2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-25 05:34:00 +08:00
linux-next/drivers/dma/edma.c

2466 lines
66 KiB
C
Raw Normal View History

/*
* TI EDMA DMA engine driver
*
* Copyright 2012 Texas Instruments
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/edma.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/of.h>
#include <linux/of_dma.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>
#include <linux/platform_data/edma.h>
#include "dmaengine.h"
#include "virt-dma.h"
/* Offsets matching "struct edmacc_param" */
#define PARM_OPT 0x00
#define PARM_SRC 0x04
#define PARM_A_B_CNT 0x08
#define PARM_DST 0x0c
#define PARM_SRC_DST_BIDX 0x10
#define PARM_LINK_BCNTRLD 0x14
#define PARM_SRC_DST_CIDX 0x18
#define PARM_CCNT 0x1c
#define PARM_SIZE 0x20
/* Offsets for EDMA CC global channel registers and their shadows */
#define SH_ER 0x00 /* 64 bits */
#define SH_ECR 0x08 /* 64 bits */
#define SH_ESR 0x10 /* 64 bits */
#define SH_CER 0x18 /* 64 bits */
#define SH_EER 0x20 /* 64 bits */
#define SH_EECR 0x28 /* 64 bits */
#define SH_EESR 0x30 /* 64 bits */
#define SH_SER 0x38 /* 64 bits */
#define SH_SECR 0x40 /* 64 bits */
#define SH_IER 0x50 /* 64 bits */
#define SH_IECR 0x58 /* 64 bits */
#define SH_IESR 0x60 /* 64 bits */
#define SH_IPR 0x68 /* 64 bits */
#define SH_ICR 0x70 /* 64 bits */
#define SH_IEVAL 0x78
#define SH_QER 0x80
#define SH_QEER 0x84
#define SH_QEECR 0x88
#define SH_QEESR 0x8c
#define SH_QSER 0x90
#define SH_QSECR 0x94
#define SH_SIZE 0x200
/* Offsets for EDMA CC global registers */
#define EDMA_REV 0x0000
#define EDMA_CCCFG 0x0004
#define EDMA_QCHMAP 0x0200 /* 8 registers */
#define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
#define EDMA_QDMAQNUM 0x0260
#define EDMA_QUETCMAP 0x0280
#define EDMA_QUEPRI 0x0284
#define EDMA_EMR 0x0300 /* 64 bits */
#define EDMA_EMCR 0x0308 /* 64 bits */
#define EDMA_QEMR 0x0310
#define EDMA_QEMCR 0x0314
#define EDMA_CCERR 0x0318
#define EDMA_CCERRCLR 0x031c
#define EDMA_EEVAL 0x0320
#define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
#define EDMA_QRAE 0x0380 /* 4 registers */
#define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
#define EDMA_QSTAT 0x0600 /* 2 registers */
#define EDMA_QWMTHRA 0x0620
#define EDMA_QWMTHRB 0x0624
#define EDMA_CCSTAT 0x0640
#define EDMA_M 0x1000 /* global channel registers */
#define EDMA_ECR 0x1008
#define EDMA_ECRH 0x100C
#define EDMA_SHADOW0 0x2000 /* 4 shadow regions */
#define EDMA_PARM 0x4000 /* PaRAM entries */
#define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
#define EDMA_DCHMAP 0x0100 /* 64 registers */
/* CCCFG register */
#define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */
#define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */
#define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */
#define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */
#define CHMAP_EXIST BIT(24)
/*
* Max of 20 segments per channel to conserve PaRAM slots
* Also note that MAX_NR_SG should be atleast the no.of periods
* that are required for ASoC, otherwise DMA prep calls will
* fail. Today davinci-pcm is the only user of this driver and
* requires atleast 17 slots, so we setup the default to 20.
*/
#define MAX_NR_SG 20
#define EDMA_MAX_SLOTS MAX_NR_SG
#define EDMA_DESCRIPTORS 16
#define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */
#define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */
#define EDMA_CONT_PARAMS_ANY 1001
#define EDMA_CONT_PARAMS_FIXED_EXACT 1002
#define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
/* PaRAM slots are laid out like this */
struct edmacc_param {
u32 opt;
u32 src;
u32 a_b_cnt;
u32 dst;
u32 src_dst_bidx;
u32 link_bcntrld;
u32 src_dst_cidx;
u32 ccnt;
} __packed;
/* fields in edmacc_param.opt */
#define SAM BIT(0)
#define DAM BIT(1)
#define SYNCDIM BIT(2)
#define STATIC BIT(3)
#define EDMA_FWID (0x07 << 8)
#define TCCMODE BIT(11)
#define EDMA_TCC(t) ((t) << 12)
#define TCINTEN BIT(20)
#define ITCINTEN BIT(21)
#define TCCHEN BIT(22)
#define ITCCHEN BIT(23)
/*ch_status parameter of callback function possible values*/
#define EDMA_DMA_COMPLETE 1
#define EDMA_DMA_CC_ERROR 2
#define EDMA_DMA_TC1_ERROR 3
#define EDMA_DMA_TC2_ERROR 4
struct edma_pset {
u32 len;
dma_addr_t addr;
struct edmacc_param param;
};
struct edma_desc {
struct virt_dma_desc vdesc;
struct list_head node;
enum dma_transfer_direction direction;
int cyclic;
int absync;
int pset_nr;
struct edma_chan *echan;
int processed;
/*
* The following 4 elements are used for residue accounting.
*
* - processed_stat: the number of SG elements we have traversed
* so far to cover accounting. This is updated directly to processed
* during edma_callback and is always <= processed, because processed
* refers to the number of pending transfer (programmed to EDMA
* controller), where as processed_stat tracks number of transfers
* accounted for so far.
*
* - residue: The amount of bytes we have left to transfer for this desc
*
* - residue_stat: The residue in bytes of data we have covered
* so far for accounting. This is updated directly to residue
* during callbacks to keep it current.
*
* - sg_len: Tracks the length of the current intermediate transfer,
* this is required to update the residue during intermediate transfer
* completion callback.
*/
int processed_stat;
u32 sg_len;
u32 residue;
u32 residue_stat;
struct edma_pset pset[0];
};
struct edma_cc;
struct edma_chan {
struct virt_dma_chan vchan;
struct list_head node;
struct edma_desc *edesc;
struct edma_cc *ecc;
int ch_num;
bool alloced;
int slot[EDMA_MAX_SLOTS];
dma: edma: Find missed events and issue them In an effort to move to using Scatter gather lists of any size with EDMA as discussed at [1] instead of placing limitations on the driver, we work through the limitations of the EDMAC hardware to find missed events and issue them. The sequence of events that require this are: For the scenario where MAX slots for an EDMA channel is 3: SG1 -> SG2 -> SG3 -> SG4 -> SG5 -> SG6 -> Null The above SG list will have to be DMA'd in 2 sets: (1) SG1 -> SG2 -> SG3 -> Null (2) SG4 -> SG5 -> SG6 -> Null After (1) is succesfully transferred, the events from the MMC controller donot stop coming and are missed by the time we have setup the transfer for (2). So here, we catch the events missed as an error condition and issue them manually. In the second part of the patch, we make handle the NULL slot cases: For crypto IP, we continue to receive events even continuously in NULL slot, the setup of the next set of SG elements happens after the error handler executes. This is results in some recursion problems. Due to this, we continously receive error interrupts when we manually trigger an event from the error handler. We fix this, by first detecting if the Channel is currently transferring from a NULL slot or not, that's where the edma_read_slot in the error callback from interrupt handler comes in. With this we can determine if the set up of the next SG list has completed, and we manually trigger only in this case. If the setup has _not_ completed, we are still in NULL so we just set a missed flag and allow the manual triggerring to happen in edma_execute which will be eventually called. This fixes the above mentioned race conditions seen with the crypto drivers. [1] http://marc.info/?l=linux-omap&m=137416733628831&w=2 Signed-off-by: Joel Fernandes <joelf@ti.com> Signed-off-by: Vinod Koul <vinod.koul@intel.com>
2013-08-30 07:05:43 +08:00
int missed;
struct dma_slave_config cfg;
};
struct edma_cc {
struct device *dev;
struct edma_soc_info *info;
void __iomem *base;
int id;
/* eDMA3 resource information */
unsigned num_channels;
unsigned num_region;
unsigned num_slots;
unsigned num_tc;
enum dma_event_q default_queue;
bool unused_chan_list_done;
/* The edma_inuse bit for each PaRAM slot is clear unless the
* channel is in use ... by ARM or DSP, for QDMA, or whatever.
*/
unsigned long *edma_inuse;
/* The edma_unused bit for each channel is clear unless
* it is not being used on this platform. It uses a bit
* of SOC-specific initialization code.
*/
unsigned long *edma_unused;
struct dma_interrupt_data {
void (*callback)(unsigned channel, unsigned short ch_status,
void *data);
void *data;
} *intr_data;
struct dma_device dma_slave;
struct edma_chan *slave_chans;
int dummy_slot;
};
/* dummy param set used to (re)initialize parameter RAM slots */
static const struct edmacc_param dummy_paramset = {
.link_bcntrld = 0xffff,
.ccnt = 1,
};
static const struct of_device_id edma_of_ids[] = {
{ .compatible = "ti,edma3", },
{}
};
static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
{
return (unsigned int)__raw_readl(ecc->base + offset);
}
static inline void edma_write(struct edma_cc *ecc, int offset, int val)
{
__raw_writel(val, ecc->base + offset);
}
static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
unsigned or)
{
unsigned val = edma_read(ecc, offset);
val &= and;
val |= or;
edma_write(ecc, offset, val);
}
static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
{
unsigned val = edma_read(ecc, offset);
val &= and;
edma_write(ecc, offset, val);
}
static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
{
unsigned val = edma_read(ecc, offset);
val |= or;
edma_write(ecc, offset, val);
}
static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
int i)
{
return edma_read(ecc, offset + (i << 2));
}
static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
unsigned val)
{
edma_write(ecc, offset + (i << 2), val);
}
static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
unsigned and, unsigned or)
{
edma_modify(ecc, offset + (i << 2), and, or);
}
static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
unsigned or)
{
edma_or(ecc, offset + (i << 2), or);
}
static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
unsigned or)
{
edma_or(ecc, offset + ((i * 2 + j) << 2), or);
}
static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
int j, unsigned val)
{
edma_write(ecc, offset + ((i * 2 + j) << 2), val);
}
static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
{
return edma_read(ecc, EDMA_SHADOW0 + offset);
}
static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
int offset, int i)
{
return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
}
static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
unsigned val)
{
edma_write(ecc, EDMA_SHADOW0 + offset, val);
}
static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
int i, unsigned val)
{
edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
}
static inline unsigned int edma_parm_read(struct edma_cc *ecc, int offset,
int param_no)
{
return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
}
static inline void edma_parm_write(struct edma_cc *ecc, int offset,
int param_no, unsigned val)
{
edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
}
static inline void edma_parm_modify(struct edma_cc *ecc, int offset,
int param_no, unsigned and, unsigned or)
{
edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
}
static inline void edma_parm_and(struct edma_cc *ecc, int offset, int param_no,
unsigned and)
{
edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
}
static inline void edma_parm_or(struct edma_cc *ecc, int offset, int param_no,
unsigned or)
{
edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
}
static inline void set_bits(int offset, int len, unsigned long *p)
{
for (; len > 0; len--)
set_bit(offset + (len - 1), p);
}
static inline void clear_bits(int offset, int len, unsigned long *p)
{
for (; len > 0; len--)
clear_bit(offset + (len - 1), p);
}
static void edma_map_dmach_to_queue(struct edma_cc *ecc, unsigned ch_no,
enum dma_event_q queue_no)
{
int bit = (ch_no & 0x7) * 4;
/* default to low priority queue */
if (queue_no == EVENTQ_DEFAULT)
queue_no = ecc->default_queue;
queue_no &= 7;
edma_modify_array(ecc, EDMA_DMAQNUM, (ch_no >> 3), ~(0x7 << bit),
queue_no << bit);
}
static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
int priority)
{
int bit = queue_no * 4;
edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
}
static void edma_direct_dmach_to_param_mapping(struct edma_cc *ecc)
{
int i;
for (i = 0; i < ecc->num_channels; i++)
edma_write_array(ecc, EDMA_DCHMAP, i, (i << 5));
}
static int prepare_unused_channel_list(struct device *dev, void *data)
{
struct platform_device *pdev = to_platform_device(dev);
struct edma_cc *ecc = data;
int dma_req_min = EDMA_CTLR_CHAN(ecc->id, 0);
int dma_req_max = dma_req_min + ecc->num_channels;
int i, count;
struct of_phandle_args dma_spec;
if (dev->of_node) {
struct platform_device *dma_pdev;
count = of_property_count_strings(dev->of_node, "dma-names");
if (count < 0)
return 0;
for (i = 0; i < count; i++) {
if (of_parse_phandle_with_args(dev->of_node, "dmas",
"#dma-cells", i,
&dma_spec))
continue;
if (!of_match_node(edma_of_ids, dma_spec.np)) {
of_node_put(dma_spec.np);
continue;
}
dma_pdev = of_find_device_by_node(dma_spec.np);
if (&dma_pdev->dev != ecc->dev)
continue;
clear_bit(EDMA_CHAN_SLOT(dma_spec.args[0]),
ecc->edma_unused);
of_node_put(dma_spec.np);
}
return 0;
}
/* For non-OF case */
for (i = 0; i < pdev->num_resources; i++) {
struct resource *res = &pdev->resource[i];
int dma_req;
if (!(res->flags & IORESOURCE_DMA))
continue;
dma_req = (int)res->start;
if (dma_req >= dma_req_min && dma_req < dma_req_max)
clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
ecc->edma_unused);
}
return 0;
}
static void edma_setup_interrupt(struct edma_cc *ecc, unsigned lch,
void (*callback)(unsigned channel, u16 ch_status, void *data),
void *data)
{
lch = EDMA_CHAN_SLOT(lch);
if (!callback)
edma_shadow0_write_array(ecc, SH_IECR, lch >> 5,
BIT(lch & 0x1f));
ecc->intr_data[lch].callback = callback;
ecc->intr_data[lch].data = data;
if (callback) {
edma_shadow0_write_array(ecc, SH_ICR, lch >> 5,
BIT(lch & 0x1f));
edma_shadow0_write_array(ecc, SH_IESR, lch >> 5,
BIT(lch & 0x1f));
}
}
/*
* paRAM management functions
*/
/**
* edma_write_slot - write parameter RAM data for slot
* @ecc: pointer to edma_cc struct
* @slot: number of parameter RAM slot being modified
* @param: data to be written into parameter RAM slot
*
* Use this to assign all parameters of a transfer at once. This
* allows more efficient setup of transfers than issuing multiple
* calls to set up those parameters in small pieces, and provides
* complete control over all transfer options.
*/
static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
const struct edmacc_param *param)
{
slot = EDMA_CHAN_SLOT(slot);
if (slot >= ecc->num_slots)
return;
memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
}
/**
* edma_read_slot - read parameter RAM data from slot
* @ecc: pointer to edma_cc struct
* @slot: number of parameter RAM slot being copied
* @param: where to store copy of parameter RAM data
*
* Use this to read data from a parameter RAM slot, perhaps to
* save them as a template for later reuse.
*/
static void edma_read_slot(struct edma_cc *ecc, unsigned slot,
struct edmacc_param *param)
{
slot = EDMA_CHAN_SLOT(slot);
if (slot >= ecc->num_slots)
return;
memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
}
/**
* edma_alloc_slot - allocate DMA parameter RAM
* @ecc: pointer to edma_cc struct
* @slot: specific slot to allocate; negative for "any unused slot"
*
* This allocates a parameter RAM slot, initializing it to hold a
* dummy transfer. Slots allocated using this routine have not been
* mapped to a hardware DMA channel, and will normally be used by
* linking to them from a slot associated with a DMA channel.
*
* Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
* slots may be allocated on behalf of DSP firmware.
*
* Returns the number of the slot, else negative errno.
*/
static int edma_alloc_slot(struct edma_cc *ecc, int slot)
{
if (slot > 0)
slot = EDMA_CHAN_SLOT(slot);
if (slot < 0) {
slot = ecc->num_channels;
for (;;) {
slot = find_next_zero_bit(ecc->edma_inuse,
ecc->num_slots,
slot);
if (slot == ecc->num_slots)
return -ENOMEM;
if (!test_and_set_bit(slot, ecc->edma_inuse))
break;
}
} else if (slot < ecc->num_channels || slot >= ecc->num_slots) {
return -EINVAL;
} else if (test_and_set_bit(slot, ecc->edma_inuse)) {
return -EBUSY;
}
edma_write_slot(ecc, slot, &dummy_paramset);
return EDMA_CTLR_CHAN(ecc->id, slot);
}
/**
* edma_free_slot - deallocate DMA parameter RAM
* @ecc: pointer to edma_cc struct
* @slot: parameter RAM slot returned from edma_alloc_slot()
*
* This deallocates the parameter RAM slot allocated by edma_alloc_slot().
* Callers are responsible for ensuring the slot is inactive, and will
* not be activated.
*/
static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
{
slot = EDMA_CHAN_SLOT(slot);
if (slot < ecc->num_channels || slot >= ecc->num_slots)
return;
edma_write_slot(ecc, slot, &dummy_paramset);
clear_bit(slot, ecc->edma_inuse);
}
/**
* edma_link - link one parameter RAM slot to another
* @ecc: pointer to edma_cc struct
* @from: parameter RAM slot originating the link
* @to: parameter RAM slot which is the link target
*
* The originating slot should not be part of any active DMA transfer.
*/
static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
{
if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
from = EDMA_CHAN_SLOT(from);
to = EDMA_CHAN_SLOT(to);
if (from >= ecc->num_slots || to >= ecc->num_slots)
return;
edma_parm_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
PARM_OFFSET(to));
}
/**
* edma_get_position - returns the current transfer point
* @ecc: pointer to edma_cc struct
* @slot: parameter RAM slot being examined
* @dst: true selects the dest position, false the source
*
* Returns the position of the current active slot
*/
static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
bool dst)
{
u32 offs;
slot = EDMA_CHAN_SLOT(slot);
offs = PARM_OFFSET(slot);
offs += dst ? PARM_DST : PARM_SRC;
return edma_read(ecc, offs);
}
/*-----------------------------------------------------------------------*/
/**
* edma_start - start dma on a channel
* @ecc: pointer to edma_cc struct
* @channel: channel being activated
*
* Channels with event associations will be triggered by their hardware
* events, and channels without such associations will be triggered by
* software. (At this writing there is no interface for using software
* triggers except with channels that don't support hardware triggers.)
*
* Returns zero on success, else negative errno.
*/
static int edma_start(struct edma_cc *ecc, unsigned channel)
{
if (ecc->id != EDMA_CTLR(channel)) {
dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
ecc->id, EDMA_CTLR(channel));
return -EINVAL;
}
channel = EDMA_CHAN_SLOT(channel);
if (channel < ecc->num_channels) {
int j = channel >> 5;
unsigned int mask = BIT(channel & 0x1f);
/* EDMA channels without event association */
if (test_bit(channel, ecc->edma_unused)) {
dev_dbg(ecc->dev, "ESR%d %08x\n", j,
edma_shadow0_read_array(ecc, SH_ESR, j));
edma_shadow0_write_array(ecc, SH_ESR, j, mask);
return 0;
}
/* EDMA channel with event association */
dev_dbg(ecc->dev, "ER%d %08x\n", j,
edma_shadow0_read_array(ecc, SH_ER, j));
/* Clear any pending event or error */
edma_write_array(ecc, EDMA_ECR, j, mask);
edma_write_array(ecc, EDMA_EMCR, j, mask);
/* Clear any SER */
edma_shadow0_write_array(ecc, SH_SECR, j, mask);
edma_shadow0_write_array(ecc, SH_EESR, j, mask);
dev_dbg(ecc->dev, "EER%d %08x\n", j,
edma_shadow0_read_array(ecc, SH_EER, j));
return 0;
}
return -EINVAL;
}
/**
* edma_stop - stops dma on the channel passed
* @ecc: pointer to edma_cc struct
* @channel: channel being deactivated
*
* When @lch is a channel, any active transfer is paused and
* all pending hardware events are cleared. The current transfer
* may not be resumed, and the channel's Parameter RAM should be
* reinitialized before being reused.
*/
static void edma_stop(struct edma_cc *ecc, unsigned channel)
{
if (ecc->id != EDMA_CTLR(channel)) {
dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
ecc->id, EDMA_CTLR(channel));
return;
}
channel = EDMA_CHAN_SLOT(channel);
if (channel < ecc->num_channels) {
int j = channel >> 5;
unsigned int mask = BIT(channel & 0x1f);
edma_shadow0_write_array(ecc, SH_EECR, j, mask);
edma_shadow0_write_array(ecc, SH_ECR, j, mask);
edma_shadow0_write_array(ecc, SH_SECR, j, mask);
edma_write_array(ecc, EDMA_EMCR, j, mask);
/* clear possibly pending completion interrupt */
edma_shadow0_write_array(ecc, SH_ICR, j, mask);
dev_dbg(ecc->dev, "EER%d %08x\n", j,
edma_shadow0_read_array(ecc, SH_EER, j));
/* REVISIT: consider guarding against inappropriate event
* chaining by overwriting with dummy_paramset.
*/
}
}
/**
* edma_pause - pause dma on a channel
* @ecc: pointer to edma_cc struct
* @channel: on which edma_start() has been called
*
* This temporarily disables EDMA hardware events on the specified channel,
* preventing them from triggering new transfers on its behalf
*/
static void edma_pause(struct edma_cc *ecc, unsigned channel)
{
if (ecc->id != EDMA_CTLR(channel)) {
dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
ecc->id, EDMA_CTLR(channel));
return;
}
channel = EDMA_CHAN_SLOT(channel);
if (channel < ecc->num_channels) {
unsigned int mask = BIT(channel & 0x1f);
edma_shadow0_write_array(ecc, SH_EECR, channel >> 5, mask);
}
}
/**
* edma_resume - resumes dma on a paused channel
* @ecc: pointer to edma_cc struct
* @channel: on which edma_pause() has been called
*
* This re-enables EDMA hardware events on the specified channel.
*/
static void edma_resume(struct edma_cc *ecc, unsigned channel)
{
if (ecc->id != EDMA_CTLR(channel)) {
dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
ecc->id, EDMA_CTLR(channel));
return;
}
channel = EDMA_CHAN_SLOT(channel);
if (channel < ecc->num_channels) {
unsigned int mask = BIT(channel & 0x1f);
edma_shadow0_write_array(ecc, SH_EESR, channel >> 5, mask);
}
}
static int edma_trigger_channel(struct edma_cc *ecc, unsigned channel)
{
unsigned int mask;
if (ecc->id != EDMA_CTLR(channel)) {
dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
ecc->id, EDMA_CTLR(channel));
return -EINVAL;
}
channel = EDMA_CHAN_SLOT(channel);
mask = BIT(channel & 0x1f);
edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);
dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
return 0;
}
/******************************************************************************
*
* It cleans ParamEntry qand bring back EDMA to initial state if media has
* been removed before EDMA has finished.It is usedful for removable media.
* Arguments:
* ch_no - channel no
*
* Return: zero on success, or corresponding error no on failure
*
* FIXME this should not be needed ... edma_stop() should suffice.
*
*****************************************************************************/
static void edma_clean_channel(struct edma_cc *ecc, unsigned channel)
{
if (ecc->id != EDMA_CTLR(channel)) {
dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
ecc->id, EDMA_CTLR(channel));
return;
}
channel = EDMA_CHAN_SLOT(channel);
if (channel < ecc->num_channels) {
int j = (channel >> 5);
unsigned int mask = BIT(channel & 0x1f);
dev_dbg(ecc->dev, "EMR%d %08x\n", j,
edma_read_array(ecc, EDMA_EMR, j));
edma_shadow0_write_array(ecc, SH_ECR, j, mask);
/* Clear the corresponding EMR bits */
edma_write_array(ecc, EDMA_EMCR, j, mask);
/* Clear any SER */
edma_shadow0_write_array(ecc, SH_SECR, j, mask);
edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
}
}
/**
* edma_alloc_channel - allocate DMA channel and paired parameter RAM
* @ecc: pointer to edma_cc struct
* @channel: specific channel to allocate; negative for "any unmapped channel"
* @callback: optional; to be issued on DMA completion or errors
* @data: passed to callback
* @eventq_no: an EVENTQ_* constant, used to choose which Transfer
* Controller (TC) executes requests using this channel. Use
* EVENTQ_DEFAULT unless you really need a high priority queue.
*
* This allocates a DMA channel and its associated parameter RAM slot.
* The parameter RAM is initialized to hold a dummy transfer.
*
* Normal use is to pass a specific channel number as @channel, to make
* use of hardware events mapped to that channel. When the channel will
* be used only for software triggering or event chaining, channels not
* mapped to hardware events (or mapped to unused events) are preferable.
*
* DMA transfers start from a channel using edma_start(), or by
* chaining. When the transfer described in that channel's parameter RAM
* slot completes, that slot's data may be reloaded through a link.
*
* DMA errors are only reported to the @callback associated with the
* channel driving that transfer, but transfer completion callbacks can
* be sent to another channel under control of the TCC field in
* the option word of the transfer's parameter RAM set. Drivers must not
* use DMA transfer completion callbacks for channels they did not allocate.
* (The same applies to TCC codes used in transfer chaining.)
*
* Returns the number of the channel, else negative errno.
*/
static int edma_alloc_channel(struct edma_cc *ecc, int channel,
void (*callback)(unsigned channel, u16 ch_status, void *data),
void *data,
enum dma_event_q eventq_no)
{
unsigned done = 0;
int ret = 0;
if (!ecc->unused_chan_list_done) {
/*
* Scan all the platform devices to find out the EDMA channels
* used and clear them in the unused list, making the rest
* available for ARM usage.
*/
ret = bus_for_each_dev(&platform_bus_type, NULL, ecc,
prepare_unused_channel_list);
if (ret < 0)
return ret;
ecc->unused_chan_list_done = true;
}
if (channel >= 0) {
if (ecc->id != EDMA_CTLR(channel)) {
dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n",
__func__, ecc->id, EDMA_CTLR(channel));
return -EINVAL;
}
channel = EDMA_CHAN_SLOT(channel);
}
if (channel < 0) {
channel = 0;
for (;;) {
channel = find_next_bit(ecc->edma_unused,
ecc->num_channels, channel);
if (channel == ecc->num_channels)
break;
if (!test_and_set_bit(channel, ecc->edma_inuse)) {
done = 1;
break;
}
channel++;
}
if (!done)
return -ENOMEM;
} else if (channel >= ecc->num_channels) {
return -EINVAL;
} else if (test_and_set_bit(channel, ecc->edma_inuse)) {
return -EBUSY;
}
/* ensure access through shadow region 0 */
edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
/* ensure no events are pending */
edma_stop(ecc, EDMA_CTLR_CHAN(ecc->id, channel));
edma_write_slot(ecc, channel, &dummy_paramset);
if (callback)
edma_setup_interrupt(ecc, EDMA_CTLR_CHAN(ecc->id, channel),
callback, data);
edma_map_dmach_to_queue(ecc, channel, eventq_no);
return EDMA_CTLR_CHAN(ecc->id, channel);
}
/**
* edma_free_channel - deallocate DMA channel
* @ecc: pointer to edma_cc struct
* @channel: dma channel returned from edma_alloc_channel()
*
* This deallocates the DMA channel and associated parameter RAM slot
* allocated by edma_alloc_channel().
*
* Callers are responsible for ensuring the channel is inactive, and
* will not be reactivated by linking, chaining, or software calls to
* edma_start().
*/
static void edma_free_channel(struct edma_cc *ecc, unsigned channel)
{
if (ecc->id != EDMA_CTLR(channel)) {
dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
ecc->id, EDMA_CTLR(channel));
return;
}
channel = EDMA_CHAN_SLOT(channel);
if (channel >= ecc->num_channels)
return;
edma_setup_interrupt(ecc, channel, NULL, NULL);
/* REVISIT should probably take out of shadow region 0 */
edma_write_slot(ecc, channel, &dummy_paramset);
clear_bit(channel, ecc->edma_inuse);
}
/*
* edma_assign_channel_eventq - move given channel to desired eventq
* Arguments:
* channel - channel number
* eventq_no - queue to move the channel
*
* Can be used to move a channel to a selected event queue.
*/
static void edma_assign_channel_eventq(struct edma_cc *ecc, unsigned channel,
enum dma_event_q eventq_no)
{
if (ecc->id != EDMA_CTLR(channel)) {
dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
ecc->id, EDMA_CTLR(channel));
return;
}
channel = EDMA_CHAN_SLOT(channel);
if (channel >= ecc->num_channels)
return;
/* default to low priority queue */
if (eventq_no == EVENTQ_DEFAULT)
eventq_no = ecc->default_queue;
if (eventq_no >= ecc->num_tc)
return;
edma_map_dmach_to_queue(ecc, channel, eventq_no);
}
static irqreturn_t dma_irq_handler(int irq, void *data)
{
struct edma_cc *ecc = data;
int ctlr;
u32 sh_ier;
u32 sh_ipr;
u32 bank;
ctlr = ecc->id;
if (ctlr < 0)
return IRQ_NONE;
dev_dbg(ecc->dev, "dma_irq_handler\n");
sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
if (!sh_ipr) {
sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
if (!sh_ipr)
return IRQ_NONE;
sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
bank = 1;
} else {
sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
bank = 0;
}
do {
u32 slot;
u32 channel;
dev_dbg(ecc->dev, "IPR%d %08x\n", bank, sh_ipr);
slot = __ffs(sh_ipr);
sh_ipr &= ~(BIT(slot));
if (sh_ier & BIT(slot)) {
channel = (bank << 5) | slot;
/* Clear the corresponding IPR bits */
edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
if (ecc->intr_data[channel].callback)
ecc->intr_data[channel].callback(
EDMA_CTLR_CHAN(ctlr, channel),
EDMA_DMA_COMPLETE,
ecc->intr_data[channel].data);
}
} while (sh_ipr);
edma_shadow0_write(ecc, SH_IEVAL, 1);
return IRQ_HANDLED;
}
/******************************************************************************
*
* DMA error interrupt handler
*
*****************************************************************************/
static irqreturn_t dma_ccerr_handler(int irq, void *data)
{
struct edma_cc *ecc = data;
int i;
int ctlr;
unsigned int cnt = 0;
ctlr = ecc->id;
if (ctlr < 0)
return IRQ_NONE;
dev_dbg(ecc->dev, "dma_ccerr_handler\n");
if ((edma_read_array(ecc, EDMA_EMR, 0) == 0) &&
(edma_read_array(ecc, EDMA_EMR, 1) == 0) &&
(edma_read(ecc, EDMA_QEMR) == 0) &&
(edma_read(ecc, EDMA_CCERR) == 0))
return IRQ_NONE;
while (1) {
int j = -1;
if (edma_read_array(ecc, EDMA_EMR, 0))
j = 0;
else if (edma_read_array(ecc, EDMA_EMR, 1))
j = 1;
if (j >= 0) {
dev_dbg(ecc->dev, "EMR%d %08x\n", j,
edma_read_array(ecc, EDMA_EMR, j));
for (i = 0; i < 32; i++) {
int k = (j << 5) + i;
if (edma_read_array(ecc, EDMA_EMR, j) &
BIT(i)) {
/* Clear the corresponding EMR bits */
edma_write_array(ecc, EDMA_EMCR, j,
BIT(i));
/* Clear any SER */
edma_shadow0_write_array(ecc, SH_SECR,
j, BIT(i));
if (ecc->intr_data[k].callback) {
ecc->intr_data[k].callback(
EDMA_CTLR_CHAN(ctlr, k),
EDMA_DMA_CC_ERROR,
ecc->intr_data[k].data);
}
}
}
} else if (edma_read(ecc, EDMA_QEMR)) {
dev_dbg(ecc->dev, "QEMR %02x\n",
edma_read(ecc, EDMA_QEMR));
for (i = 0; i < 8; i++) {
if (edma_read(ecc, EDMA_QEMR) & BIT(i)) {
/* Clear the corresponding IPR bits */
edma_write(ecc, EDMA_QEMCR, BIT(i));
edma_shadow0_write(ecc, SH_QSECR,
BIT(i));
/* NOTE: not reported!! */
}
}
} else if (edma_read(ecc, EDMA_CCERR)) {
dev_dbg(ecc->dev, "CCERR %08x\n",
edma_read(ecc, EDMA_CCERR));
/* FIXME: CCERR.BIT(16) ignored! much better
* to just write CCERRCLR with CCERR value...
*/
for (i = 0; i < 8; i++) {
if (edma_read(ecc, EDMA_CCERR) & BIT(i)) {
/* Clear the corresponding IPR bits */
edma_write(ecc, EDMA_CCERRCLR, BIT(i));
/* NOTE: not reported!! */
}
}
}
if ((edma_read_array(ecc, EDMA_EMR, 0) == 0) &&
(edma_read_array(ecc, EDMA_EMR, 1) == 0) &&
(edma_read(ecc, EDMA_QEMR) == 0) &&
(edma_read(ecc, EDMA_CCERR) == 0))
break;
cnt++;
if (cnt > 10)
break;
}
edma_write(ecc, EDMA_EEVAL, 1);
return IRQ_HANDLED;
}
static inline struct edma_cc *to_edma_cc(struct dma_device *d)
{
return container_of(d, struct edma_cc, dma_slave);
}
static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
{
return container_of(c, struct edma_chan, vchan.chan);
}
static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
{
return container_of(tx, struct edma_desc, vdesc.tx);
}
static void edma_desc_free(struct virt_dma_desc *vdesc)
{
kfree(container_of(vdesc, struct edma_desc, vdesc));
}
/* Dispatch a queued descriptor to the controller (caller holds lock) */
static void edma_execute(struct edma_chan *echan)
{
struct edma_cc *ecc = echan->ecc;
struct virt_dma_desc *vdesc;
struct edma_desc *edesc;
struct device *dev = echan->vchan.chan.device->dev;
int i, j, left, nslots;
if (!echan->edesc) {
/* Setup is needed for the first transfer */
vdesc = vchan_next_desc(&echan->vchan);
if (!vdesc)
return;
list_del(&vdesc->node);
echan->edesc = to_edma_desc(&vdesc->tx);
}
edesc = echan->edesc;
/* Find out how many left */
left = edesc->pset_nr - edesc->processed;
nslots = min(MAX_NR_SG, left);
edesc->sg_len = 0;
/* Write descriptor PaRAM set(s) */
for (i = 0; i < nslots; i++) {
j = i + edesc->processed;
edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
edesc->sg_len += edesc->pset[j].len;
dev_vdbg(dev,
"\n pset[%d]:\n"
" chnum\t%d\n"
" slot\t%d\n"
" opt\t%08x\n"
" src\t%08x\n"
" dst\t%08x\n"
" abcnt\t%08x\n"
" ccnt\t%08x\n"
" bidx\t%08x\n"
" cidx\t%08x\n"
" lkrld\t%08x\n",
j, echan->ch_num, echan->slot[i],
edesc->pset[j].param.opt,
edesc->pset[j].param.src,
edesc->pset[j].param.dst,
edesc->pset[j].param.a_b_cnt,
edesc->pset[j].param.ccnt,
edesc->pset[j].param.src_dst_bidx,
edesc->pset[j].param.src_dst_cidx,
edesc->pset[j].param.link_bcntrld);
/* Link to the previous slot if not the last set */
if (i != (nslots - 1))
edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
}
edesc->processed += nslots;
/*
* If this is either the last set in a set of SG-list transactions
* then setup a link to the dummy slot, this results in all future
* events being absorbed and that's OK because we're done
*/
if (edesc->processed == edesc->pset_nr) {
if (edesc->cyclic)
edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
else
edma_link(ecc, echan->slot[nslots - 1],
echan->ecc->dummy_slot);
}
dma: edma: Find missed events and issue them In an effort to move to using Scatter gather lists of any size with EDMA as discussed at [1] instead of placing limitations on the driver, we work through the limitations of the EDMAC hardware to find missed events and issue them. The sequence of events that require this are: For the scenario where MAX slots for an EDMA channel is 3: SG1 -> SG2 -> SG3 -> SG4 -> SG5 -> SG6 -> Null The above SG list will have to be DMA'd in 2 sets: (1) SG1 -> SG2 -> SG3 -> Null (2) SG4 -> SG5 -> SG6 -> Null After (1) is succesfully transferred, the events from the MMC controller donot stop coming and are missed by the time we have setup the transfer for (2). So here, we catch the events missed as an error condition and issue them manually. In the second part of the patch, we make handle the NULL slot cases: For crypto IP, we continue to receive events even continuously in NULL slot, the setup of the next set of SG elements happens after the error handler executes. This is results in some recursion problems. Due to this, we continously receive error interrupts when we manually trigger an event from the error handler. We fix this, by first detecting if the Channel is currently transferring from a NULL slot or not, that's where the edma_read_slot in the error callback from interrupt handler comes in. With this we can determine if the set up of the next SG list has completed, and we manually trigger only in this case. If the setup has _not_ completed, we are still in NULL so we just set a missed flag and allow the manual triggerring to happen in edma_execute which will be eventually called. This fixes the above mentioned race conditions seen with the crypto drivers. [1] http://marc.info/?l=linux-omap&m=137416733628831&w=2 Signed-off-by: Joel Fernandes <joelf@ti.com> Signed-off-by: Vinod Koul <vinod.koul@intel.com>
2013-08-30 07:05:43 +08:00
if (echan->missed) {
/*
* This happens due to setup times between intermediate
* transfers in long SG lists which have to be broken up into
* transfers of MAX_NR_SG
*/
dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
edma_clean_channel(ecc, echan->ch_num);
edma_stop(ecc, echan->ch_num);
edma_start(ecc, echan->ch_num);
edma_trigger_channel(ecc, echan->ch_num);
dma: edma: Find missed events and issue them In an effort to move to using Scatter gather lists of any size with EDMA as discussed at [1] instead of placing limitations on the driver, we work through the limitations of the EDMAC hardware to find missed events and issue them. The sequence of events that require this are: For the scenario where MAX slots for an EDMA channel is 3: SG1 -> SG2 -> SG3 -> SG4 -> SG5 -> SG6 -> Null The above SG list will have to be DMA'd in 2 sets: (1) SG1 -> SG2 -> SG3 -> Null (2) SG4 -> SG5 -> SG6 -> Null After (1) is succesfully transferred, the events from the MMC controller donot stop coming and are missed by the time we have setup the transfer for (2). So here, we catch the events missed as an error condition and issue them manually. In the second part of the patch, we make handle the NULL slot cases: For crypto IP, we continue to receive events even continuously in NULL slot, the setup of the next set of SG elements happens after the error handler executes. This is results in some recursion problems. Due to this, we continously receive error interrupts when we manually trigger an event from the error handler. We fix this, by first detecting if the Channel is currently transferring from a NULL slot or not, that's where the edma_read_slot in the error callback from interrupt handler comes in. With this we can determine if the set up of the next SG list has completed, and we manually trigger only in this case. If the setup has _not_ completed, we are still in NULL so we just set a missed flag and allow the manual triggerring to happen in edma_execute which will be eventually called. This fixes the above mentioned race conditions seen with the crypto drivers. [1] http://marc.info/?l=linux-omap&m=137416733628831&w=2 Signed-off-by: Joel Fernandes <joelf@ti.com> Signed-off-by: Vinod Koul <vinod.koul@intel.com>
2013-08-30 07:05:43 +08:00
echan->missed = 0;
} else if (edesc->processed <= MAX_NR_SG) {
dev_dbg(dev, "first transfer starting on channel %d\n",
echan->ch_num);
edma_start(ecc, echan->ch_num);
} else {
dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
echan->ch_num, edesc->processed);
edma_resume(ecc, echan->ch_num);
dma: edma: Find missed events and issue them In an effort to move to using Scatter gather lists of any size with EDMA as discussed at [1] instead of placing limitations on the driver, we work through the limitations of the EDMAC hardware to find missed events and issue them. The sequence of events that require this are: For the scenario where MAX slots for an EDMA channel is 3: SG1 -> SG2 -> SG3 -> SG4 -> SG5 -> SG6 -> Null The above SG list will have to be DMA'd in 2 sets: (1) SG1 -> SG2 -> SG3 -> Null (2) SG4 -> SG5 -> SG6 -> Null After (1) is succesfully transferred, the events from the MMC controller donot stop coming and are missed by the time we have setup the transfer for (2). So here, we catch the events missed as an error condition and issue them manually. In the second part of the patch, we make handle the NULL slot cases: For crypto IP, we continue to receive events even continuously in NULL slot, the setup of the next set of SG elements happens after the error handler executes. This is results in some recursion problems. Due to this, we continously receive error interrupts when we manually trigger an event from the error handler. We fix this, by first detecting if the Channel is currently transferring from a NULL slot or not, that's where the edma_read_slot in the error callback from interrupt handler comes in. With this we can determine if the set up of the next SG list has completed, and we manually trigger only in this case. If the setup has _not_ completed, we are still in NULL so we just set a missed flag and allow the manual triggerring to happen in edma_execute which will be eventually called. This fixes the above mentioned race conditions seen with the crypto drivers. [1] http://marc.info/?l=linux-omap&m=137416733628831&w=2 Signed-off-by: Joel Fernandes <joelf@ti.com> Signed-off-by: Vinod Koul <vinod.koul@intel.com>
2013-08-30 07:05:43 +08:00
}
}
static int edma_terminate_all(struct dma_chan *chan)
{
struct edma_chan *echan = to_edma_chan(chan);
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&echan->vchan.lock, flags);
/*
* Stop DMA activity: we assume the callback will not be called
* after edma_dma() returns (even if it does, it will see
* echan->edesc is NULL and exit.)
*/
if (echan->edesc) {
edma_stop(echan->ecc, echan->ch_num);
/* Move the cyclic channel back to default queue */
if (echan->edesc->cyclic)
edma_assign_channel_eventq(echan->ecc, echan->ch_num,
EVENTQ_DEFAULT);
/*
* free the running request descriptor
* since it is not in any of the vdesc lists
*/
edma_desc_free(&echan->edesc->vdesc);
echan->edesc = NULL;
}
vchan_get_all_descriptors(&echan->vchan, &head);
spin_unlock_irqrestore(&echan->vchan.lock, flags);
vchan_dma_desc_free_list(&echan->vchan, &head);
return 0;
}
static int edma_slave_config(struct dma_chan *chan,
struct dma_slave_config *cfg)
{
struct edma_chan *echan = to_edma_chan(chan);
if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
return -EINVAL;
memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
return 0;
}
static int edma_dma_pause(struct dma_chan *chan)
{
struct edma_chan *echan = to_edma_chan(chan);
if (!echan->edesc)
return -EINVAL;
edma_pause(echan->ecc, echan->ch_num);
return 0;
}
static int edma_dma_resume(struct dma_chan *chan)
{
struct edma_chan *echan = to_edma_chan(chan);
edma_resume(echan->ecc, echan->ch_num);
return 0;
}
/*
* A PaRAM set configuration abstraction used by other modes
* @chan: Channel who's PaRAM set we're configuring
* @pset: PaRAM set to initialize and setup.
* @src_addr: Source address of the DMA
* @dst_addr: Destination address of the DMA
* @burst: In units of dev_width, how much to send
* @dev_width: How much is the dev_width
* @dma_length: Total length of the DMA transfer
* @direction: Direction of the transfer
*/
static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
enum dma_slave_buswidth dev_width,
unsigned int dma_length,
enum dma_transfer_direction direction)
{
struct edma_chan *echan = to_edma_chan(chan);
struct device *dev = chan->device->dev;
struct edmacc_param *param = &epset->param;
int acnt, bcnt, ccnt, cidx;
int src_bidx, dst_bidx, src_cidx, dst_cidx;
int absync;
acnt = dev_width;
/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
if (!burst)
burst = 1;
/*
* If the maxburst is equal to the fifo width, use
* A-synced transfers. This allows for large contiguous
* buffer transfers using only one PaRAM set.
*/
if (burst == 1) {
/*
* For the A-sync case, bcnt and ccnt are the remainder
* and quotient respectively of the division of:
* (dma_length / acnt) by (SZ_64K -1). This is so
* that in case bcnt over flows, we have ccnt to use.
* Note: In A-sync tranfer only, bcntrld is used, but it
* only applies for sg_dma_len(sg) >= SZ_64K.
* In this case, the best way adopted is- bccnt for the
* first frame will be the remainder below. Then for
* every successive frame, bcnt will be SZ_64K-1. This
* is assured as bcntrld = 0xffff in end of function.
*/
absync = false;
ccnt = dma_length / acnt / (SZ_64K - 1);
bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
/*
* If bcnt is non-zero, we have a remainder and hence an
* extra frame to transfer, so increment ccnt.
*/
if (bcnt)
ccnt++;
else
bcnt = SZ_64K - 1;
cidx = acnt;
} else {
/*
* If maxburst is greater than the fifo address_width,
* use AB-synced transfers where A count is the fifo
* address_width and B count is the maxburst. In this
* case, we are limited to transfers of C count frames
* of (address_width * maxburst) where C count is limited
* to SZ_64K-1. This places an upper bound on the length
* of an SG segment that can be handled.
*/
absync = true;
bcnt = burst;
ccnt = dma_length / (acnt * bcnt);
if (ccnt > (SZ_64K - 1)) {
dev_err(dev, "Exceeded max SG segment size\n");
return -EINVAL;
}
cidx = acnt * bcnt;
}
epset->len = dma_length;
if (direction == DMA_MEM_TO_DEV) {
src_bidx = acnt;
src_cidx = cidx;
dst_bidx = 0;
dst_cidx = 0;
epset->addr = src_addr;
} else if (direction == DMA_DEV_TO_MEM) {
src_bidx = 0;
src_cidx = 0;
dst_bidx = acnt;
dst_cidx = cidx;
epset->addr = dst_addr;
} else if (direction == DMA_MEM_TO_MEM) {
src_bidx = acnt;
src_cidx = cidx;
dst_bidx = acnt;
dst_cidx = cidx;
} else {
dev_err(dev, "%s: direction not implemented yet\n", __func__);
return -EINVAL;
}
param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
/* Configure A or AB synchronized transfers */
if (absync)
param->opt |= SYNCDIM;
param->src = src_addr;
param->dst = dst_addr;
param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
param->a_b_cnt = bcnt << 16 | acnt;
param->ccnt = ccnt;
/*
* Only time when (bcntrld) auto reload is required is for
* A-sync case, and in this case, a requirement of reload value
* of SZ_64K-1 only is assured. 'link' is initially set to NULL
* and then later will be populated by edma_execute.
*/
param->link_bcntrld = 0xffffffff;
return absync;
}
static struct dma_async_tx_descriptor *edma_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction direction,
unsigned long tx_flags, void *context)
{
struct edma_chan *echan = to_edma_chan(chan);
struct device *dev = chan->device->dev;
struct edma_desc *edesc;
dma_addr_t src_addr = 0, dst_addr = 0;
enum dma_slave_buswidth dev_width;
u32 burst;
struct scatterlist *sg;
int i, nslots, ret;
if (unlikely(!echan || !sgl || !sg_len))
return NULL;
if (direction == DMA_DEV_TO_MEM) {
src_addr = echan->cfg.src_addr;
dev_width = echan->cfg.src_addr_width;
burst = echan->cfg.src_maxburst;
} else if (direction == DMA_MEM_TO_DEV) {
dst_addr = echan->cfg.dst_addr;
dev_width = echan->cfg.dst_addr_width;
burst = echan->cfg.dst_maxburst;
} else {
dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
return NULL;
}
if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
return NULL;
}
edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]),
GFP_ATOMIC);
if (!edesc) {
dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
return NULL;
}
edesc->pset_nr = sg_len;
edesc->residue = 0;
edesc->direction = direction;
edesc->echan = echan;
/* Allocate a PaRAM slot, if needed */
nslots = min_t(unsigned, MAX_NR_SG, sg_len);
for (i = 0; i < nslots; i++) {
if (echan->slot[i] < 0) {
echan->slot[i] =
edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
if (echan->slot[i] < 0) {
kfree(edesc);
dev_err(dev, "%s: Failed to allocate slot\n",
__func__);
return NULL;
}
}
}
/* Configure PaRAM sets for each SG */
for_each_sg(sgl, sg, sg_len, i) {
/* Get address for each SG */
if (direction == DMA_DEV_TO_MEM)
dst_addr = sg_dma_address(sg);
else
src_addr = sg_dma_address(sg);
ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
dst_addr, burst, dev_width,
sg_dma_len(sg), direction);
if (ret < 0) {
kfree(edesc);
return NULL;
}
edesc->absync = ret;
edesc->residue += sg_dma_len(sg);
/* If this is the last in a current SG set of transactions,
enable interrupts so that next set is processed */
if (!((i+1) % MAX_NR_SG))
edesc->pset[i].param.opt |= TCINTEN;
/* If this is the last set, enable completion interrupt flag */
if (i == sg_len - 1)
edesc->pset[i].param.opt |= TCINTEN;
}
edesc->residue_stat = edesc->residue;
return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}
static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
size_t len, unsigned long tx_flags)
{
int ret;
struct edma_desc *edesc;
struct device *dev = chan->device->dev;
struct edma_chan *echan = to_edma_chan(chan);
if (unlikely(!echan || !len))
return NULL;
edesc = kzalloc(sizeof(*edesc) + sizeof(edesc->pset[0]), GFP_ATOMIC);
if (!edesc) {
dev_dbg(dev, "Failed to allocate a descriptor\n");
return NULL;
}
edesc->pset_nr = 1;
ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
DMA_SLAVE_BUSWIDTH_4_BYTES, len, DMA_MEM_TO_MEM);
if (ret < 0)
return NULL;
edesc->absync = ret;
/*
* Enable intermediate transfer chaining to re-trigger channel
* on completion of every TR, and enable transfer-completion
* interrupt on completion of the whole transfer.
*/
edesc->pset[0].param.opt |= ITCCHEN;
edesc->pset[0].param.opt |= TCINTEN;
return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}
static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
size_t period_len, enum dma_transfer_direction direction,
unsigned long tx_flags)
{
struct edma_chan *echan = to_edma_chan(chan);
struct device *dev = chan->device->dev;
struct edma_desc *edesc;
dma_addr_t src_addr, dst_addr;
enum dma_slave_buswidth dev_width;
u32 burst;
int i, ret, nslots;
if (unlikely(!echan || !buf_len || !period_len))
return NULL;
if (direction == DMA_DEV_TO_MEM) {
src_addr = echan->cfg.src_addr;
dst_addr = buf_addr;
dev_width = echan->cfg.src_addr_width;
burst = echan->cfg.src_maxburst;
} else if (direction == DMA_MEM_TO_DEV) {
src_addr = buf_addr;
dst_addr = echan->cfg.dst_addr;
dev_width = echan->cfg.dst_addr_width;
burst = echan->cfg.dst_maxburst;
} else {
dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
return NULL;
}
if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
return NULL;
}
if (unlikely(buf_len % period_len)) {
dev_err(dev, "Period should be multiple of Buffer length\n");
return NULL;
}
nslots = (buf_len / period_len) + 1;
/*
* Cyclic DMA users such as audio cannot tolerate delays introduced
* by cases where the number of periods is more than the maximum
* number of SGs the EDMA driver can handle at a time. For DMA types
* such as Slave SGs, such delays are tolerable and synchronized,
* but the synchronization is difficult to achieve with Cyclic and
* cannot be guaranteed, so we error out early.
*/
if (nslots > MAX_NR_SG)
return NULL;
edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
GFP_ATOMIC);
if (!edesc) {
dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
return NULL;
}
edesc->cyclic = 1;
edesc->pset_nr = nslots;
edesc->residue = edesc->residue_stat = buf_len;
edesc->direction = direction;
edesc->echan = echan;
dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
__func__, echan->ch_num, nslots, period_len, buf_len);
for (i = 0; i < nslots; i++) {
/* Allocate a PaRAM slot, if needed */
if (echan->slot[i] < 0) {
echan->slot[i] =
edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
if (echan->slot[i] < 0) {
kfree(edesc);
dev_err(dev, "%s: Failed to allocate slot\n",
__func__);
return NULL;
}
}
if (i == nslots - 1) {
memcpy(&edesc->pset[i], &edesc->pset[0],
sizeof(edesc->pset[0]));
break;
}
ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
dst_addr, burst, dev_width, period_len,
direction);
if (ret < 0) {
kfree(edesc);
return NULL;
}
if (direction == DMA_DEV_TO_MEM)
dst_addr += period_len;
else
src_addr += period_len;
dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
dev_vdbg(dev,
"\n pset[%d]:\n"
" chnum\t%d\n"
" slot\t%d\n"
" opt\t%08x\n"
" src\t%08x\n"
" dst\t%08x\n"
" abcnt\t%08x\n"
" ccnt\t%08x\n"
" bidx\t%08x\n"
" cidx\t%08x\n"
" lkrld\t%08x\n",
i, echan->ch_num, echan->slot[i],
edesc->pset[i].param.opt,
edesc->pset[i].param.src,
edesc->pset[i].param.dst,
edesc->pset[i].param.a_b_cnt,
edesc->pset[i].param.ccnt,
edesc->pset[i].param.src_dst_bidx,
edesc->pset[i].param.src_dst_cidx,
edesc->pset[i].param.link_bcntrld);
edesc->absync = ret;
/*
* Enable period interrupt only if it is requested
*/
if (tx_flags & DMA_PREP_INTERRUPT)
edesc->pset[i].param.opt |= TCINTEN;
}
/* Place the cyclic channel to highest priority queue */
edma_assign_channel_eventq(echan->ecc, echan->ch_num, EVENTQ_0);
return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}
static void edma_callback(unsigned ch_num, u16 ch_status, void *data)
{
struct edma_chan *echan = data;
struct edma_cc *ecc = echan->ecc;
struct device *dev = echan->vchan.chan.device->dev;
struct edma_desc *edesc;
dma: edma: Find missed events and issue them In an effort to move to using Scatter gather lists of any size with EDMA as discussed at [1] instead of placing limitations on the driver, we work through the limitations of the EDMAC hardware to find missed events and issue them. The sequence of events that require this are: For the scenario where MAX slots for an EDMA channel is 3: SG1 -> SG2 -> SG3 -> SG4 -> SG5 -> SG6 -> Null The above SG list will have to be DMA'd in 2 sets: (1) SG1 -> SG2 -> SG3 -> Null (2) SG4 -> SG5 -> SG6 -> Null After (1) is succesfully transferred, the events from the MMC controller donot stop coming and are missed by the time we have setup the transfer for (2). So here, we catch the events missed as an error condition and issue them manually. In the second part of the patch, we make handle the NULL slot cases: For crypto IP, we continue to receive events even continuously in NULL slot, the setup of the next set of SG elements happens after the error handler executes. This is results in some recursion problems. Due to this, we continously receive error interrupts when we manually trigger an event from the error handler. We fix this, by first detecting if the Channel is currently transferring from a NULL slot or not, that's where the edma_read_slot in the error callback from interrupt handler comes in. With this we can determine if the set up of the next SG list has completed, and we manually trigger only in this case. If the setup has _not_ completed, we are still in NULL so we just set a missed flag and allow the manual triggerring to happen in edma_execute which will be eventually called. This fixes the above mentioned race conditions seen with the crypto drivers. [1] http://marc.info/?l=linux-omap&m=137416733628831&w=2 Signed-off-by: Joel Fernandes <joelf@ti.com> Signed-off-by: Vinod Koul <vinod.koul@intel.com>
2013-08-30 07:05:43 +08:00
struct edmacc_param p;
edesc = echan->edesc;
spin_lock(&echan->vchan.lock);
switch (ch_status) {
case EDMA_DMA_COMPLETE:
if (edesc) {
if (edesc->cyclic) {
vchan_cyclic_callback(&edesc->vdesc);
goto out;
} else if (edesc->processed == edesc->pset_nr) {
dev_dbg(dev,
"Transfer completed on channel %d\n",
ch_num);
edesc->residue = 0;
edma_stop(ecc, echan->ch_num);
vchan_cookie_complete(&edesc->vdesc);
echan->edesc = NULL;
} else {
dev_dbg(dev,
"Sub transfer completed on channel %d\n",
ch_num);
edma_pause(ecc, echan->ch_num);
/* Update statistics for tx_status */
edesc->residue -= edesc->sg_len;
edesc->residue_stat = edesc->residue;
edesc->processed_stat = edesc->processed;
}
edma_execute(echan);
}
break;
case EDMA_DMA_CC_ERROR:
edma_read_slot(ecc, echan->slot[0], &p);
dma: edma: Find missed events and issue them In an effort to move to using Scatter gather lists of any size with EDMA as discussed at [1] instead of placing limitations on the driver, we work through the limitations of the EDMAC hardware to find missed events and issue them. The sequence of events that require this are: For the scenario where MAX slots for an EDMA channel is 3: SG1 -> SG2 -> SG3 -> SG4 -> SG5 -> SG6 -> Null The above SG list will have to be DMA'd in 2 sets: (1) SG1 -> SG2 -> SG3 -> Null (2) SG4 -> SG5 -> SG6 -> Null After (1) is succesfully transferred, the events from the MMC controller donot stop coming and are missed by the time we have setup the transfer for (2). So here, we catch the events missed as an error condition and issue them manually. In the second part of the patch, we make handle the NULL slot cases: For crypto IP, we continue to receive events even continuously in NULL slot, the setup of the next set of SG elements happens after the error handler executes. This is results in some recursion problems. Due to this, we continously receive error interrupts when we manually trigger an event from the error handler. We fix this, by first detecting if the Channel is currently transferring from a NULL slot or not, that's where the edma_read_slot in the error callback from interrupt handler comes in. With this we can determine if the set up of the next SG list has completed, and we manually trigger only in this case. If the setup has _not_ completed, we are still in NULL so we just set a missed flag and allow the manual triggerring to happen in edma_execute which will be eventually called. This fixes the above mentioned race conditions seen with the crypto drivers. [1] http://marc.info/?l=linux-omap&m=137416733628831&w=2 Signed-off-by: Joel Fernandes <joelf@ti.com> Signed-off-by: Vinod Koul <vinod.koul@intel.com>
2013-08-30 07:05:43 +08:00
/*
* Issue later based on missed flag which will be sure
* to happen as:
* (1) we finished transmitting an intermediate slot and
* edma_execute is coming up.
* (2) or we finished current transfer and issue will
* call edma_execute.
*
* Important note: issuing can be dangerous here and
* lead to some nasty recursion when we are in a NULL
* slot. So we avoid doing so and set the missed flag.
*/
if (p.a_b_cnt == 0 && p.ccnt == 0) {
dev_dbg(dev, "Error on null slot, setting miss\n");
dma: edma: Find missed events and issue them In an effort to move to using Scatter gather lists of any size with EDMA as discussed at [1] instead of placing limitations on the driver, we work through the limitations of the EDMAC hardware to find missed events and issue them. The sequence of events that require this are: For the scenario where MAX slots for an EDMA channel is 3: SG1 -> SG2 -> SG3 -> SG4 -> SG5 -> SG6 -> Null The above SG list will have to be DMA'd in 2 sets: (1) SG1 -> SG2 -> SG3 -> Null (2) SG4 -> SG5 -> SG6 -> Null After (1) is succesfully transferred, the events from the MMC controller donot stop coming and are missed by the time we have setup the transfer for (2). So here, we catch the events missed as an error condition and issue them manually. In the second part of the patch, we make handle the NULL slot cases: For crypto IP, we continue to receive events even continuously in NULL slot, the setup of the next set of SG elements happens after the error handler executes. This is results in some recursion problems. Due to this, we continously receive error interrupts when we manually trigger an event from the error handler. We fix this, by first detecting if the Channel is currently transferring from a NULL slot or not, that's where the edma_read_slot in the error callback from interrupt handler comes in. With this we can determine if the set up of the next SG list has completed, and we manually trigger only in this case. If the setup has _not_ completed, we are still in NULL so we just set a missed flag and allow the manual triggerring to happen in edma_execute which will be eventually called. This fixes the above mentioned race conditions seen with the crypto drivers. [1] http://marc.info/?l=linux-omap&m=137416733628831&w=2 Signed-off-by: Joel Fernandes <joelf@ti.com> Signed-off-by: Vinod Koul <vinod.koul@intel.com>
2013-08-30 07:05:43 +08:00
echan->missed = 1;
} else {
/*
* The slot is already programmed but the event got
* missed, so its safe to issue it here.
*/
dev_dbg(dev, "Missed event, TRIGGERING\n");
edma_clean_channel(ecc, echan->ch_num);
edma_stop(ecc, echan->ch_num);
edma_start(ecc, echan->ch_num);
edma_trigger_channel(ecc, echan->ch_num);
dma: edma: Find missed events and issue them In an effort to move to using Scatter gather lists of any size with EDMA as discussed at [1] instead of placing limitations on the driver, we work through the limitations of the EDMAC hardware to find missed events and issue them. The sequence of events that require this are: For the scenario where MAX slots for an EDMA channel is 3: SG1 -> SG2 -> SG3 -> SG4 -> SG5 -> SG6 -> Null The above SG list will have to be DMA'd in 2 sets: (1) SG1 -> SG2 -> SG3 -> Null (2) SG4 -> SG5 -> SG6 -> Null After (1) is succesfully transferred, the events from the MMC controller donot stop coming and are missed by the time we have setup the transfer for (2). So here, we catch the events missed as an error condition and issue them manually. In the second part of the patch, we make handle the NULL slot cases: For crypto IP, we continue to receive events even continuously in NULL slot, the setup of the next set of SG elements happens after the error handler executes. This is results in some recursion problems. Due to this, we continously receive error interrupts when we manually trigger an event from the error handler. We fix this, by first detecting if the Channel is currently transferring from a NULL slot or not, that's where the edma_read_slot in the error callback from interrupt handler comes in. With this we can determine if the set up of the next SG list has completed, and we manually trigger only in this case. If the setup has _not_ completed, we are still in NULL so we just set a missed flag and allow the manual triggerring to happen in edma_execute which will be eventually called. This fixes the above mentioned race conditions seen with the crypto drivers. [1] http://marc.info/?l=linux-omap&m=137416733628831&w=2 Signed-off-by: Joel Fernandes <joelf@ti.com> Signed-off-by: Vinod Koul <vinod.koul@intel.com>
2013-08-30 07:05:43 +08:00
}
break;
default:
break;
}
out:
spin_unlock(&echan->vchan.lock);
}
/* Alloc channel resources */
static int edma_alloc_chan_resources(struct dma_chan *chan)
{
struct edma_chan *echan = to_edma_chan(chan);
struct device *dev = chan->device->dev;
int ret;
int a_ch_num;
LIST_HEAD(descs);
a_ch_num = edma_alloc_channel(echan->ecc, echan->ch_num,
edma_callback, echan, EVENTQ_DEFAULT);
if (a_ch_num < 0) {
ret = -ENODEV;
goto err_no_chan;
}
if (a_ch_num != echan->ch_num) {
dev_err(dev, "failed to allocate requested channel %u:%u\n",
EDMA_CTLR(echan->ch_num),
EDMA_CHAN_SLOT(echan->ch_num));
ret = -ENODEV;
goto err_wrong_chan;
}
echan->alloced = true;
echan->slot[0] = echan->ch_num;
dev_dbg(dev, "allocated channel %d for %u:%u\n", echan->ch_num,
EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num));
return 0;
err_wrong_chan:
edma_free_channel(echan->ecc, a_ch_num);
err_no_chan:
return ret;
}
/* Free channel resources */
static void edma_free_chan_resources(struct dma_chan *chan)
{
struct edma_chan *echan = to_edma_chan(chan);
int i;
/* Terminate transfers */
edma_stop(echan->ecc, echan->ch_num);
vchan_free_chan_resources(&echan->vchan);
/* Free EDMA PaRAM slots */
for (i = 1; i < EDMA_MAX_SLOTS; i++) {
if (echan->slot[i] >= 0) {
edma_free_slot(echan->ecc, echan->slot[i]);
echan->slot[i] = -1;
}
}
/* Free EDMA channel */
if (echan->alloced) {
edma_free_channel(echan->ecc, echan->ch_num);
echan->alloced = false;
}
dev_dbg(chan->device->dev, "freeing channel for %u\n", echan->ch_num);
}
/* Send pending descriptor to hardware */
static void edma_issue_pending(struct dma_chan *chan)
{
struct edma_chan *echan = to_edma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&echan->vchan.lock, flags);
if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
edma_execute(echan);
spin_unlock_irqrestore(&echan->vchan.lock, flags);
}
static u32 edma_residue(struct edma_desc *edesc)
{
bool dst = edesc->direction == DMA_DEV_TO_MEM;
struct edma_pset *pset = edesc->pset;
dma_addr_t done, pos;
int i;
/*
* We always read the dst/src position from the first RamPar
* pset. That's the one which is active now.
*/
pos = edma_get_position(edesc->echan->ecc, edesc->echan->slot[0], dst);
/*
* Cyclic is simple. Just subtract pset[0].addr from pos.
*
* We never update edesc->residue in the cyclic case, so we
* can tell the remaining room to the end of the circular
* buffer.
*/
if (edesc->cyclic) {
done = pos - pset->addr;
edesc->residue_stat = edesc->residue - done;
return edesc->residue_stat;
}
/*
* For SG operation we catch up with the last processed
* status.
*/
pset += edesc->processed_stat;
for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
/*
* If we are inside this pset address range, we know
* this is the active one. Get the current delta and
* stop walking the psets.
*/
if (pos >= pset->addr && pos < pset->addr + pset->len)
return edesc->residue_stat - (pos - pset->addr);
/* Otherwise mark it done and update residue_stat. */
edesc->processed_stat++;
edesc->residue_stat -= pset->len;
}
return edesc->residue_stat;
}
/* Check request completion status */
static enum dma_status edma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct edma_chan *echan = to_edma_chan(chan);
struct virt_dma_desc *vdesc;
enum dma_status ret;
unsigned long flags;
ret = dma_cookie_status(chan, cookie, txstate);
if (ret == DMA_COMPLETE || !txstate)
return ret;
spin_lock_irqsave(&echan->vchan.lock, flags);
if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
txstate->residue = edma_residue(echan->edesc);
else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
txstate->residue = to_edma_desc(&vdesc->tx)->residue;
spin_unlock_irqrestore(&echan->vchan.lock, flags);
return ret;
}
static void __init edma_chan_init(struct edma_cc *ecc, struct dma_device *dma,
struct edma_chan *echans)
{
int i, j;
for (i = 0; i < ecc->num_channels; i++) {
struct edma_chan *echan = &echans[i];
echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
echan->ecc = ecc;
echan->vchan.desc_free = edma_desc_free;
vchan_init(&echan->vchan, dma);
INIT_LIST_HEAD(&echan->node);
for (j = 0; j < EDMA_MAX_SLOTS; j++)
echan->slot[j] = -1;
}
}
#define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma,
struct device *dev)
{
dma->device_prep_slave_sg = edma_prep_slave_sg;
dma->device_prep_dma_cyclic = edma_prep_dma_cyclic;
dma->device_prep_dma_memcpy = edma_prep_dma_memcpy;
dma->device_alloc_chan_resources = edma_alloc_chan_resources;
dma->device_free_chan_resources = edma_free_chan_resources;
dma->device_issue_pending = edma_issue_pending;
dma->device_tx_status = edma_tx_status;
dma->device_config = edma_slave_config;
dma->device_pause = edma_dma_pause;
dma->device_resume = edma_dma_resume;
dma->device_terminate_all = edma_terminate_all;
dma->src_addr_widths = EDMA_DMA_BUSWIDTHS;
dma->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
dma->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
dma->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
dma->dev = dev;
/*
* code using dma memcpy must make sure alignment of
* length is at dma->copy_align boundary.
*/
dma->copy_align = DMAENGINE_ALIGN_4_BYTES;
INIT_LIST_HEAD(&dma->channels);
}
static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
struct edma_cc *ecc)
{
int i;
u32 value, cccfg;
s8 (*queue_priority_map)[2];
/* Decode the eDMA3 configuration from CCCFG register */
cccfg = edma_read(ecc, EDMA_CCCFG);
value = GET_NUM_REGN(cccfg);
ecc->num_region = BIT(value);
value = GET_NUM_DMACH(cccfg);
ecc->num_channels = BIT(value + 1);
value = GET_NUM_PAENTRY(cccfg);
ecc->num_slots = BIT(value + 4);
value = GET_NUM_EVQUE(cccfg);
ecc->num_tc = value + 1;
dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
dev_dbg(dev, "num_region: %u\n", ecc->num_region);
dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
/* Nothing need to be done if queue priority is provided */
if (pdata->queue_priority_mapping)
return 0;
/*
* Configure TC/queue priority as follows:
* Q0 - priority 0
* Q1 - priority 1
* Q2 - priority 2
* ...
* The meaning of priority numbers: 0 highest priority, 7 lowest
* priority. So Q0 is the highest priority queue and the last queue has
* the lowest priority.
*/
queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
GFP_KERNEL);
if (!queue_priority_map)
return -ENOMEM;
for (i = 0; i < ecc->num_tc; i++) {
queue_priority_map[i][0] = i;
queue_priority_map[i][1] = i;
}
queue_priority_map[i][0] = -1;
queue_priority_map[i][1] = -1;
pdata->queue_priority_mapping = queue_priority_map;
/* Default queue has the lowest priority */
pdata->default_queue = i - 1;
return 0;
}
#if IS_ENABLED(CONFIG_OF)
static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
size_t sz)
{
const char pname[] = "ti,edma-xbar-event-map";
struct resource res;
void __iomem *xbar;
s16 (*xbar_chans)[2];
size_t nelm = sz / sizeof(s16);
u32 shift, offset, mux;
int ret, i;
xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
if (!xbar_chans)
return -ENOMEM;
ret = of_address_to_resource(dev->of_node, 1, &res);
if (ret)
return -ENOMEM;
xbar = devm_ioremap(dev, res.start, resource_size(&res));
if (!xbar)
return -ENOMEM;
ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
nelm);
if (ret)
return -EIO;
/* Invalidate last entry for the other user of this mess */
nelm >>= 1;
xbar_chans[nelm][0] = -1;
xbar_chans[nelm][1] = -1;
for (i = 0; i < nelm; i++) {
shift = (xbar_chans[i][1] & 0x03) << 3;
offset = xbar_chans[i][1] & 0xfffffffc;
mux = readl(xbar + offset);
mux &= ~(0xff << shift);
mux |= xbar_chans[i][0] << shift;
writel(mux, (xbar + offset));
}
pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
return 0;
}
static int edma_of_parse_dt(struct device *dev, struct edma_soc_info *pdata)
{
int ret = 0;
struct property *prop;
size_t sz;
struct edma_rsv_info *rsv_info;
rsv_info = devm_kzalloc(dev, sizeof(struct edma_rsv_info), GFP_KERNEL);
if (!rsv_info)
return -ENOMEM;
pdata->rsv = rsv_info;
prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map", &sz);
if (prop)
ret = edma_xbar_event_map(dev, pdata, sz);
return ret;
}
static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev)
{
struct edma_soc_info *info;
int ret;
info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
if (!info)
return ERR_PTR(-ENOMEM);
ret = edma_of_parse_dt(dev, info);
if (ret)
return ERR_PTR(ret);
return info;
}
#else
static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev)
{
return ERR_PTR(-EINVAL);
}
#endif
static int edma_probe(struct platform_device *pdev)
{
struct edma_soc_info *info = pdev->dev.platform_data;
s8 (*queue_priority_mapping)[2];
int i, off, ln;
const s16 (*rsv_chans)[2];
const s16 (*rsv_slots)[2];
const s16 (*xbar_chans)[2];
int irq;
char *irq_name;
struct resource *mem;
struct device_node *node = pdev->dev.of_node;
struct device *dev = &pdev->dev;
struct edma_cc *ecc;
int ret;
if (node) {
info = edma_setup_info_from_dt(dev);
if (IS_ERR(info)) {
dev_err(dev, "failed to get DT data\n");
return PTR_ERR(info);
}
}
if (!info)
return -ENODEV;
pm_runtime_enable(dev);
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
dev_err(dev, "pm_runtime_get_sync() failed\n");
return ret;
}
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
if (ret)
return ret;
ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
if (!ecc) {
dev_err(dev, "Can't allocate controller\n");
return -ENOMEM;
}
ecc->dev = dev;
ecc->id = pdev->id;
/* When booting with DT the pdev->id is -1 */
if (ecc->id < 0)
ecc->id = 0;
mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
if (!mem) {
dev_dbg(dev, "mem resource not found, using index 0\n");
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!mem) {
dev_err(dev, "no mem resource?\n");
return -ENODEV;
}
}
ecc->base = devm_ioremap_resource(dev, mem);
if (IS_ERR(ecc->base))
return PTR_ERR(ecc->base);
platform_set_drvdata(pdev, ecc);
/* Get eDMA3 configuration from IP */
ret = edma_setup_from_hw(dev, info, ecc);
if (ret)
return ret;
/* Allocate memory based on the information we got from the IP */
ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
sizeof(*ecc->slave_chans), GFP_KERNEL);
if (!ecc->slave_chans)
return -ENOMEM;
ecc->intr_data = devm_kcalloc(dev, ecc->num_channels,
sizeof(*ecc->intr_data), GFP_KERNEL);
if (!ecc->intr_data)
return -ENOMEM;
ecc->edma_unused = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_channels),
sizeof(unsigned long), GFP_KERNEL);
if (!ecc->edma_unused)
return -ENOMEM;
ecc->edma_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
sizeof(unsigned long), GFP_KERNEL);
if (!ecc->edma_inuse)
return -ENOMEM;
ecc->default_queue = info->default_queue;
for (i = 0; i < ecc->num_slots; i++)
edma_write_slot(ecc, i, &dummy_paramset);
/* Mark all channels as unused */
memset(ecc->edma_unused, 0xff, sizeof(ecc->edma_unused));
if (info->rsv) {
/* Clear the reserved channels in unused list */
rsv_chans = info->rsv->rsv_chans;
if (rsv_chans) {
for (i = 0; rsv_chans[i][0] != -1; i++) {
off = rsv_chans[i][0];
ln = rsv_chans[i][1];
clear_bits(off, ln, ecc->edma_unused);
}
}
/* Set the reserved slots in inuse list */
rsv_slots = info->rsv->rsv_slots;
if (rsv_slots) {
for (i = 0; rsv_slots[i][0] != -1; i++) {
off = rsv_slots[i][0];
ln = rsv_slots[i][1];
set_bits(off, ln, ecc->edma_inuse);
}
}
}
/* Clear the xbar mapped channels in unused list */
xbar_chans = info->xbar_chans;
if (xbar_chans) {
for (i = 0; xbar_chans[i][1] != -1; i++) {
off = xbar_chans[i][1];
clear_bits(off, 1, ecc->edma_unused);
}
}
irq = platform_get_irq_byname(pdev, "edma3_ccint");
if (irq < 0 && node)
irq = irq_of_parse_and_map(node, 0);
if (irq >= 0) {
irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
dev_name(dev));
ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
ecc);
if (ret) {
dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
return ret;
}
}
irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
if (irq < 0 && node)
irq = irq_of_parse_and_map(node, 2);
if (irq >= 0) {
irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
dev_name(dev));
ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
ecc);
if (ret) {
dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
return ret;
}
}
for (i = 0; i < ecc->num_channels; i++)
edma_map_dmach_to_queue(ecc, i, info->default_queue);
queue_priority_mapping = info->queue_priority_mapping;
/* Event queue priority mapping */
for (i = 0; queue_priority_mapping[i][0] != -1; i++)
edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
queue_priority_mapping[i][1]);
/* Map the channel to param entry if channel mapping logic exist */
if (edma_read(ecc, EDMA_CCCFG) & CHMAP_EXIST)
edma_direct_dmach_to_param_mapping(ecc);
for (i = 0; i < ecc->num_region; i++) {
edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
edma_write_array(ecc, EDMA_QRAE, i, 0x0);
}
ecc->info = info;
ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
if (ecc->dummy_slot < 0) {
dev_err(dev, "Can't allocate PaRAM dummy slot\n");
return ecc->dummy_slot;
}
dma_cap_zero(ecc->dma_slave.cap_mask);
dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask);
dma_cap_set(DMA_CYCLIC, ecc->dma_slave.cap_mask);
dma_cap_set(DMA_MEMCPY, ecc->dma_slave.cap_mask);
edma_dma_init(ecc, &ecc->dma_slave, dev);
edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans);
ret = dma_async_device_register(&ecc->dma_slave);
if (ret)
goto err_reg1;
if (node)
of_dma_controller_register(node, of_dma_xlate_by_chan_id,
&ecc->dma_slave);
dev_info(dev, "TI EDMA DMA engine driver\n");
return 0;
err_reg1:
edma_free_slot(ecc, ecc->dummy_slot);
return ret;
}
static int edma_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct edma_cc *ecc = dev_get_drvdata(dev);
if (dev->of_node)
of_dma_controller_free(dev->of_node);
dma_async_device_unregister(&ecc->dma_slave);
edma_free_slot(ecc, ecc->dummy_slot);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int edma_pm_resume(struct device *dev)
{
struct edma_cc *ecc = dev_get_drvdata(dev);
int i;
s8 (*queue_priority_mapping)[2];
queue_priority_mapping = ecc->info->queue_priority_mapping;
/* Event queue priority mapping */
for (i = 0; queue_priority_mapping[i][0] != -1; i++)
edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
queue_priority_mapping[i][1]);
/* Map the channel to param entry if channel mapping logic */
if (edma_read(ecc, EDMA_CCCFG) & CHMAP_EXIST)
edma_direct_dmach_to_param_mapping(ecc);
for (i = 0; i < ecc->num_channels; i++) {
if (test_bit(i, ecc->edma_inuse)) {
/* ensure access through shadow region 0 */
edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
BIT(i & 0x1f));
edma_setup_interrupt(ecc, EDMA_CTLR_CHAN(ecc->id, i),
ecc->intr_data[i].callback,
ecc->intr_data[i].data);
}
}
return 0;
}
#endif
static const struct dev_pm_ops edma_pm_ops = {
SET_LATE_SYSTEM_SLEEP_PM_OPS(NULL, edma_pm_resume)
};
static struct platform_driver edma_driver = {
.probe = edma_probe,
.remove = edma_remove,
.driver = {
.name = "edma",
.pm = &edma_pm_ops,
.of_match_table = edma_of_ids,
},
};
bool edma_filter_fn(struct dma_chan *chan, void *param)
{
if (chan->device->dev->driver == &edma_driver.driver) {
struct edma_chan *echan = to_edma_chan(chan);
unsigned ch_req = *(unsigned *)param;
return ch_req == echan->ch_num;
}
return false;
}
EXPORT_SYMBOL(edma_filter_fn);
static int edma_init(void)
{
return platform_driver_register(&edma_driver);
}
subsys_initcall(edma_init);
static void __exit edma_exit(void)
{
platform_driver_unregister(&edma_driver);
}
module_exit(edma_exit);
MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
MODULE_DESCRIPTION("TI EDMA DMA engine driver");
MODULE_LICENSE("GPL v2");