
* klp_init_transition() and the ops->func_stack writes in
* klp_patch_object(), so that klp_ftrace_handler() will see the
* func->transition updates before the handler is registered and the
* new funcs become visible to the handler.
*/
smp_wmb();
klp_for_each_object(patch, obj) {
if (!klp_is_object_loaded(obj))
continue;
ret = klp_patch_object(obj);
livepatch: change to a per-task consistency model Change livepatch to use a basic per-task consistency model. This is the foundation which will eventually enable us to patch those ~10% of security patches which change function or data semantics. This is the biggest remaining piece needed to make livepatch more generally useful. This code stems from the design proposal made by Vojtech [1] in November 2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task consistency and syscall barrier switching combined with kpatch's stack trace switching. There are also a number of fallback options which make it quite flexible. Patches are applied on a per-task basis, when the task is deemed safe to switch over. When a patch is enabled, livepatch enters into a transition state where tasks are converging to the patched state. Usually this transition state can complete in a few seconds. The same sequence occurs when a patch is disabled, except the tasks converge from the patched state to the unpatched state. An interrupt handler inherits the patched state of the task it interrupts. The same is true for forked tasks: the child inherits the patched state of the parent. Livepatch uses several complementary approaches to determine when it's safe to patch tasks: 1. The first and most effective approach is stack checking of sleeping tasks. If no affected functions are on the stack of a given task, the task is patched. In most cases this will patch most or all of the tasks on the first try. Otherwise it'll keep trying periodically. This option is only available if the architecture has reliable stacks (HAVE_RELIABLE_STACKTRACE). 2. The second approach, if needed, is kernel exit switching. A task is switched when it returns to user space from a system call, a user space IRQ, or a signal. It's useful in the following cases: a) Patching I/O-bound user tasks which are sleeping on an affected function. In this case you have to send SIGSTOP and SIGCONT to force it to exit the kernel and be patched. b) Patching CPU-bound user tasks. If the task is highly CPU-bound then it will get patched the next time it gets interrupted by an IRQ. c) In the future it could be useful for applying patches for architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In this case you would have to signal most of the tasks on the system. However this isn't supported yet because there's currently no way to patch kthreads without HAVE_RELIABLE_STACKTRACE. 3. For idle "swapper" tasks, since they don't ever exit the kernel, they instead have a klp_update_patch_state() call in the idle loop which allows them to be patched before the CPU enters the idle state. (Note there's not yet such an approach for kthreads.) All the above approaches may be skipped by setting the 'immediate' flag in the 'klp_patch' struct, which will disable per-task consistency and patch all tasks immediately. This can be useful if the patch doesn't change any function or data semantics. Note that, even with this flag set, it's possible that some tasks may still be running with an old version of the function, until that function returns. There's also an 'immediate' flag in the 'klp_func' struct which allows you to specify that certain functions in the patch can be applied without per-task consistency. This might be useful if you want to patch a common function like schedule(), and the function change doesn't need consistency but the rest of the patch does. For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user must set patch->immediate which causes all tasks to be patched immediately. This option should be used with care, only when the patch doesn't change any function or data semantics. In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE may be allowed to use per-task consistency if we can come up with another way to patch kthreads. The /sys/kernel/livepatch/<patch>/transition file shows whether a patch is in transition. Only a single patch (the topmost patch on the stack) can be in transition at a given time. A patch can remain in transition indefinitely, if any of the tasks are stuck in the initial patch state. A transition can be reversed and effectively canceled by writing the opposite value to the /sys/kernel/livepatch/<patch>/enabled file while the transition is in progress. Then all the tasks will attempt to converge back to the original patch state. [1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 09:42:40 +08:00
if (ret) {
pr_warn("failed to enable patch '%s'\n",
patch->mod->name);
klp_cancel_transition();
return ret;
}
}
livepatch: change to a per-task consistency model Change livepatch to use a basic per-task consistency model. This is the foundation which will eventually enable us to patch those ~10% of security patches which change function or data semantics. This is the biggest remaining piece needed to make livepatch more generally useful. This code stems from the design proposal made by Vojtech [1] in November 2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task consistency and syscall barrier switching combined with kpatch's stack trace switching. There are also a number of fallback options which make it quite flexible. Patches are applied on a per-task basis, when the task is deemed safe to switch over. When a patch is enabled, livepatch enters into a transition state where tasks are converging to the patched state. Usually this transition state can complete in a few seconds. The same sequence occurs when a patch is disabled, except the tasks converge from the patched state to the unpatched state. An interrupt handler inherits the patched state of the task it interrupts. The same is true for forked tasks: the child inherits the patched state of the parent. Livepatch uses several complementary approaches to determine when it's safe to patch tasks: 1. The first and most effective approach is stack checking of sleeping tasks. If no affected functions are on the stack of a given task, the task is patched. In most cases this will patch most or all of the tasks on the first try. Otherwise it'll keep trying periodically. This option is only available if the architecture has reliable stacks (HAVE_RELIABLE_STACKTRACE). 2. The second approach, if needed, is kernel exit switching. A task is switched when it returns to user space from a system call, a user space IRQ, or a signal. It's useful in the following cases: a) Patching I/O-bound user tasks which are sleeping on an affected function. In this case you have to send SIGSTOP and SIGCONT to force it to exit the kernel and be patched. b) Patching CPU-bound user tasks. If the task is highly CPU-bound then it will get patched the next time it gets interrupted by an IRQ. c) In the future it could be useful for applying patches for architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In this case you would have to signal most of the tasks on the system. However this isn't supported yet because there's currently no way to patch kthreads without HAVE_RELIABLE_STACKTRACE. 3. For idle "swapper" tasks, since they don't ever exit the kernel, they instead have a klp_update_patch_state() call in the idle loop which allows them to be patched before the CPU enters the idle state. (Note there's not yet such an approach for kthreads.) All the above approaches may be skipped by setting the 'immediate' flag in the 'klp_patch' struct, which will disable per-task consistency and patch all tasks immediately. This can be useful if the patch doesn't change any function or data semantics. Note that, even with this flag set, it's possible that some tasks may still be running with an old version of the function, until that function returns. There's also an 'immediate' flag in the 'klp_func' struct which allows you to specify that certain functions in the patch can be applied without per-task consistency. This might be useful if you want to patch a common function like schedule(), and the function change doesn't need consistency but the rest of the patch does. For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user must set patch->immediate which causes all tasks to be patched immediately. This option should be used with care, only when the patch doesn't change any function or data semantics. In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE may be allowed to use per-task consistency if we can come up with another way to patch kthreads. The /sys/kernel/livepatch/<patch>/transition file shows whether a patch is in transition. Only a single patch (the topmost patch on the stack) can be in transition at a given time. A patch can remain in transition indefinitely, if any of the tasks are stuck in the initial patch state. A transition can be reversed and effectively canceled by writing the opposite value to the /sys/kernel/livepatch/<patch>/enabled file while the transition is in progress. Then all the tasks will attempt to converge back to the original patch state. [1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 09:42:40 +08:00
klp_start_transition();
klp_try_complete_transition();
patch->enabled = true;
return 0;
}
/**
* klp_enable_patch() - enables a registered patch
* @patch: The registered, disabled patch to be enabled
*
* Performs the needed symbol lookups and code relocations,
* then registers the patched functions with ftrace.
*
* Return: 0 on success, otherwise error
*/
int klp_enable_patch(struct klp_patch *patch)
{
int ret;
mutex_lock(&klp_mutex);
if (!klp_is_patch_registered(patch)) {
ret = -EINVAL;
goto err;
}
ret = __klp_enable_patch(patch);
err:
mutex_unlock(&klp_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(klp_enable_patch);
/*
* Sysfs Interface
*
* /sys/kernel/livepatch
* /sys/kernel/livepatch/<patch>
* /sys/kernel/livepatch/<patch>/enabled
livepatch: change to a per-task consistency model Change livepatch to use a basic per-task consistency model. This is the foundation which will eventually enable us to patch those ~10% of security patches which change function or data semantics. This is the biggest remaining piece needed to make livepatch more generally useful. This code stems from the design proposal made by Vojtech [1] in November 2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task consistency and syscall barrier switching combined with kpatch's stack trace switching. There are also a number of fallback options which make it quite flexible. Patches are applied on a per-task basis, when the task is deemed safe to switch over. When a patch is enabled, livepatch enters into a transition state where tasks are converging to the patched state. Usually this transition state can complete in a few seconds. The same sequence occurs when a patch is disabled, except the tasks converge from the patched state to the unpatched state. An interrupt handler inherits the patched state of the task it interrupts. The same is true for forked tasks: the child inherits the patched state of the parent. Livepatch uses several complementary approaches to determine when it's safe to patch tasks: 1. The first and most effective approach is stack checking of sleeping tasks. If no affected functions are on the stack of a given task, the task is patched. In most cases this will patch most or all of the tasks on the first try. Otherwise it'll keep trying periodically. This option is only available if the architecture has reliable stacks (HAVE_RELIABLE_STACKTRACE). 2. The second approach, if needed, is kernel exit switching. A task is switched when it returns to user space from a system call, a user space IRQ, or a signal. It's useful in the following cases: a) Patching I/O-bound user tasks which are sleeping on an affected function. In this case you have to send SIGSTOP and SIGCONT to force it to exit the kernel and be patched. b) Patching CPU-bound user tasks. If the task is highly CPU-bound then it will get patched the next time it gets interrupted by an IRQ. c) In the future it could be useful for applying patches for architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In this case you would have to signal most of the tasks on the system. However this isn't supported yet because there's currently no way to patch kthreads without HAVE_RELIABLE_STACKTRACE. 3. For idle "swapper" tasks, since they don't ever exit the kernel, they instead have a klp_update_patch_state() call in the idle loop which allows them to be patched before the CPU enters the idle state. (Note there's not yet such an approach for kthreads.) All the above approaches may be skipped by setting the 'immediate' flag in the 'klp_patch' struct, which will disable per-task consistency and patch all tasks immediately. This can be useful if the patch doesn't change any function or data semantics. Note that, even with this flag set, it's possible that some tasks may still be running with an old version of the function, until that function returns. There's also an 'immediate' flag in the 'klp_func' struct which allows you to specify that certain functions in the patch can be applied without per-task consistency. This might be useful if you want to patch a common function like schedule(), and the function change doesn't need consistency but the rest of the patch does. For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user must set patch->immediate which causes all tasks to be patched immediately. This option should be used with care, only when the patch doesn't change any function or data semantics. In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE may be allowed to use per-task consistency if we can come up with another way to patch kthreads. The /sys/kernel/livepatch/<patch>/transition file shows whether a patch is in transition. Only a single patch (the topmost patch on the stack) can be in transition at a given time. A patch can remain in transition indefinitely, if any of the tasks are stuck in the initial patch state. A transition can be reversed and effectively canceled by writing the opposite value to the /sys/kernel/livepatch/<patch>/enabled file while the transition is in progress. Then all the tasks will attempt to converge back to the original patch state. [1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 09:42:40 +08:00
* /sys/kernel/livepatch/<patch>/transition
* /sys/kernel/livepatch/<patch>/<object>
* /sys/kernel/livepatch/<patch>/<object>/<function,sympos>
*/
static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
struct klp_patch *patch;
int ret;
bool enabled;
ret = kstrtobool(buf, &enabled);
if (ret)
return ret;
patch = container_of(kobj, struct klp_patch, kobj);
mutex_lock(&klp_mutex);
livepatch: allow removal of a disabled patch Currently we do not allow patch module to unload since there is no method to determine if a task is still running in the patched code. The consistency model gives us the way because when the unpatching finishes we know that all tasks were marked as safe to call an original function. Thus every new call to the function calls the original code and at the same time no task can be somewhere in the patched code, because it had to leave that code to be marked as safe. We can safely let the patch module go after that. Completion is used for synchronization between module removal and sysfs infrastructure in a similar way to commit 942e443127e9 ("module: Fix mod->mkobj.kobj potentially freed too early"). Note that we still do not allow the removal for immediate model, that is no consistency model. The module refcount may increase in this case if somebody disables and enables the patch several times. This should not cause any harm. With this change a call to try_module_get() is moved to __klp_enable_patch from klp_register_patch to make module reference counting symmetric (module_put() is in a patch disable path) and to allow to take a new reference to a disabled module when being enabled. Finally, we need to be very careful about possible races between klp_unregister_patch(), kobject_put() functions and operations on the related sysfs files. kobject_put(&patch->kobj) must be called without klp_mutex. Otherwise, it might be blocked by enabled_store() that needs the mutex as well. In addition, enabled_store() must check if the patch was not unregisted in the meantime. There is no need to do the same for other kobject_put() callsites at the moment. Their sysfs operations neither take the lock nor they access any data that might be freed in the meantime. There was an attempt to use kobjects the right way and prevent these races by design. But it made the patch definition more complicated and opened another can of worms. See https://lkml.kernel.org/r/1464018848-4303-1-git-send-email-pmladek@suse.com [Thanks to Petr Mladek for improving the commit message.] Signed-off-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-03-07 01:20:29 +08:00
if (!klp_is_patch_registered(patch)) {
/*
* Module with the patch could either disappear meanwhile or is
* not properly initialized yet.
*/
ret = -EINVAL;
goto err;
}
if (patch->enabled == enabled) {
/* already in requested state */
ret = -EINVAL;
goto err;
}
livepatch: change to a per-task consistency model Change livepatch to use a basic per-task consistency model. This is the foundation which will eventually enable us to patch those ~10% of security patches which change function or data semantics. This is the biggest remaining piece needed to make livepatch more generally useful. This code stems from the design proposal made by Vojtech [1] in November 2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task consistency and syscall barrier switching combined with kpatch's stack trace switching. There are also a number of fallback options which make it quite flexible. Patches are applied on a per-task basis, when the task is deemed safe to switch over. When a patch is enabled, livepatch enters into a transition state where tasks are converging to the patched state. Usually this transition state can complete in a few seconds. The same sequence occurs when a patch is disabled, except the tasks converge from the patched state to the unpatched state. An interrupt handler inherits the patched state of the task it interrupts. The same is true for forked tasks: the child inherits the patched state of the parent. Livepatch uses several complementary approaches to determine when it's safe to patch tasks: 1. The first and most effective approach is stack checking of sleeping tasks. If no affected functions are on the stack of a given task, the task is patched. In most cases this will patch most or all of the tasks on the first try. Otherwise it'll keep trying periodically. This option is only available if the architecture has reliable stacks (HAVE_RELIABLE_STACKTRACE). 2. The second approach, if needed, is kernel exit switching. A task is switched when it returns to user space from a system call, a user space IRQ, or a signal. It's useful in the following cases: a) Patching I/O-bound user tasks which are sleeping on an affected function. In this case you have to send SIGSTOP and SIGCONT to force it to exit the kernel and be patched. b) Patching CPU-bound user tasks. If the task is highly CPU-bound then it will get patched the next time it gets interrupted by an IRQ. c) In the future it could be useful for applying patches for architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In this case you would have to signal most of the tasks on the system. However this isn't supported yet because there's currently no way to patch kthreads without HAVE_RELIABLE_STACKTRACE. 3. For idle "swapper" tasks, since they don't ever exit the kernel, they instead have a klp_update_patch_state() call in the idle loop which allows them to be patched before the CPU enters the idle state. (Note there's not yet such an approach for kthreads.) All the above approaches may be skipped by setting the 'immediate' flag in the 'klp_patch' struct, which will disable per-task consistency and patch all tasks immediately. This can be useful if the patch doesn't change any function or data semantics. Note that, even with this flag set, it's possible that some tasks may still be running with an old version of the function, until that function returns. There's also an 'immediate' flag in the 'klp_func' struct which allows you to specify that certain functions in the patch can be applied without per-task consistency. This might be useful if you want to patch a common function like schedule(), and the function change doesn't need consistency but the rest of the patch does. For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user must set patch->immediate which causes all tasks to be patched immediately. This option should be used with care, only when the patch doesn't change any function or data semantics. In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE may be allowed to use per-task consistency if we can come up with another way to patch kthreads. The /sys/kernel/livepatch/<patch>/transition file shows whether a patch is in transition. Only a single patch (the topmost patch on the stack) can be in transition at a given time. A patch can remain in transition indefinitely, if any of the tasks are stuck in the initial patch state. A transition can be reversed and effectively canceled by writing the opposite value to the /sys/kernel/livepatch/<patch>/enabled file while the transition is in progress. Then all the tasks will attempt to converge back to the original patch state. [1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 09:42:40 +08:00
if (patch == klp_transition_patch) {
klp_reverse_transition();
} else if (enabled) {
ret = __klp_enable_patch(patch);
if (ret)
goto err;
} else {
ret = __klp_disable_patch(patch);
if (ret)
goto err;
}
mutex_unlock(&klp_mutex);
return count;
err:
mutex_unlock(&klp_mutex);
return ret;
}
static ssize_t enabled_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct klp_patch *patch;
patch = container_of(kobj, struct klp_patch, kobj);
return snprintf(buf, PAGE_SIZE-1, "%d\n", patch->enabled);
}
livepatch: change to a per-task consistency model Change livepatch to use a basic per-task consistency model. This is the foundation which will eventually enable us to patch those ~10% of security patches which change function or data semantics. This is the biggest remaining piece needed to make livepatch more generally useful. This code stems from the design proposal made by Vojtech [1] in November 2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task consistency and syscall barrier switching combined with kpatch's stack trace switching. There are also a number of fallback options which make it quite flexible. Patches are applied on a per-task basis, when the task is deemed safe to switch over. When a patch is enabled, livepatch enters into a transition state where tasks are converging to the patched state. Usually this transition state can complete in a few seconds. The same sequence occurs when a patch is disabled, except the tasks converge from the patched state to the unpatched state. An interrupt handler inherits the patched state of the task it interrupts. The same is true for forked tasks: the child inherits the patched state of the parent. Livepatch uses several complementary approaches to determine when it's safe to patch tasks: 1. The first and most effective approach is stack checking of sleeping tasks. If no affected functions are on the stack of a given task, the task is patched. In most cases this will patch most or all of the tasks on the first try. Otherwise it'll keep trying periodically. This option is only available if the architecture has reliable stacks (HAVE_RELIABLE_STACKTRACE). 2. The second approach, if needed, is kernel exit switching. A task is switched when it returns to user space from a system call, a user space IRQ, or a signal. It's useful in the following cases: a) Patching I/O-bound user tasks which are sleeping on an affected function. In this case you have to send SIGSTOP and SIGCONT to force it to exit the kernel and be patched. b) Patching CPU-bound user tasks. If the task is highly CPU-bound then it will get patched the next time it gets interrupted by an IRQ. c) In the future it could be useful for applying patches for architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In this case you would have to signal most of the tasks on the system. However this isn't supported yet because there's currently no way to patch kthreads without HAVE_RELIABLE_STACKTRACE. 3. For idle "swapper" tasks, since they don't ever exit the kernel, they instead have a klp_update_patch_state() call in the idle loop which allows them to be patched before the CPU enters the idle state. (Note there's not yet such an approach for kthreads.) All the above approaches may be skipped by setting the 'immediate' flag in the 'klp_patch' struct, which will disable per-task consistency and patch all tasks immediately. This can be useful if the patch doesn't change any function or data semantics. Note that, even with this flag set, it's possible that some tasks may still be running with an old version of the function, until that function returns. There's also an 'immediate' flag in the 'klp_func' struct which allows you to specify that certain functions in the patch can be applied without per-task consistency. This might be useful if you want to patch a common function like schedule(), and the function change doesn't need consistency but the rest of the patch does. For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user must set patch->immediate which causes all tasks to be patched immediately. This option should be used with care, only when the patch doesn't change any function or data semantics. In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE may be allowed to use per-task consistency if we can come up with another way to patch kthreads. The /sys/kernel/livepatch/<patch>/transition file shows whether a patch is in transition. Only a single patch (the topmost patch on the stack) can be in transition at a given time. A patch can remain in transition indefinitely, if any of the tasks are stuck in the initial patch state. A transition can be reversed and effectively canceled by writing the opposite value to the /sys/kernel/livepatch/<patch>/enabled file while the transition is in progress. Then all the tasks will attempt to converge back to the original patch state. [1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 09:42:40 +08:00
static ssize_t transition_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct klp_patch *patch;
patch = container_of(kobj, struct klp_patch, kobj);
return snprintf(buf, PAGE_SIZE-1, "%d\n",
patch == klp_transition_patch);
}
static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled);
livepatch: change to a per-task consistency model Change livepatch to use a basic per-task consistency model. This is the foundation which will eventually enable us to patch those ~10% of security patches which change function or data semantics. This is the biggest remaining piece needed to make livepatch more generally useful. This code stems from the design proposal made by Vojtech [1] in November 2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task consistency and syscall barrier switching combined with kpatch's stack trace switching. There are also a number of fallback options which make it quite flexible. Patches are applied on a per-task basis, when the task is deemed safe to switch over. When a patch is enabled, livepatch enters into a transition state where tasks are converging to the patched state. Usually this transition state can complete in a few seconds. The same sequence occurs when a patch is disabled, except the tasks converge from the patched state to the unpatched state. An interrupt handler inherits the patched state of the task it interrupts. The same is true for forked tasks: the child inherits the patched state of the parent. Livepatch uses several complementary approaches to determine when it's safe to patch tasks: 1. The first and most effective approach is stack checking of sleeping tasks. If no affected functions are on the stack of a given task, the task is patched. In most cases this will patch most or all of the tasks on the first try. Otherwise it'll keep trying periodically. This option is only available if the architecture has reliable stacks (HAVE_RELIABLE_STACKTRACE). 2. The second approach, if needed, is kernel exit switching. A task is switched when it returns to user space from a system call, a user space IRQ, or a signal. It's useful in the following cases: a) Patching I/O-bound user tasks which are sleeping on an affected function. In this case you have to send SIGSTOP and SIGCONT to force it to exit the kernel and be patched. b) Patching CPU-bound user tasks. If the task is highly CPU-bound then it will get patched the next time it gets interrupted by an IRQ. c) In the future it could be useful for applying patches for architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In this case you would have to signal most of the tasks on the system. However this isn't supported yet because there's currently no way to patch kthreads without HAVE_RELIABLE_STACKTRACE. 3. For idle "swapper" tasks, since they don't ever exit the kernel, they instead have a klp_update_patch_state() call in the idle loop which allows them to be patched before the CPU enters the idle state. (Note there's not yet such an approach for kthreads.) All the above approaches may be skipped by setting the 'immediate' flag in the 'klp_patch' struct, which will disable per-task consistency and patch all tasks immediately. This can be useful if the patch doesn't change any function or data semantics. Note that, even with this flag set, it's possible that some tasks may still be running with an old version of the function, until that function returns. There's also an 'immediate' flag in the 'klp_func' struct which allows you to specify that certain functions in the patch can be applied without per-task consistency. This might be useful if you want to patch a common function like schedule(), and the function change doesn't need consistency but the rest of the patch does. For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user must set patch->immediate which causes all tasks to be patched immediately. This option should be used with care, only when the patch doesn't change any function or data semantics. In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE may be allowed to use per-task consistency if we can come up with another way to patch kthreads. The /sys/kernel/livepatch/<patch>/transition file shows whether a patch is in transition. Only a single patch (the topmost patch on the stack) can be in transition at a given time. A patch can remain in transition indefinitely, if any of the tasks are stuck in the initial patch state. A transition can be reversed and effectively canceled by writing the opposite value to the /sys/kernel/livepatch/<patch>/enabled file while the transition is in progress. Then all the tasks will attempt to converge back to the original patch state. [1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 09:42:40 +08:00
static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition);
static struct attribute *klp_patch_attrs[] = {
&enabled_kobj_attr.attr,
livepatch: change to a per-task consistency model Change livepatch to use a basic per-task consistency model. This is the foundation which will eventually enable us to patch those ~10% of security patches which change function or data semantics. This is the biggest remaining piece needed to make livepatch more generally useful. This code stems from the design proposal made by Vojtech [1] in November 2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task consistency and syscall barrier switching combined with kpatch's stack trace switching. There are also a number of fallback options which make it quite flexible. Patches are applied on a per-task basis, when the task is deemed safe to switch over. When a patch is enabled, livepatch enters into a transition state where tasks are converging to the patched state. Usually this transition state can complete in a few seconds. The same sequence occurs when a patch is disabled, except the tasks converge from the patched state to the unpatched state. An interrupt handler inherits the patched state of the task it interrupts. The same is true for forked tasks: the child inherits the patched state of the parent. Livepatch uses several complementary approaches to determine when it's safe to patch tasks: 1. The first and most effective approach is stack checking of sleeping tasks. If no affected functions are on the stack of a given task, the task is patched. In most cases this will patch most or all of the tasks on the first try. Otherwise it'll keep trying periodically. This option is only available if the architecture has reliable stacks (HAVE_RELIABLE_STACKTRACE). 2. The second approach, if needed, is kernel exit switching. A task is switched when it returns to user space from a system call, a user space IRQ, or a signal. It's useful in the following cases: a) Patching I/O-bound user tasks which are sleeping on an affected function. In this case you have to send SIGSTOP and SIGCONT to force it to exit the kernel and be patched. b) Patching CPU-bound user tasks. If the task is highly CPU-bound then it will get patched the next time it gets interrupted by an IRQ. c) In the future it could be useful for applying patches for architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In this case you would have to signal most of the tasks on the system. However this isn't supported yet because there's currently no way to patch kthreads without HAVE_RELIABLE_STACKTRACE. 3. For idle "swapper" tasks, since they don't ever exit the kernel, they instead have a klp_update_patch_state() call in the idle loop which allows them to be patched before the CPU enters the idle state. (Note there's not yet such an approach for kthreads.) All the above approaches may be skipped by setting the 'immediate' flag in the 'klp_patch' struct, which will disable per-task consistency and patch all tasks immediately. This can be useful if the patch doesn't change any function or data semantics. Note that, even with this flag set, it's possible that some tasks may still be running with an old version of the function, until that function returns. There's also an 'immediate' flag in the 'klp_func' struct which allows you to specify that certain functions in the patch can be applied without per-task consistency. This might be useful if you want to patch a common function like schedule(), and the function change doesn't need consistency but the rest of the patch does. For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user must set patch->immediate which causes all tasks to be patched immediately. This option should be used with care, only when the patch doesn't change any function or data semantics. In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE may be allowed to use per-task consistency if we can come up with another way to patch kthreads. The /sys/kernel/livepatch/<patch>/transition file shows whether a patch is in transition. Only a single patch (the topmost patch on the stack) can be in transition at a given time. A patch can remain in transition indefinitely, if any of the tasks are stuck in the initial patch state. A transition can be reversed and effectively canceled by writing the opposite value to the /sys/kernel/livepatch/<patch>/enabled file while the transition is in progress. Then all the tasks will attempt to converge back to the original patch state. [1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 09:42:40 +08:00
&transition_kobj_attr.attr,
NULL
};
static void klp_kobj_release_patch(struct kobject *kobj)
{
livepatch: allow removal of a disabled patch Currently we do not allow patch module to unload since there is no method to determine if a task is still running in the patched code. The consistency model gives us the way because when the unpatching finishes we know that all tasks were marked as safe to call an original function. Thus every new call to the function calls the original code and at the same time no task can be somewhere in the patched code, because it had to leave that code to be marked as safe. We can safely let the patch module go after that. Completion is used for synchronization between module removal and sysfs infrastructure in a similar way to commit 942e443127e9 ("module: Fix mod->mkobj.kobj potentially freed too early"). Note that we still do not allow the removal for immediate model, that is no consistency model. The module refcount may increase in this case if somebody disables and enables the patch several times. This should not cause any harm. With this change a call to try_module_get() is moved to __klp_enable_patch from klp_register_patch to make module reference counting symmetric (module_put() is in a patch disable path) and to allow to take a new reference to a disabled module when being enabled. Finally, we need to be very careful about possible races between klp_unregister_patch(), kobject_put() functions and operations on the related sysfs files. kobject_put(&patch->kobj) must be called without klp_mutex. Otherwise, it might be blocked by enabled_store() that needs the mutex as well. In addition, enabled_store() must check if the patch was not unregisted in the meantime. There is no need to do the same for other kobject_put() callsites at the moment. Their sysfs operations neither take the lock nor they access any data that might be freed in the meantime. There was an attempt to use kobjects the right way and prevent these races by design. But it made the patch definition more complicated and opened another can of worms. See https://lkml.kernel.org/r/1464018848-4303-1-git-send-email-pmladek@suse.com [Thanks to Petr Mladek for improving the commit message.] Signed-off-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-03-07 01:20:29 +08:00
struct klp_patch *patch;
patch = container_of(kobj, struct klp_patch, kobj);
complete(&patch->finish);
}
static struct kobj_type klp_ktype_patch = {
.release = klp_kobj_release_patch,
.sysfs_ops = &kobj_sysfs_ops,
.default_attrs = klp_patch_attrs,
};
static void klp_kobj_release_object(struct kobject *kobj)
{
}
static struct kobj_type klp_ktype_object = {
.release = klp_kobj_release_object,
.sysfs_ops = &kobj_sysfs_ops,
};
static void klp_kobj_release_func(struct kobject *kobj)
{
}
static struct kobj_type klp_ktype_func = {
.release = klp_kobj_release_func,
.sysfs_ops = &kobj_sysfs_ops,
};
/*
* Free all functions' kobjects in the array up to some limit. When limit is
* NULL, all kobjects are freed.
*/
static void klp_free_funcs_limited(struct klp_object *obj,
struct klp_func *limit)
{
struct klp_func *func;
for (func = obj->funcs; func->old_name && func != limit; func++)
kobject_put(&func->kobj);
}
/* Clean up when a patched object is unloaded */
static void klp_free_object_loaded(struct klp_object *obj)
{
struct klp_func *func;
obj->mod = NULL;
klp_for_each_func(obj, func)
func->old_addr = 0;
}
/*
* Free all objects' kobjects in the array up to some limit. When limit is
* NULL, all kobjects are freed.
*/
static void klp_free_objects_limited(struct klp_patch *patch,
struct klp_object *limit)
{
struct klp_object *obj;
for (obj = patch->objs; obj->funcs && obj != limit; obj++) {
klp_free_funcs_limited(obj, NULL);
kobject_put(&obj->kobj);
}
}
static void klp_free_patch(struct klp_patch *patch)
{
klp_free_objects_limited(patch, NULL);
if (!list_empty(&patch->list))
list_del(&patch->list);
}
static int klp_init_func(struct klp_object *obj, struct klp_func *func)
{
if (!func->old_name || !func->new_func)
return -EINVAL;
INIT_LIST_HEAD(&func->stack_node);
func->patched = false;
livepatch: change to a per-task consistency model Change livepatch to use a basic per-task consistency model. This is the foundation which will eventually enable us to patch those ~10% of security patches which change function or data semantics. This is the biggest remaining piece needed to make livepatch more generally useful. This code stems from the design proposal made by Vojtech [1] in November 2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task consistency and syscall barrier switching combined with kpatch's stack trace switching. There are also a number of fallback options which make it quite flexible. Patches are applied on a per-task basis, when the task is deemed safe to switch over. When a patch is enabled, livepatch enters into a transition state where tasks are converging to the patched state. Usually this transition state can complete in a few seconds. The same sequence occurs when a patch is disabled, except the tasks converge from the patched state to the unpatched state. An interrupt handler inherits the patched state of the task it interrupts. The same is true for forked tasks: the child inherits the patched state of the parent. Livepatch uses several complementary approaches to determine when it's safe to patch tasks: 1. The first and most effective approach is stack checking of sleeping tasks. If no affected functions are on the stack of a given task, the task is patched. In most cases this will patch most or all of the tasks on the first try. Otherwise it'll keep trying periodically. This option is only available if the architecture has reliable stacks (HAVE_RELIABLE_STACKTRACE). 2. The second approach, if needed, is kernel exit switching. A task is switched when it returns to user space from a system call, a user space IRQ, or a signal. It's useful in the following cases: a) Patching I/O-bound user tasks which are sleeping on an affected function. In this case you have to send SIGSTOP and SIGCONT to force it to exit the kernel and be patched. b) Patching CPU-bound user tasks. If the task is highly CPU-bound then it will get patched the next time it gets interrupted by an IRQ. c) In the future it could be useful for applying patches for architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In this case you would have to signal most of the tasks on the system. However this isn't supported yet because there's currently no way to patch kthreads without HAVE_RELIABLE_STACKTRACE. 3. For idle "swapper" tasks, since they don't ever exit the kernel, they instead have a klp_update_patch_state() call in the idle loop which allows them to be patched before the CPU enters the idle state. (Note there's not yet such an approach for kthreads.) All the above approaches may be skipped by setting the 'immediate' flag in the 'klp_patch' struct, which will disable per-task consistency and patch all tasks immediately. This can be useful if the patch doesn't change any function or data semantics. Note that, even with this flag set, it's possible that some tasks may still be running with an old version of the function, until that function returns. There's also an 'immediate' flag in the 'klp_func' struct which allows you to specify that certain functions in the patch can be applied without per-task consistency. This might be useful if you want to patch a common function like schedule(), and the function change doesn't need consistency but the rest of the patch does. For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user must set patch->immediate which causes all tasks to be patched immediately. This option should be used with care, only when the patch doesn't change any function or data semantics. In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE may be allowed to use per-task consistency if we can come up with another way to patch kthreads. The /sys/kernel/livepatch/<patch>/transition file shows whether a patch is in transition. Only a single patch (the topmost patch on the stack) can be in transition at a given time. A patch can remain in transition indefinitely, if any of the tasks are stuck in the initial patch state. A transition can be reversed and effectively canceled by writing the opposite value to the /sys/kernel/livepatch/<patch>/enabled file while the transition is in progress. Then all the tasks will attempt to converge back to the original patch state. [1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 09:42:40 +08:00
func->transition = false;
/* The format for the sysfs directory is <function,sympos> where sympos
* is the nth occurrence of this symbol in kallsyms for the patched
* object. If the user selects 0 for old_sympos, then 1 will be used
* since a unique symbol will be the first occurrence.
*/
return kobject_init_and_add(&func->kobj, &klp_ktype_func,
&obj->kobj, "%s,%lu", func->old_name,
func->old_sympos ? func->old_sympos : 1);
}
/* Arches may override this to finish any remaining arch-specific tasks */
void __weak arch_klp_init_object_loaded(struct klp_patch *patch,
struct klp_object *obj)
{
}
/* parts of the initialization that is done only when the object is loaded */
static int klp_init_object_loaded(struct klp_patch *patch,
struct klp_object *obj)
{
struct klp_func *func;
int ret;
module_disable_ro(patch->mod);
ret = klp_write_object_relocations(patch->mod, obj);
if (ret) {
module_enable_ro(patch->mod, true);
return ret;
}
arch_klp_init_object_loaded(patch, obj);
module_enable_ro(patch->mod, true);
klp_for_each_func(obj, func) {
livepatch: add old_sympos as disambiguator field to klp_func Currently, patching objects with duplicate symbol names fail because the creation of the sysfs function directory collides with the previous attempt. Appending old_addr to the function name is problematic as it reveals the address of the function being patch to a normal user. Using the symbol's occurrence in kallsyms to postfix the function name in the sysfs directory solves the issue of having consistent unique names and ensuring that the address is not exposed to a normal user. In addition, using the symbol position as the user's method to disambiguate symbols instead of addr allows for disambiguating symbols in modules as well for both function addresses and for relocs. This also simplifies much of the code. Special handling for kASLR is no longer needed and can be removed. The klp_find_verify_func_addr function can be replaced by klp_find_object_symbol, and klp_verify_vmlinux_symbol and its callback can be removed completely. In cases of duplicate symbols, old_sympos will be used to disambiguate instead of old_addr. By default old_sympos will be 0, and patching will only succeed if the symbol is unique. Specifying a positive value will ensure that occurrence of the symbol in kallsyms for the patched object will be used for patching if it is valid. In addition, make old_addr an internal structure field not to be specified by the user. Finally, remove klp_find_verify_func_addr as it can be replaced by klp_find_object_symbol directly. Support for symbol position disambiguation for relocations is added in the next patch in this series. Signed-off-by: Chris J Arges <chris.j.arges@canonical.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2015-12-02 10:40:54 +08:00
ret = klp_find_object_symbol(obj->name, func->old_name,
func->old_sympos,
&func->old_addr);
if (ret)
return ret;
ret = kallsyms_lookup_size_offset(func->old_addr,
&func->old_size, NULL);
if (!ret) {
pr_err("kallsyms size lookup failed for '%s'\n",
func->old_name);
return -ENOENT;
}
ret = kallsyms_lookup_size_offset((unsigned long)func->new_func,
&func->new_size, NULL);
if (!ret) {
pr_err("kallsyms size lookup failed for '%s' replacement\n",
func->old_name);
return -ENOENT;
}
}
return 0;
}
static int klp_init_object(struct klp_patch *patch, struct klp_object *obj)
{
struct klp_func *func;
int ret;
const char *name;
if (!obj->funcs)
return -EINVAL;
obj->patched = false;
livepatch: Fix subtle race with coming and going modules There is a notifier that handles live patches for coming and going modules. It takes klp_mutex lock to avoid races with coming and going patches but it does not keep the lock all the time. Therefore the following races are possible: 1. The notifier is called sometime in STATE_MODULE_COMING. The module is visible by find_module() in this state all the time. It means that new patch can be registered and enabled even before the notifier is called. It might create wrong order of stacked patches, see below for an example. 2. New patch could still see the module in the GOING state even after the notifier has been called. It will try to initialize the related object structures but the module could disappear at any time. There will stay mess in the structures. It might even cause an invalid memory access. This patch solves the problem by adding a boolean variable into struct module. The value is true after the coming and before the going handler is called. New patches need to be applied when the value is true and they need to ignore the module when the value is false. Note that we need to know state of all modules on the system. The races are related to new patches. Therefore we do not know what modules will get patched. Also note that we could not simply ignore going modules. The code from the module could be called even in the GOING state until mod->exit() finishes. If we start supporting patches with semantic changes between function calls, we need to apply new patches to any still usable code. See below for an example. Finally note that the patch solves only the situation when a new patch is registered. There are no such problems when the patch is being removed. It does not matter who disable the patch first, whether the normal disable_patch() or the module notifier. There is nothing to do once the patch is disabled. Alternative solutions: ====================== + reject new patches when a patched module is coming or going; this is ugly + wait with adding new patch until the module leaves the COMING and GOING states; this might be dangerous and complicated; we would need to release kgr_lock in the middle of the patch registration to avoid a deadlock with the coming and going handlers; also we might need a waitqueue for each module which seems to be even bigger overhead than the boolean + stop modules from entering COMING and GOING states; wait until modules leave these states when they are already there; looks complicated; we would need to ignore the module that asked to stop the others to avoid a deadlock; also it is unclear what to do when two modules asked to stop others and both are in COMING state (situation when two new patches are applied) + always register/enable new patches and fix up the potential mess (registered patches order) in klp_module_init(); this is nasty and prone to regressions in the future development + add another MODULE_STATE where the kallsyms are visible but the module is not used yet; this looks too complex; the module states are checked on "many" locations Example of patch stacking breakage: =================================== The notifier could _not_ _simply_ ignore already initialized module objects. For example, let's have three patches (P1, P2, P3) for functions a() and b() where a() is from vmcore and b() is from a module M. Something like: a() b() P1 a1() b1() P2 a2() b2() P3 a3() b3(3) If you load the module M after all patches are registered and enabled. The ftrace ops for function a() and b() has listed the functions in this order: ops_a->func_stack -> list(a3,a2,a1) ops_b->func_stack -> list(b3,b2,b1) , so the pointer to b3() is the first and will be used. Then you might have the following scenario. Let's start with state when patches P1 and P2 are registered and enabled but the module M is not loaded. Then ftrace ops for b() does not exist. Then we get into the following race: CPU0 CPU1 load_module(M) complete_formation() mod->state = MODULE_STATE_COMING; mutex_unlock(&module_mutex); klp_register_patch(P3); klp_enable_patch(P3); # STATE 1 klp_module_notify(M) klp_module_notify_coming(P1); klp_module_notify_coming(P2); klp_module_notify_coming(P3); # STATE 2 The ftrace ops for a() and b() then looks: STATE1: ops_a->func_stack -> list(a3,a2,a1); ops_b->func_stack -> list(b3); STATE2: ops_a->func_stack -> list(a3,a2,a1); ops_b->func_stack -> list(b2,b1,b3); therefore, b2() is used for the module but a3() is used for vmcore because they were the last added. Example of the race with going modules: ======================================= CPU0 CPU1 delete_module() #SYSCALL try_stop_module() mod->state = MODULE_STATE_GOING; mutex_unlock(&module_mutex); klp_register_patch() klp_enable_patch() #save place to switch universe b() # from module that is going a() # from core (patched) mod->exit(); Note that the function b() can be called until we call mod->exit(). If we do not apply patch against b() because it is in MODULE_STATE_GOING, it will call patched a() with modified semantic and things might get wrong. [jpoimboe@redhat.com: use one boolean instead of two] Signed-off-by: Petr Mladek <pmladek@suse.cz> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2015-03-12 19:55:13 +08:00
obj->mod = NULL;
klp_find_object_module(obj);
name = klp_is_module(obj) ? obj->name : "vmlinux";
ret = kobject_init_and_add(&obj->kobj, &klp_ktype_object,
&patch->kobj, "%s", name);
if (ret)
return ret;
klp_for_each_func(obj, func) {
ret = klp_init_func(obj, func);
if (ret)
goto free;
}
if (klp_is_object_loaded(obj)) {
ret = klp_init_object_loaded(patch, obj);
if (ret)
goto free;
}
return 0;
free:
klp_free_funcs_limited(obj, func);
kobject_put(&obj->kobj);
return ret;
}
static int klp_init_patch(struct klp_patch *patch)
{
struct klp_object *obj;
int ret;
if (!patch->objs)
return -EINVAL;
mutex_lock(&klp_mutex);
patch->enabled = false;
livepatch: allow removal of a disabled patch Currently we do not allow patch module to unload since there is no method to determine if a task is still running in the patched code. The consistency model gives us the way because when the unpatching finishes we know that all tasks were marked as safe to call an original function. Thus every new call to the function calls the original code and at the same time no task can be somewhere in the patched code, because it had to leave that code to be marked as safe. We can safely let the patch module go after that. Completion is used for synchronization between module removal and sysfs infrastructure in a similar way to commit 942e443127e9 ("module: Fix mod->mkobj.kobj potentially freed too early"). Note that we still do not allow the removal for immediate model, that is no consistency model. The module refcount may increase in this case if somebody disables and enables the patch several times. This should not cause any harm. With this change a call to try_module_get() is moved to __klp_enable_patch from klp_register_patch to make module reference counting symmetric (module_put() is in a patch disable path) and to allow to take a new reference to a disabled module when being enabled. Finally, we need to be very careful about possible races between klp_unregister_patch(), kobject_put() functions and operations on the related sysfs files. kobject_put(&patch->kobj) must be called without klp_mutex. Otherwise, it might be blocked by enabled_store() that needs the mutex as well. In addition, enabled_store() must check if the patch was not unregisted in the meantime. There is no need to do the same for other kobject_put() callsites at the moment. Their sysfs operations neither take the lock nor they access any data that might be freed in the meantime. There was an attempt to use kobjects the right way and prevent these races by design. But it made the patch definition more complicated and opened another can of worms. See https://lkml.kernel.org/r/1464018848-4303-1-git-send-email-pmladek@suse.com [Thanks to Petr Mladek for improving the commit message.] Signed-off-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-03-07 01:20:29 +08:00
init_completion(&patch->finish);
ret = kobject_init_and_add(&patch->kobj, &klp_ktype_patch,
klp_root_kobj, "%s", patch->mod->name);
livepatch: allow removal of a disabled patch Currently we do not allow patch module to unload since there is no method to determine if a task is still running in the patched code. The consistency model gives us the way because when the unpatching finishes we know that all tasks were marked as safe to call an original function. Thus every new call to the function calls the original code and at the same time no task can be somewhere in the patched code, because it had to leave that code to be marked as safe. We can safely let the patch module go after that. Completion is used for synchronization between module removal and sysfs infrastructure in a similar way to commit 942e443127e9 ("module: Fix mod->mkobj.kobj potentially freed too early"). Note that we still do not allow the removal for immediate model, that is no consistency model. The module refcount may increase in this case if somebody disables and enables the patch several times. This should not cause any harm. With this change a call to try_module_get() is moved to __klp_enable_patch from klp_register_patch to make module reference counting symmetric (module_put() is in a patch disable path) and to allow to take a new reference to a disabled module when being enabled. Finally, we need to be very careful about possible races between klp_unregister_patch(), kobject_put() functions and operations on the related sysfs files. kobject_put(&patch->kobj) must be called without klp_mutex. Otherwise, it might be blocked by enabled_store() that needs the mutex as well. In addition, enabled_store() must check if the patch was not unregisted in the meantime. There is no need to do the same for other kobject_put() callsites at the moment. Their sysfs operations neither take the lock nor they access any data that might be freed in the meantime. There was an attempt to use kobjects the right way and prevent these races by design. But it made the patch definition more complicated and opened another can of worms. See https://lkml.kernel.org/r/1464018848-4303-1-git-send-email-pmladek@suse.com [Thanks to Petr Mladek for improving the commit message.] Signed-off-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-03-07 01:20:29 +08:00
if (ret) {
mutex_unlock(&klp_mutex);
return ret;
}
klp_for_each_object(patch, obj) {
ret = klp_init_object(patch, obj);
if (ret)
goto free;
}
list_add_tail(&patch->list, &klp_patches);
mutex_unlock(&klp_mutex);
return 0;
free:
klp_free_objects_limited(patch, obj);
livepatch: allow removal of a disabled patch Currently we do not allow patch module to unload since there is no method to determine if a task is still running in the patched code. The consistency model gives us the way because when the unpatching finishes we know that all tasks were marked as safe to call an original function. Thus every new call to the function calls the original code and at the same time no task can be somewhere in the patched code, because it had to leave that code to be marked as safe. We can safely let the patch module go after that. Completion is used for synchronization between module removal and sysfs infrastructure in a similar way to commit 942e443127e9 ("module: Fix mod->mkobj.kobj potentially freed too early"). Note that we still do not allow the removal for immediate model, that is no consistency model. The module refcount may increase in this case if somebody disables and enables the patch several times. This should not cause any harm. With this change a call to try_module_get() is moved to __klp_enable_patch from klp_register_patch to make module reference counting symmetric (module_put() is in a patch disable path) and to allow to take a new reference to a disabled module when being enabled. Finally, we need to be very careful about possible races between klp_unregister_patch(), kobject_put() functions and operations on the related sysfs files. kobject_put(&patch->kobj) must be called without klp_mutex. Otherwise, it might be blocked by enabled_store() that needs the mutex as well. In addition, enabled_store() must check if the patch was not unregisted in the meantime. There is no need to do the same for other kobject_put() callsites at the moment. Their sysfs operations neither take the lock nor they access any data that might be freed in the meantime. There was an attempt to use kobjects the right way and prevent these races by design. But it made the patch definition more complicated and opened another can of worms. See https://lkml.kernel.org/r/1464018848-4303-1-git-send-email-pmladek@suse.com [Thanks to Petr Mladek for improving the commit message.] Signed-off-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-03-07 01:20:29 +08:00
mutex_unlock(&klp_mutex);
livepatch: allow removal of a disabled patch Currently we do not allow patch module to unload since there is no method to determine if a task is still running in the patched code. The consistency model gives us the way because when the unpatching finishes we know that all tasks were marked as safe to call an original function. Thus every new call to the function calls the original code and at the same time no task can be somewhere in the patched code, because it had to leave that code to be marked as safe. We can safely let the patch module go after that. Completion is used for synchronization between module removal and sysfs infrastructure in a similar way to commit 942e443127e9 ("module: Fix mod->mkobj.kobj potentially freed too early"). Note that we still do not allow the removal for immediate model, that is no consistency model. The module refcount may increase in this case if somebody disables and enables the patch several times. This should not cause any harm. With this change a call to try_module_get() is moved to __klp_enable_patch from klp_register_patch to make module reference counting symmetric (module_put() is in a patch disable path) and to allow to take a new reference to a disabled module when being enabled. Finally, we need to be very careful about possible races between klp_unregister_patch(), kobject_put() functions and operations on the related sysfs files. kobject_put(&patch->kobj) must be called without klp_mutex. Otherwise, it might be blocked by enabled_store() that needs the mutex as well. In addition, enabled_store() must check if the patch was not unregisted in the meantime. There is no need to do the same for other kobject_put() callsites at the moment. Their sysfs operations neither take the lock nor they access any data that might be freed in the meantime. There was an attempt to use kobjects the right way and prevent these races by design. But it made the patch definition more complicated and opened another can of worms. See https://lkml.kernel.org/r/1464018848-4303-1-git-send-email-pmladek@suse.com [Thanks to Petr Mladek for improving the commit message.] Signed-off-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-03-07 01:20:29 +08:00
kobject_put(&patch->kobj);
wait_for_completion(&patch->finish);
return ret;
}
/**
* klp_unregister_patch() - unregisters a patch
* @patch: Disabled patch to be unregistered
*
* Frees the data structures and removes the sysfs interface.
*
* Return: 0 on success, otherwise error
*/
int klp_unregister_patch(struct klp_patch *patch)
{
livepatch: allow removal of a disabled patch Currently we do not allow patch module to unload since there is no method to determine if a task is still running in the patched code. The consistency model gives us the way because when the unpatching finishes we know that all tasks were marked as safe to call an original function. Thus every new call to the function calls the original code and at the same time no task can be somewhere in the patched code, because it had to leave that code to be marked as safe. We can safely let the patch module go after that. Completion is used for synchronization between module removal and sysfs infrastructure in a similar way to commit 942e443127e9 ("module: Fix mod->mkobj.kobj potentially freed too early"). Note that we still do not allow the removal for immediate model, that is no consistency model. The module refcount may increase in this case if somebody disables and enables the patch several times. This should not cause any harm. With this change a call to try_module_get() is moved to __klp_enable_patch from klp_register_patch to make module reference counting symmetric (module_put() is in a patch disable path) and to allow to take a new reference to a disabled module when being enabled. Finally, we need to be very careful about possible races between klp_unregister_patch(), kobject_put() functions and operations on the related sysfs files. kobject_put(&patch->kobj) must be called without klp_mutex. Otherwise, it might be blocked by enabled_store() that needs the mutex as well. In addition, enabled_store() must check if the patch was not unregisted in the meantime. There is no need to do the same for other kobject_put() callsites at the moment. Their sysfs operations neither take the lock nor they access any data that might be freed in the meantime. There was an attempt to use kobjects the right way and prevent these races by design. But it made the patch definition more complicated and opened another can of worms. See https://lkml.kernel.org/r/1464018848-4303-1-git-send-email-pmladek@suse.com [Thanks to Petr Mladek for improving the commit message.] Signed-off-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-03-07 01:20:29 +08:00
int ret;
mutex_lock(&klp_mutex);
if (!klp_is_patch_registered(patch)) {
ret = -EINVAL;
livepatch: allow removal of a disabled patch Currently we do not allow patch module to unload since there is no method to determine if a task is still running in the patched code. The consistency model gives us the way because when the unpatching finishes we know that all tasks were marked as safe to call an original function. Thus every new call to the function calls the original code and at the same time no task can be somewhere in the patched code, because it had to leave that code to be marked as safe. We can safely let the patch module go after that. Completion is used for synchronization between module removal and sysfs infrastructure in a similar way to commit 942e443127e9 ("module: Fix mod->mkobj.kobj potentially freed too early"). Note that we still do not allow the removal for immediate model, that is no consistency model. The module refcount may increase in this case if somebody disables and enables the patch several times. This should not cause any harm. With this change a call to try_module_get() is moved to __klp_enable_patch from klp_register_patch to make module reference counting symmetric (module_put() is in a patch disable path) and to allow to take a new reference to a disabled module when being enabled. Finally, we need to be very careful about possible races between klp_unregister_patch(), kobject_put() functions and operations on the related sysfs files. kobject_put(&patch->kobj) must be called without klp_mutex. Otherwise, it might be blocked by enabled_store() that needs the mutex as well. In addition, enabled_store() must check if the patch was not unregisted in the meantime. There is no need to do the same for other kobject_put() callsites at the moment. Their sysfs operations neither take the lock nor they access any data that might be freed in the meantime. There was an attempt to use kobjects the right way and prevent these races by design. But it made the patch definition more complicated and opened another can of worms. See https://lkml.kernel.org/r/1464018848-4303-1-git-send-email-pmladek@suse.com [Thanks to Petr Mladek for improving the commit message.] Signed-off-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-03-07 01:20:29 +08:00
goto err;
}
if (patch->enabled) {
ret = -EBUSY;
livepatch: allow removal of a disabled patch Currently we do not allow patch module to unload since there is no method to determine if a task is still running in the patched code. The consistency model gives us the way because when the unpatching finishes we know that all tasks were marked as safe to call an original function. Thus every new call to the function calls the original code and at the same time no task can be somewhere in the patched code, because it had to leave that code to be marked as safe. We can safely let the patch module go after that. Completion is used for synchronization between module removal and sysfs infrastructure in a similar way to commit 942e443127e9 ("module: Fix mod->mkobj.kobj potentially freed too early"). Note that we still do not allow the removal for immediate model, that is no consistency model. The module refcount may increase in this case if somebody disables and enables the patch several times. This should not cause any harm. With this change a call to try_module_get() is moved to __klp_enable_patch from klp_register_patch to make module reference counting symmetric (module_put() is in a patch disable path) and to allow to take a new reference to a disabled module when being enabled. Finally, we need to be very careful about possible races between klp_unregister_patch(), kobject_put() functions and operations on the related sysfs files. kobject_put(&patch->kobj) must be called without klp_mutex. Otherwise, it might be blocked by enabled_store() that needs the mutex as well. In addition, enabled_store() must check if the patch was not unregisted in the meantime. There is no need to do the same for other kobject_put() callsites at the moment. Their sysfs operations neither take the lock nor they access any data that might be freed in the meantime. There was an attempt to use kobjects the right way and prevent these races by design. But it made the patch definition more complicated and opened another can of worms. See https://lkml.kernel.org/r/1464018848-4303-1-git-send-email-pmladek@suse.com [Thanks to Petr Mladek for improving the commit message.] Signed-off-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-03-07 01:20:29 +08:00
goto err;
}
klp_free_patch(patch);
livepatch: allow removal of a disabled patch Currently we do not allow patch module to unload since there is no method to determine if a task is still running in the patched code. The consistency model gives us the way because when the unpatching finishes we know that all tasks were marked as safe to call an original function. Thus every new call to the function calls the original code and at the same time no task can be somewhere in the patched code, because it had to leave that code to be marked as safe. We can safely let the patch module go after that. Completion is used for synchronization between module removal and sysfs infrastructure in a similar way to commit 942e443127e9 ("module: Fix mod->mkobj.kobj potentially freed too early"). Note that we still do not allow the removal for immediate model, that is no consistency model. The module refcount may increase in this case if somebody disables and enables the patch several times. This should not cause any harm. With this change a call to try_module_get() is moved to __klp_enable_patch from klp_register_patch to make module reference counting symmetric (module_put() is in a patch disable path) and to allow to take a new reference to a disabled module when being enabled. Finally, we need to be very careful about possible races between klp_unregister_patch(), kobject_put() functions and operations on the related sysfs files. kobject_put(&patch->kobj) must be called without klp_mutex. Otherwise, it might be blocked by enabled_store() that needs the mutex as well. In addition, enabled_store() must check if the patch was not unregisted in the meantime. There is no need to do the same for other kobject_put() callsites at the moment. Their sysfs operations neither take the lock nor they access any data that might be freed in the meantime. There was an attempt to use kobjects the right way and prevent these races by design. But it made the patch definition more complicated and opened another can of worms. See https://lkml.kernel.org/r/1464018848-4303-1-git-send-email-pmladek@suse.com [Thanks to Petr Mladek for improving the commit message.] Signed-off-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-03-07 01:20:29 +08:00
mutex_unlock(&klp_mutex);
kobject_put(&patch->kobj);
wait_for_completion(&patch->finish);
return 0;
err:
mutex_unlock(&klp_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(klp_unregister_patch);
/**
* klp_register_patch() - registers a patch
* @patch: Patch to be registered
*
* Initializes the data structure associated with the patch and
* creates the sysfs interface.
*
livepatch: allow removal of a disabled patch Currently we do not allow patch module to unload since there is no method to determine if a task is still running in the patched code. The consistency model gives us the way because when the unpatching finishes we know that all tasks were marked as safe to call an original function. Thus every new call to the function calls the original code and at the same time no task can be somewhere in the patched code, because it had to leave that code to be marked as safe. We can safely let the patch module go after that. Completion is used for synchronization between module removal and sysfs infrastructure in a similar way to commit 942e443127e9 ("module: Fix mod->mkobj.kobj potentially freed too early"). Note that we still do not allow the removal for immediate model, that is no consistency model. The module refcount may increase in this case if somebody disables and enables the patch several times. This should not cause any harm. With this change a call to try_module_get() is moved to __klp_enable_patch from klp_register_patch to make module reference counting symmetric (module_put() is in a patch disable path) and to allow to take a new reference to a disabled module when being enabled. Finally, we need to be very careful about possible races between klp_unregister_patch(), kobject_put() functions and operations on the related sysfs files. kobject_put(&patch->kobj) must be called without klp_mutex. Otherwise, it might be blocked by enabled_store() that needs the mutex as well. In addition, enabled_store() must check if the patch was not unregisted in the meantime. There is no need to do the same for other kobject_put() callsites at the moment. Their sysfs operations neither take the lock nor they access any data that might be freed in the meantime. There was an attempt to use kobjects the right way and prevent these races by design. But it made the patch definition more complicated and opened another can of worms. See https://lkml.kernel.org/r/1464018848-4303-1-git-send-email-pmladek@suse.com [Thanks to Petr Mladek for improving the commit message.] Signed-off-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-03-07 01:20:29 +08:00
* There is no need to take the reference on the patch module here. It is done
* later when the patch is enabled.
*
* Return: 0 on success, otherwise error
*/
int klp_register_patch(struct klp_patch *patch)
{
if (!patch || !patch->mod)
return -EINVAL;
if (!is_livepatch_module(patch->mod)) {
pr_err("module %s is not marked as a livepatch module\n",
patch->mod->name);
return -EINVAL;
}
if (!klp_initialized())
return -ENODEV;
/*
livepatch: change to a per-task consistency model Change livepatch to use a basic per-task consistency model. This is the foundation which will eventually enable us to patch those ~10% of security patches which change function or data semantics. This is the biggest remaining piece needed to make livepatch more generally useful. This code stems from the design proposal made by Vojtech [1] in November 2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task consistency and syscall barrier switching combined with kpatch's stack trace switching. There are also a number of fallback options which make it quite flexible. Patches are applied on a per-task basis, when the task is deemed safe to switch over. When a patch is enabled, livepatch enters into a transition state where tasks are converging to the patched state. Usually this transition state can complete in a few seconds. The same sequence occurs when a patch is disabled, except the tasks converge from the patched state to the unpatched state. An interrupt handler inherits the patched state of the task it interrupts. The same is true for forked tasks: the child inherits the patched state of the parent. Livepatch uses several complementary approaches to determine when it's safe to patch tasks: 1. The first and most effective approach is stack checking of sleeping tasks. If no affected functions are on the stack of a given task, the task is patched. In most cases this will patch most or all of the tasks on the first try. Otherwise it'll keep trying periodically. This option is only available if the architecture has reliable stacks (HAVE_RELIABLE_STACKTRACE). 2. The second approach, if needed, is kernel exit switching. A task is switched when it returns to user space from a system call, a user space IRQ, or a signal. It's useful in the following cases: a) Patching I/O-bound user tasks which are sleeping on an affected function. In this case you have to send SIGSTOP and SIGCONT to force it to exit the kernel and be patched. b) Patching CPU-bound user tasks. If the task is highly CPU-bound then it will get patched the next time it gets interrupted by an IRQ. c) In the future it could be useful for applying patches for architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In this case you would have to signal most of the tasks on the system. However this isn't supported yet because there's currently no way to patch kthreads without HAVE_RELIABLE_STACKTRACE. 3. For idle "swapper" tasks, since they don't ever exit the kernel, they instead have a klp_update_patch_state() call in the idle loop which allows them to be patched before the CPU enters the idle state. (Note there's not yet such an approach for kthreads.) All the above approaches may be skipped by setting the 'immediate' flag in the 'klp_patch' struct, which will disable per-task consistency and patch all tasks immediately. This can be useful if the patch doesn't change any function or data semantics. Note that, even with this flag set, it's possible that some tasks may still be running with an old version of the function, until that function returns. There's also an 'immediate' flag in the 'klp_func' struct which allows you to specify that certain functions in the patch can be applied without per-task consistency. This might be useful if you want to patch a common function like schedule(), and the function change doesn't need consistency but the rest of the patch does. For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user must set patch->immediate which causes all tasks to be patched immediately. This option should be used with care, only when the patch doesn't change any function or data semantics. In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE may be allowed to use per-task consistency if we can come up with another way to patch kthreads. The /sys/kernel/livepatch/<patch>/transition file shows whether a patch is in transition. Only a single patch (the topmost patch on the stack) can be in transition at a given time. A patch can remain in transition indefinitely, if any of the tasks are stuck in the initial patch state. A transition can be reversed and effectively canceled by writing the opposite value to the /sys/kernel/livepatch/<patch>/enabled file while the transition is in progress. Then all the tasks will attempt to converge back to the original patch state. [1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 09:42:40 +08:00
* Architectures without reliable stack traces have to set
* patch->immediate because there's currently no way to patch kthreads
* with the consistency model.
*/
livepatch: change to a per-task consistency model Change livepatch to use a basic per-task consistency model. This is the foundation which will eventually enable us to patch those ~10% of security patches which change function or data semantics. This is the biggest remaining piece needed to make livepatch more generally useful. This code stems from the design proposal made by Vojtech [1] in November 2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task consistency and syscall barrier switching combined with kpatch's stack trace switching. There are also a number of fallback options which make it quite flexible. Patches are applied on a per-task basis, when the task is deemed safe to switch over. When a patch is enabled, livepatch enters into a transition state where tasks are converging to the patched state. Usually this transition state can complete in a few seconds. The same sequence occurs when a patch is disabled, except the tasks converge from the patched state to the unpatched state. An interrupt handler inherits the patched state of the task it interrupts. The same is true for forked tasks: the child inherits the patched state of the parent. Livepatch uses several complementary approaches to determine when it's safe to patch tasks: 1. The first and most effective approach is stack checking of sleeping tasks. If no affected functions are on the stack of a given task, the task is patched. In most cases this will patch most or all of the tasks on the first try. Otherwise it'll keep trying periodically. This option is only available if the architecture has reliable stacks (HAVE_RELIABLE_STACKTRACE). 2. The second approach, if needed, is kernel exit switching. A task is switched when it returns to user space from a system call, a user space IRQ, or a signal. It's useful in the following cases: a) Patching I/O-bound user tasks which are sleeping on an affected function. In this case you have to send SIGSTOP and SIGCONT to force it to exit the kernel and be patched. b) Patching CPU-bound user tasks. If the task is highly CPU-bound then it will get patched the next time it gets interrupted by an IRQ. c) In the future it could be useful for applying patches for architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In this case you would have to signal most of the tasks on the system. However this isn't supported yet because there's currently no way to patch kthreads without HAVE_RELIABLE_STACKTRACE. 3. For idle "swapper" tasks, since they don't ever exit the kernel, they instead have a klp_update_patch_state() call in the idle loop which allows them to be patched before the CPU enters the idle state. (Note there's not yet such an approach for kthreads.) All the above approaches may be skipped by setting the 'immediate' flag in the 'klp_patch' struct, which will disable per-task consistency and patch all tasks immediately. This can be useful if the patch doesn't change any function or data semantics. Note that, even with this flag set, it's possible that some tasks may still be running with an old version of the function, until that function returns. There's also an 'immediate' flag in the 'klp_func' struct which allows you to specify that certain functions in the patch can be applied without per-task consistency. This might be useful if you want to patch a common function like schedule(), and the function change doesn't need consistency but the rest of the patch does. For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user must set patch->immediate which causes all tasks to be patched immediately. This option should be used with care, only when the patch doesn't change any function or data semantics. In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE may be allowed to use per-task consistency if we can come up with another way to patch kthreads. The /sys/kernel/livepatch/<patch>/transition file shows whether a patch is in transition. Only a single patch (the topmost patch on the stack) can be in transition at a given time. A patch can remain in transition indefinitely, if any of the tasks are stuck in the initial patch state. A transition can be reversed and effectively canceled by writing the opposite value to the /sys/kernel/livepatch/<patch>/enabled file while the transition is in progress. Then all the tasks will attempt to converge back to the original patch state. [1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 09:42:40 +08:00
if (!klp_have_reliable_stack() && !patch->immediate) {
pr_err("This architecture doesn't have support for the livepatch consistency model.\n");
return -ENOSYS;
}
livepatch: allow removal of a disabled patch Currently we do not allow patch module to unload since there is no method to determine if a task is still running in the patched code. The consistency model gives us the way because when the unpatching finishes we know that all tasks were marked as safe to call an original function. Thus every new call to the function calls the original code and at the same time no task can be somewhere in the patched code, because it had to leave that code to be marked as safe. We can safely let the patch module go after that. Completion is used for synchronization between module removal and sysfs infrastructure in a similar way to commit 942e443127e9 ("module: Fix mod->mkobj.kobj potentially freed too early"). Note that we still do not allow the removal for immediate model, that is no consistency model. The module refcount may increase in this case if somebody disables and enables the patch several times. This should not cause any harm. With this change a call to try_module_get() is moved to __klp_enable_patch from klp_register_patch to make module reference counting symmetric (module_put() is in a patch disable path) and to allow to take a new reference to a disabled module when being enabled. Finally, we need to be very careful about possible races between klp_unregister_patch(), kobject_put() functions and operations on the related sysfs files. kobject_put(&patch->kobj) must be called without klp_mutex. Otherwise, it might be blocked by enabled_store() that needs the mutex as well. In addition, enabled_store() must check if the patch was not unregisted in the meantime. There is no need to do the same for other kobject_put() callsites at the moment. Their sysfs operations neither take the lock nor they access any data that might be freed in the meantime. There was an attempt to use kobjects the right way and prevent these races by design. But it made the patch definition more complicated and opened another can of worms. See https://lkml.kernel.org/r/1464018848-4303-1-git-send-email-pmladek@suse.com [Thanks to Petr Mladek for improving the commit message.] Signed-off-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-03-07 01:20:29 +08:00
return klp_init_patch(patch);
}
EXPORT_SYMBOL_GPL(klp_register_patch);
int klp_module_coming(struct module *mod)
{
int ret;
struct klp_patch *patch;
struct klp_object *obj;
if (WARN_ON(mod->state != MODULE_STATE_COMING))
return -EINVAL;
mutex_lock(&klp_mutex);
/*
* Each module has to know that klp_module_coming()
* has been called. We never know what module will
* get patched by a new patch.
*/
mod->klp_alive = true;
list_for_each_entry(patch, &klp_patches, list) {
klp_for_each_object(patch, obj) {
if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
continue;
obj->mod = mod;
ret = klp_init_object_loaded(patch, obj);
if (ret) {
pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n",
patch->mod->name, obj->mod->name, ret);
goto err;
}
livepatch: change to a per-task consistency model Change livepatch to use a basic per-task consistency model. This is the foundation which will eventually enable us to patch those ~10% of security patches which change function or data semantics. This is the biggest remaining piece needed to make livepatch more generally useful. This code stems from the design proposal made by Vojtech [1] in November 2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task consistency and syscall barrier switching combined with kpatch's stack trace switching. There are also a number of fallback options which make it quite flexible. Patches are applied on a per-task basis, when the task is deemed safe to switch over. When a patch is enabled, livepatch enters into a transition state where tasks are converging to the patched state. Usually this transition state can complete in a few seconds. The same sequence occurs when a patch is disabled, except the tasks converge from the patched state to the unpatched state. An interrupt handler inherits the patched state of the task it interrupts. The same is true for forked tasks: the child inherits the patched state of the parent. Livepatch uses several complementary approaches to determine when it's safe to patch tasks: 1. The first and most effective approach is stack checking of sleeping tasks. If no affected functions are on the stack of a given task, the task is patched. In most cases this will patch most or all of the tasks on the first try. Otherwise it'll keep trying periodically. This option is only available if the architecture has reliable stacks (HAVE_RELIABLE_STACKTRACE). 2. The second approach, if needed, is kernel exit switching. A task is switched when it returns to user space from a system call, a user space IRQ, or a signal. It's useful in the following cases: a) Patching I/O-bound user tasks which are sleeping on an affected function. In this case you have to send SIGSTOP and SIGCONT to force it to exit the kernel and be patched. b) Patching CPU-bound user tasks. If the task is highly CPU-bound then it will get patched the next time it gets interrupted by an IRQ. c) In the future it could be useful for applying patches for architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In this case you would have to signal most of the tasks on the system. However this isn't supported yet because there's currently no way to patch kthreads without HAVE_RELIABLE_STACKTRACE. 3. For idle "swapper" tasks, since they don't ever exit the kernel, they instead have a klp_update_patch_state() call in the idle loop which allows them to be patched before the CPU enters the idle state. (Note there's not yet such an approach for kthreads.) All the above approaches may be skipped by setting the 'immediate' flag in the 'klp_patch' struct, which will disable per-task consistency and patch all tasks immediately. This can be useful if the patch doesn't change any function or data semantics. Note that, even with this flag set, it's possible that some tasks may still be running with an old version of the function, until that function returns. There's also an 'immediate' flag in the 'klp_func' struct which allows you to specify that certain functions in the patch can be applied without per-task consistency. This might be useful if you want to patch a common function like schedule(), and the function change doesn't need consistency but the rest of the patch does. For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user must set patch->immediate which causes all tasks to be patched immediately. This option should be used with care, only when the patch doesn't change any function or data semantics. In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE may be allowed to use per-task consistency if we can come up with another way to patch kthreads. The /sys/kernel/livepatch/<patch>/transition file shows whether a patch is in transition. Only a single patch (the topmost patch on the stack) can be in transition at a given time. A patch can remain in transition indefinitely, if any of the tasks are stuck in the initial patch state. A transition can be reversed and effectively canceled by writing the opposite value to the /sys/kernel/livepatch/<patch>/enabled file while the transition is in progress. Then all the tasks will attempt to converge back to the original patch state. [1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 09:42:40 +08:00
/*
* Only patch the module if the patch is enabled or is
* in transition.
*/
if (!patch->enabled && patch != klp_transition_patch)
break;
pr_notice("applying patch '%s' to loading module '%s'\n",
patch->mod->name, obj->mod->name);
ret = klp_patch_object(obj);
if (ret) {
pr_warn("failed to apply patch '%s' to module '%s' (%d)\n",
patch->mod->name, obj->mod->name, ret);
goto err;
}
break;
}
}
mutex_unlock(&klp_mutex);
return 0;
err:
/*
* If a patch is unsuccessfully applied, return
* error to the module loader.
*/
pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n",
patch->mod->name, obj->mod->name, obj->mod->name);
mod->klp_alive = false;
klp_free_object_loaded(obj);
mutex_unlock(&klp_mutex);
return ret;
}
void klp_module_going(struct module *mod)
{
struct klp_patch *patch;
struct klp_object *obj;
if (WARN_ON(mod->state != MODULE_STATE_GOING &&
mod->state != MODULE_STATE_COMING))
return;
mutex_lock(&klp_mutex);
livepatch: Fix subtle race with coming and going modules There is a notifier that handles live patches for coming and going modules. It takes klp_mutex lock to avoid races with coming and going patches but it does not keep the lock all the time. Therefore the following races are possible: 1. The notifier is called sometime in STATE_MODULE_COMING. The module is visible by find_module() in this state all the time. It means that new patch can be registered and enabled even before the notifier is called. It might create wrong order of stacked patches, see below for an example. 2. New patch could still see the module in the GOING state even after the notifier has been called. It will try to initialize the related object structures but the module could disappear at any time. There will stay mess in the structures. It might even cause an invalid memory access. This patch solves the problem by adding a boolean variable into struct module. The value is true after the coming and before the going handler is called. New patches need to be applied when the value is true and they need to ignore the module when the value is false. Note that we need to know state of all modules on the system. The races are related to new patches. Therefore we do not know what modules will get patched. Also note that we could not simply ignore going modules. The code from the module could be called even in the GOING state until mod->exit() finishes. If we start supporting patches with semantic changes between function calls, we need to apply new patches to any still usable code. See below for an example. Finally note that the patch solves only the situation when a new patch is registered. There are no such problems when the patch is being removed. It does not matter who disable the patch first, whether the normal disable_patch() or the module notifier. There is nothing to do once the patch is disabled. Alternative solutions: ====================== + reject new patches when a patched module is coming or going; this is ugly + wait with adding new patch until the module leaves the COMING and GOING states; this might be dangerous and complicated; we would need to release kgr_lock in the middle of the patch registration to avoid a deadlock with the coming and going handlers; also we might need a waitqueue for each module which seems to be even bigger overhead than the boolean + stop modules from entering COMING and GOING states; wait until modules leave these states when they are already there; looks complicated; we would need to ignore the module that asked to stop the others to avoid a deadlock; also it is unclear what to do when two modules asked to stop others and both are in COMING state (situation when two new patches are applied) + always register/enable new patches and fix up the potential mess (registered patches order) in klp_module_init(); this is nasty and prone to regressions in the future development + add another MODULE_STATE where the kallsyms are visible but the module is not used yet; this looks too complex; the module states are checked on "many" locations Example of patch stacking breakage: =================================== The notifier could _not_ _simply_ ignore already initialized module objects. For example, let's have three patches (P1, P2, P3) for functions a() and b() where a() is from vmcore and b() is from a module M. Something like: a() b() P1 a1() b1() P2 a2() b2() P3 a3() b3(3) If you load the module M after all patches are registered and enabled. The ftrace ops for function a() and b() has listed the functions in this order: ops_a->func_stack -> list(a3,a2,a1) ops_b->func_stack -> list(b3,b2,b1) , so the pointer to b3() is the first and will be used. Then you might have the following scenario. Let's start with state when patches P1 and P2 are registered and enabled but the module M is not loaded. Then ftrace ops for b() does not exist. Then we get into the following race: CPU0 CPU1 load_module(M) complete_formation() mod->state = MODULE_STATE_COMING; mutex_unlock(&module_mutex); klp_register_patch(P3); klp_enable_patch(P3); # STATE 1 klp_module_notify(M) klp_module_notify_coming(P1); klp_module_notify_coming(P2); klp_module_notify_coming(P3); # STATE 2 The ftrace ops for a() and b() then looks: STATE1: ops_a->func_stack -> list(a3,a2,a1); ops_b->func_stack -> list(b3); STATE2: ops_a->func_stack -> list(a3,a2,a1); ops_b->func_stack -> list(b2,b1,b3); therefore, b2() is used for the module but a3() is used for vmcore because they were the last added. Example of the race with going modules: ======================================= CPU0 CPU1 delete_module() #SYSCALL try_stop_module() mod->state = MODULE_STATE_GOING; mutex_unlock(&module_mutex); klp_register_patch() klp_enable_patch() #save place to switch universe b() # from module that is going a() # from core (patched) mod->exit(); Note that the function b() can be called until we call mod->exit(). If we do not apply patch against b() because it is in MODULE_STATE_GOING, it will call patched a() with modified semantic and things might get wrong. [jpoimboe@redhat.com: use one boolean instead of two] Signed-off-by: Petr Mladek <pmladek@suse.cz> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2015-03-12 19:55:13 +08:00
/*
* Each module has to know that klp_module_going()
* has been called. We never know what module will
* get patched by a new patch.
livepatch: Fix subtle race with coming and going modules There is a notifier that handles live patches for coming and going modules. It takes klp_mutex lock to avoid races with coming and going patches but it does not keep the lock all the time. Therefore the following races are possible: 1. The notifier is called sometime in STATE_MODULE_COMING. The module is visible by find_module() in this state all the time. It means that new patch can be registered and enabled even before the notifier is called. It might create wrong order of stacked patches, see below for an example. 2. New patch could still see the module in the GOING state even after the notifier has been called. It will try to initialize the related object structures but the module could disappear at any time. There will stay mess in the structures. It might even cause an invalid memory access. This patch solves the problem by adding a boolean variable into struct module. The value is true after the coming and before the going handler is called. New patches need to be applied when the value is true and they need to ignore the module when the value is false. Note that we need to know state of all modules on the system. The races are related to new patches. Therefore we do not know what modules will get patched. Also note that we could not simply ignore going modules. The code from the module could be called even in the GOING state until mod->exit() finishes. If we start supporting patches with semantic changes between function calls, we need to apply new patches to any still usable code. See below for an example. Finally note that the patch solves only the situation when a new patch is registered. There are no such problems when the patch is being removed. It does not matter who disable the patch first, whether the normal disable_patch() or the module notifier. There is nothing to do once the patch is disabled. Alternative solutions: ====================== + reject new patches when a patched module is coming or going; this is ugly + wait with adding new patch until the module leaves the COMING and GOING states; this might be dangerous and complicated; we would need to release kgr_lock in the middle of the patch registration to avoid a deadlock with the coming and going handlers; also we might need a waitqueue for each module which seems to be even bigger overhead than the boolean + stop modules from entering COMING and GOING states; wait until modules leave these states when they are already there; looks complicated; we would need to ignore the module that asked to stop the others to avoid a deadlock; also it is unclear what to do when two modules asked to stop others and both are in COMING state (situation when two new patches are applied) + always register/enable new patches and fix up the potential mess (registered patches order) in klp_module_init(); this is nasty and prone to regressions in the future development + add another MODULE_STATE where the kallsyms are visible but the module is not used yet; this looks too complex; the module states are checked on "many" locations Example of patch stacking breakage: =================================== The notifier could _not_ _simply_ ignore already initialized module objects. For example, let's have three patches (P1, P2, P3) for functions a() and b() where a() is from vmcore and b() is from a module M. Something like: a() b() P1 a1() b1() P2 a2() b2() P3 a3() b3(3) If you load the module M after all patches are registered and enabled. The ftrace ops for function a() and b() has listed the functions in this order: ops_a->func_stack -> list(a3,a2,a1) ops_b->func_stack -> list(b3,b2,b1) , so the pointer to b3() is the first and will be used. Then you might have the following scenario. Let's start with state when patches P1 and P2 are registered and enabled but the module M is not loaded. Then ftrace ops for b() does not exist. Then we get into the following race: CPU0 CPU1 load_module(M) complete_formation() mod->state = MODULE_STATE_COMING; mutex_unlock(&module_mutex); klp_register_patch(P3); klp_enable_patch(P3); # STATE 1 klp_module_notify(M) klp_module_notify_coming(P1); klp_module_notify_coming(P2); klp_module_notify_coming(P3); # STATE 2 The ftrace ops for a() and b() then looks: STATE1: ops_a->func_stack -> list(a3,a2,a1); ops_b->func_stack -> list(b3); STATE2: ops_a->func_stack -> list(a3,a2,a1); ops_b->func_stack -> list(b2,b1,b3); therefore, b2() is used for the module but a3() is used for vmcore because they were the last added. Example of the race with going modules: ======================================= CPU0 CPU1 delete_module() #SYSCALL try_stop_module() mod->state = MODULE_STATE_GOING; mutex_unlock(&module_mutex); klp_register_patch() klp_enable_patch() #save place to switch universe b() # from module that is going a() # from core (patched) mod->exit(); Note that the function b() can be called until we call mod->exit(). If we do not apply patch against b() because it is in MODULE_STATE_GOING, it will call patched a() with modified semantic and things might get wrong. [jpoimboe@redhat.com: use one boolean instead of two] Signed-off-by: Petr Mladek <pmladek@suse.cz> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2015-03-12 19:55:13 +08:00
*/
mod->klp_alive = false;
livepatch: Fix subtle race with coming and going modules There is a notifier that handles live patches for coming and going modules. It takes klp_mutex lock to avoid races with coming and going patches but it does not keep the lock all the time. Therefore the following races are possible: 1. The notifier is called sometime in STATE_MODULE_COMING. The module is visible by find_module() in this state all the time. It means that new patch can be registered and enabled even before the notifier is called. It might create wrong order of stacked patches, see below for an example. 2. New patch could still see the module in the GOING state even after the notifier has been called. It will try to initialize the related object structures but the module could disappear at any time. There will stay mess in the structures. It might even cause an invalid memory access. This patch solves the problem by adding a boolean variable into struct module. The value is true after the coming and before the going handler is called. New patches need to be applied when the value is true and they need to ignore the module when the value is false. Note that we need to know state of all modules on the system. The races are related to new patches. Therefore we do not know what modules will get patched. Also note that we could not simply ignore going modules. The code from the module could be called even in the GOING state until mod->exit() finishes. If we start supporting patches with semantic changes between function calls, we need to apply new patches to any still usable code. See below for an example. Finally note that the patch solves only the situation when a new patch is registered. There are no such problems when the patch is being removed. It does not matter who disable the patch first, whether the normal disable_patch() or the module notifier. There is nothing to do once the patch is disabled. Alternative solutions: ====================== + reject new patches when a patched module is coming or going; this is ugly + wait with adding new patch until the module leaves the COMING and GOING states; this might be dangerous and complicated; we would need to release kgr_lock in the middle of the patch registration to avoid a deadlock with the coming and going handlers; also we might need a waitqueue for each module which seems to be even bigger overhead than the boolean + stop modules from entering COMING and GOING states; wait until modules leave these states when they are already there; looks complicated; we would need to ignore the module that asked to stop the others to avoid a deadlock; also it is unclear what to do when two modules asked to stop others and both are in COMING state (situation when two new patches are applied) + always register/enable new patches and fix up the potential mess (registered patches order) in klp_module_init(); this is nasty and prone to regressions in the future development + add another MODULE_STATE where the kallsyms are visible but the module is not used yet; this looks too complex; the module states are checked on "many" locations Example of patch stacking breakage: =================================== The notifier could _not_ _simply_ ignore already initialized module objects. For example, let's have three patches (P1, P2, P3) for functions a() and b() where a() is from vmcore and b() is from a module M. Something like: a() b() P1 a1() b1() P2 a2() b2() P3 a3() b3(3) If you load the module M after all patches are registered and enabled. The ftrace ops for function a() and b() has listed the functions in this order: ops_a->func_stack -> list(a3,a2,a1) ops_b->func_stack -> list(b3,b2,b1) , so the pointer to b3() is the first and will be used. Then you might have the following scenario. Let's start with state when patches P1 and P2 are registered and enabled but the module M is not loaded. Then ftrace ops for b() does not exist. Then we get into the following race: CPU0 CPU1 load_module(M) complete_formation() mod->state = MODULE_STATE_COMING; mutex_unlock(&module_mutex); klp_register_patch(P3); klp_enable_patch(P3); # STATE 1 klp_module_notify(M) klp_module_notify_coming(P1); klp_module_notify_coming(P2); klp_module_notify_coming(P3); # STATE 2 The ftrace ops for a() and b() then looks: STATE1: ops_a->func_stack -> list(a3,a2,a1); ops_b->func_stack -> list(b3); STATE2: ops_a->func_stack -> list(a3,a2,a1); ops_b->func_stack -> list(b2,b1,b3); therefore, b2() is used for the module but a3() is used for vmcore because they were the last added. Example of the race with going modules: ======================================= CPU0 CPU1 delete_module() #SYSCALL try_stop_module() mod->state = MODULE_STATE_GOING; mutex_unlock(&module_mutex); klp_register_patch() klp_enable_patch() #save place to switch universe b() # from module that is going a() # from core (patched) mod->exit(); Note that the function b() can be called until we call mod->exit(). If we do not apply patch against b() because it is in MODULE_STATE_GOING, it will call patched a() with modified semantic and things might get wrong. [jpoimboe@redhat.com: use one boolean instead of two] Signed-off-by: Petr Mladek <pmladek@suse.cz> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2015-03-12 19:55:13 +08:00
list_for_each_entry(patch, &klp_patches, list) {
klp_for_each_object(patch, obj) {
if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
continue;
livepatch: change to a per-task consistency model Change livepatch to use a basic per-task consistency model. This is the foundation which will eventually enable us to patch those ~10% of security patches which change function or data semantics. This is the biggest remaining piece needed to make livepatch more generally useful. This code stems from the design proposal made by Vojtech [1] in November 2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task consistency and syscall barrier switching combined with kpatch's stack trace switching. There are also a number of fallback options which make it quite flexible. Patches are applied on a per-task basis, when the task is deemed safe to switch over. When a patch is enabled, livepatch enters into a transition state where tasks are converging to the patched state. Usually this transition state can complete in a few seconds. The same sequence occurs when a patch is disabled, except the tasks converge from the patched state to the unpatched state. An interrupt handler inherits the patched state of the task it interrupts. The same is true for forked tasks: the child inherits the patched state of the parent. Livepatch uses several complementary approaches to determine when it's safe to patch tasks: 1. The first and most effective approach is stack checking of sleeping tasks. If no affected functions are on the stack of a given task, the task is patched. In most cases this will patch most or all of the tasks on the first try. Otherwise it'll keep trying periodically. This option is only available if the architecture has reliable stacks (HAVE_RELIABLE_STACKTRACE). 2. The second approach, if needed, is kernel exit switching. A task is switched when it returns to user space from a system call, a user space IRQ, or a signal. It's useful in the following cases: a) Patching I/O-bound user tasks which are sleeping on an affected function. In this case you have to send SIGSTOP and SIGCONT to force it to exit the kernel and be patched. b) Patching CPU-bound user tasks. If the task is highly CPU-bound then it will get patched the next time it gets interrupted by an IRQ. c) In the future it could be useful for applying patches for architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In this case you would have to signal most of the tasks on the system. However this isn't supported yet because there's currently no way to patch kthreads without HAVE_RELIABLE_STACKTRACE. 3. For idle "swapper" tasks, since they don't ever exit the kernel, they instead have a klp_update_patch_state() call in the idle loop which allows them to be patched before the CPU enters the idle state. (Note there's not yet such an approach for kthreads.) All the above approaches may be skipped by setting the 'immediate' flag in the 'klp_patch' struct, which will disable per-task consistency and patch all tasks immediately. This can be useful if the patch doesn't change any function or data semantics. Note that, even with this flag set, it's possible that some tasks may still be running with an old version of the function, until that function returns. There's also an 'immediate' flag in the 'klp_func' struct which allows you to specify that certain functions in the patch can be applied without per-task consistency. This might be useful if you want to patch a common function like schedule(), and the function change doesn't need consistency but the rest of the patch does. For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user must set patch->immediate which causes all tasks to be patched immediately. This option should be used with care, only when the patch doesn't change any function or data semantics. In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE may be allowed to use per-task consistency if we can come up with another way to patch kthreads. The /sys/kernel/livepatch/<patch>/transition file shows whether a patch is in transition. Only a single patch (the topmost patch on the stack) can be in transition at a given time. A patch can remain in transition indefinitely, if any of the tasks are stuck in the initial patch state. A transition can be reversed and effectively canceled by writing the opposite value to the /sys/kernel/livepatch/<patch>/enabled file while the transition is in progress. Then all the tasks will attempt to converge back to the original patch state. [1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 09:42:40 +08:00
/*
* Only unpatch the module if the patch is enabled or
* is in transition.
*/
if (patch->enabled || patch == klp_transition_patch) {
pr_notice("reverting patch '%s' on unloading module '%s'\n",
patch->mod->name, obj->mod->name);
klp_unpatch_object(obj);
}
klp_free_object_loaded(obj);
break;
}
}
mutex_unlock(&klp_mutex);
}
static int __init klp_init(void)
{
int ret;
ret = klp_check_compiler_support();
if (ret) {
pr_info("Your compiler is too old; turning off.\n");
return -EINVAL;
}
klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj);
if (!klp_root_kobj)
return -ENOMEM;
return 0;
}
module_init(klp_init);