2016-07-20 16:21:08 +08:00
|
|
|
/*
|
|
|
|
* Copyright © 2008-2015 Intel Corporation
|
|
|
|
*
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
|
|
* to deal in the Software without restriction, including without limitation
|
|
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
|
|
*
|
|
|
|
* The above copyright notice and this permission notice (including the next
|
|
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
|
|
* Software.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
|
|
* IN THE SOFTWARE.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef I915_GEM_REQUEST_H
|
|
|
|
#define I915_GEM_REQUEST_H
|
|
|
|
|
2016-07-20 16:21:11 +08:00
|
|
|
#include <linux/fence.h>
|
|
|
|
|
|
|
|
#include "i915_gem.h"
|
|
|
|
|
2016-07-20 16:21:08 +08:00
|
|
|
/**
|
|
|
|
* Request queue structure.
|
|
|
|
*
|
|
|
|
* The request queue allows us to note sequence numbers that have been emitted
|
|
|
|
* and may be associated with active buffers to be retired.
|
|
|
|
*
|
|
|
|
* By keeping this list, we can avoid having to do questionable sequence
|
|
|
|
* number comparisons on buffer last_read|write_seqno. It also allows an
|
|
|
|
* emission time to be associated with the request for tracking how far ahead
|
|
|
|
* of the GPU the submission is.
|
|
|
|
*
|
2016-07-20 16:21:11 +08:00
|
|
|
* The requests are reference counted.
|
2016-07-20 16:21:08 +08:00
|
|
|
*/
|
|
|
|
struct drm_i915_gem_request {
|
2016-07-20 16:21:11 +08:00
|
|
|
struct fence fence;
|
|
|
|
spinlock_t lock;
|
2016-07-20 16:21:08 +08:00
|
|
|
|
|
|
|
/** On Which ring this request was generated */
|
|
|
|
struct drm_i915_private *i915;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Context and ring buffer related to this request
|
|
|
|
* Contexts are refcounted, so when this request is associated with a
|
|
|
|
* context, we must increment the context's refcount, to guarantee that
|
|
|
|
* it persists while any request is linked to it. Requests themselves
|
|
|
|
* are also refcounted, so the request will only be freed when the last
|
|
|
|
* reference to it is dismissed, and the code in
|
|
|
|
* i915_gem_request_free() will then decrement the refcount on the
|
|
|
|
* context.
|
|
|
|
*/
|
|
|
|
struct i915_gem_context *ctx;
|
|
|
|
struct intel_engine_cs *engine;
|
2016-08-03 05:50:21 +08:00
|
|
|
struct intel_ring *ring;
|
2016-07-20 16:21:08 +08:00
|
|
|
struct intel_signal_node signaling;
|
|
|
|
|
|
|
|
/** GEM sequence number associated with the previous request,
|
|
|
|
* when the HWS breadcrumb is equal to this the GPU is processing
|
|
|
|
* this request.
|
|
|
|
*/
|
|
|
|
u32 previous_seqno;
|
|
|
|
|
|
|
|
/** Position in the ringbuffer of the start of the request */
|
|
|
|
u32 head;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Position in the ringbuffer of the start of the postfix.
|
|
|
|
* This is required to calculate the maximum available ringbuffer
|
|
|
|
* space without overwriting the postfix.
|
|
|
|
*/
|
|
|
|
u32 postfix;
|
|
|
|
|
|
|
|
/** Position in the ringbuffer of the end of the whole request */
|
|
|
|
u32 tail;
|
|
|
|
|
|
|
|
/** Preallocate space in the ringbuffer for the emitting the request */
|
|
|
|
u32 reserved_space;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Context related to the previous request.
|
|
|
|
* As the contexts are accessed by the hardware until the switch is
|
|
|
|
* completed to a new context, the hardware may still be writing
|
|
|
|
* to the context object after the breadcrumb is visible. We must
|
|
|
|
* not unpin/unbind/prune that object whilst still active and so
|
|
|
|
* we keep the previous context pinned until the following (this)
|
|
|
|
* request is retired.
|
|
|
|
*/
|
|
|
|
struct i915_gem_context *previous_context;
|
|
|
|
|
|
|
|
/** Batch buffer related to this request if any (used for
|
|
|
|
* error state dump only).
|
|
|
|
*/
|
|
|
|
struct drm_i915_gem_object *batch_obj;
|
drm/i915: Refactor activity tracking for requests
With the introduction of requests, we amplified the number of atomic
refcounted objects we use and update every execbuffer; from none to
several references, and a set of references that need to be changed. We
also introduced interesting side-effects in the order of retiring
requests and objects.
Instead of independently tracking the last request for an object, track
the active objects for each request. The object will reside in the
buffer list of its most recent active request and so we reduce the kref
interchange to a list_move. Now retirements are entirely driven by the
request, dramatically simplifying activity tracking on the object
themselves, and removing the ambiguity between retiring objects and
retiring requests.
Furthermore with the consolidation of managing the activity tracking
centrally, we can look forward to using RCU to enable lockless lookup of
the current active requests for an object. In the future, we will be
able to query the status or wait upon rendering to an object without
even touching the struct_mutex BKL.
All told, less code, simpler and faster, and more extensible.
v2: Add a typedef for the function pointer for convenience later.
v3: Make the noop retirement callback explicit. Allow passing NULL to
the init_request_active() which is expanded to a common noop function.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1470293567-10811-16-git-send-email-chris@chris-wilson.co.uk
2016-08-04 14:52:35 +08:00
|
|
|
struct list_head active_list;
|
2016-07-20 16:21:08 +08:00
|
|
|
|
|
|
|
/** Time at which this request was emitted, in jiffies. */
|
|
|
|
unsigned long emitted_jiffies;
|
|
|
|
|
2016-08-04 14:52:33 +08:00
|
|
|
/** engine->request_list entry for this request */
|
|
|
|
struct list_head link;
|
2016-07-20 16:21:08 +08:00
|
|
|
|
|
|
|
struct drm_i915_file_private *file_priv;
|
|
|
|
/** file_priv list entry for this request */
|
|
|
|
struct list_head client_list;
|
|
|
|
|
|
|
|
/** process identifier submitting this request */
|
|
|
|
struct pid *pid;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The ELSP only accepts two elements at a time, so we queue
|
|
|
|
* context/tail pairs on a given queue (ring->execlist_queue) until the
|
|
|
|
* hardware is available. The queue serves a double purpose: we also use
|
|
|
|
* it to keep track of the up to 2 contexts currently in the hardware
|
|
|
|
* (usually one in execution and the other queued up by the GPU): We
|
|
|
|
* only remove elements from the head of the queue when the hardware
|
|
|
|
* informs us that an element has been completed.
|
|
|
|
*
|
|
|
|
* All accesses to the queue are mediated by a spinlock
|
|
|
|
* (ring->execlist_lock).
|
|
|
|
*/
|
|
|
|
|
|
|
|
/** Execlist link in the submission queue.*/
|
|
|
|
struct list_head execlist_link;
|
|
|
|
|
|
|
|
/** Execlists no. of times this request has been sent to the ELSP */
|
|
|
|
int elsp_submitted;
|
|
|
|
|
|
|
|
/** Execlists context hardware id. */
|
|
|
|
unsigned int ctx_hw_id;
|
|
|
|
};
|
|
|
|
|
2016-07-20 16:21:11 +08:00
|
|
|
extern const struct fence_ops i915_fence_ops;
|
|
|
|
|
|
|
|
static inline bool fence_is_i915(struct fence *fence)
|
|
|
|
{
|
|
|
|
return fence->ops == &i915_fence_ops;
|
|
|
|
}
|
|
|
|
|
2016-07-20 16:21:08 +08:00
|
|
|
struct drm_i915_gem_request * __must_check
|
|
|
|
i915_gem_request_alloc(struct intel_engine_cs *engine,
|
|
|
|
struct i915_gem_context *ctx);
|
|
|
|
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
|
|
|
|
struct drm_file *file);
|
|
|
|
void i915_gem_request_retire_upto(struct drm_i915_gem_request *req);
|
|
|
|
|
|
|
|
static inline u32
|
|
|
|
i915_gem_request_get_seqno(struct drm_i915_gem_request *req)
|
|
|
|
{
|
2016-07-20 16:21:11 +08:00
|
|
|
return req ? req->fence.seqno : 0;
|
2016-07-20 16:21:08 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline struct intel_engine_cs *
|
|
|
|
i915_gem_request_get_engine(struct drm_i915_gem_request *req)
|
|
|
|
{
|
|
|
|
return req ? req->engine : NULL;
|
|
|
|
}
|
|
|
|
|
2016-07-20 16:21:11 +08:00
|
|
|
static inline struct drm_i915_gem_request *
|
|
|
|
to_request(struct fence *fence)
|
|
|
|
{
|
|
|
|
/* We assume that NULL fence/request are interoperable */
|
|
|
|
BUILD_BUG_ON(offsetof(struct drm_i915_gem_request, fence) != 0);
|
|
|
|
GEM_BUG_ON(fence && !fence_is_i915(fence));
|
|
|
|
return container_of(fence, struct drm_i915_gem_request, fence);
|
|
|
|
}
|
|
|
|
|
2016-07-20 16:21:08 +08:00
|
|
|
static inline struct drm_i915_gem_request *
|
2016-07-20 20:31:49 +08:00
|
|
|
i915_gem_request_get(struct drm_i915_gem_request *req)
|
2016-07-20 16:21:08 +08:00
|
|
|
{
|
2016-07-20 16:21:11 +08:00
|
|
|
return to_request(fence_get(&req->fence));
|
2016-07-20 16:21:08 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline void
|
2016-07-20 20:31:49 +08:00
|
|
|
i915_gem_request_put(struct drm_i915_gem_request *req)
|
2016-07-20 16:21:08 +08:00
|
|
|
{
|
2016-07-20 16:21:11 +08:00
|
|
|
fence_put(&req->fence);
|
2016-07-20 16:21:08 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline void i915_gem_request_assign(struct drm_i915_gem_request **pdst,
|
|
|
|
struct drm_i915_gem_request *src)
|
|
|
|
{
|
|
|
|
if (src)
|
2016-07-20 20:31:49 +08:00
|
|
|
i915_gem_request_get(src);
|
2016-07-20 16:21:08 +08:00
|
|
|
|
|
|
|
if (*pdst)
|
2016-07-20 20:31:49 +08:00
|
|
|
i915_gem_request_put(*pdst);
|
2016-07-20 16:21:08 +08:00
|
|
|
|
|
|
|
*pdst = src;
|
|
|
|
}
|
|
|
|
|
|
|
|
void __i915_add_request(struct drm_i915_gem_request *req,
|
|
|
|
struct drm_i915_gem_object *batch_obj,
|
|
|
|
bool flush_caches);
|
|
|
|
#define i915_add_request(req) \
|
|
|
|
__i915_add_request(req, NULL, true)
|
|
|
|
#define i915_add_request_no_flush(req) \
|
|
|
|
__i915_add_request(req, NULL, false)
|
|
|
|
|
|
|
|
struct intel_rps_client;
|
2016-07-20 16:21:12 +08:00
|
|
|
#define NO_WAITBOOST ERR_PTR(-1)
|
|
|
|
#define IS_RPS_CLIENT(p) (!IS_ERR(p))
|
|
|
|
#define IS_RPS_USER(p) (!IS_ERR_OR_NULL(p))
|
2016-07-20 16:21:08 +08:00
|
|
|
|
|
|
|
int __i915_wait_request(struct drm_i915_gem_request *req,
|
|
|
|
bool interruptible,
|
|
|
|
s64 *timeout,
|
drm/i915: Refactor activity tracking for requests
With the introduction of requests, we amplified the number of atomic
refcounted objects we use and update every execbuffer; from none to
several references, and a set of references that need to be changed. We
also introduced interesting side-effects in the order of retiring
requests and objects.
Instead of independently tracking the last request for an object, track
the active objects for each request. The object will reside in the
buffer list of its most recent active request and so we reduce the kref
interchange to a list_move. Now retirements are entirely driven by the
request, dramatically simplifying activity tracking on the object
themselves, and removing the ambiguity between retiring objects and
retiring requests.
Furthermore with the consolidation of managing the activity tracking
centrally, we can look forward to using RCU to enable lockless lookup of
the current active requests for an object. In the future, we will be
able to query the status or wait upon rendering to an object without
even touching the struct_mutex BKL.
All told, less code, simpler and faster, and more extensible.
v2: Add a typedef for the function pointer for convenience later.
v3: Make the noop retirement callback explicit. Allow passing NULL to
the init_request_active() which is expanded to a common noop function.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1470293567-10811-16-git-send-email-chris@chris-wilson.co.uk
2016-08-04 14:52:35 +08:00
|
|
|
struct intel_rps_client *rps)
|
|
|
|
__attribute__((nonnull(1)));
|
|
|
|
|
|
|
|
int __must_check
|
|
|
|
i915_wait_request(struct drm_i915_gem_request *req)
|
|
|
|
__attribute__((nonnull));
|
2016-07-20 16:21:08 +08:00
|
|
|
|
|
|
|
static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns true if seq1 is later than seq2.
|
|
|
|
*/
|
|
|
|
static inline bool i915_seqno_passed(u32 seq1, u32 seq2)
|
|
|
|
{
|
|
|
|
return (s32)(seq1 - seq2) >= 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool
|
|
|
|
i915_gem_request_started(const struct drm_i915_gem_request *req)
|
|
|
|
{
|
|
|
|
return i915_seqno_passed(intel_engine_get_seqno(req->engine),
|
|
|
|
req->previous_seqno);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool
|
|
|
|
i915_gem_request_completed(const struct drm_i915_gem_request *req)
|
|
|
|
{
|
|
|
|
return i915_seqno_passed(intel_engine_get_seqno(req->engine),
|
2016-07-20 16:21:11 +08:00
|
|
|
req->fence.seqno);
|
2016-07-20 16:21:08 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
bool __i915_spin_request(const struct drm_i915_gem_request *request,
|
|
|
|
int state, unsigned long timeout_us);
|
|
|
|
static inline bool i915_spin_request(const struct drm_i915_gem_request *request,
|
|
|
|
int state, unsigned long timeout_us)
|
|
|
|
{
|
|
|
|
return (i915_gem_request_started(request) &&
|
|
|
|
__i915_spin_request(request, state, timeout_us));
|
|
|
|
}
|
|
|
|
|
2016-08-04 14:52:29 +08:00
|
|
|
/* We treat requests as fences. This is not be to confused with our
|
|
|
|
* "fence registers" but pipeline synchronisation objects ala GL_ARB_sync.
|
|
|
|
* We use the fences to synchronize access from the CPU with activity on the
|
|
|
|
* GPU, for example, we should not rewrite an object's PTE whilst the GPU
|
|
|
|
* is reading them. We also track fences at a higher level to provide
|
|
|
|
* implicit synchronisation around GEM objects, e.g. set-domain will wait
|
|
|
|
* for outstanding GPU rendering before marking the object ready for CPU
|
|
|
|
* access, or a pageflip will wait until the GPU is complete before showing
|
|
|
|
* the frame on the scanout.
|
|
|
|
*
|
|
|
|
* In order to use a fence, the object must track the fence it needs to
|
|
|
|
* serialise with. For example, GEM objects want to track both read and
|
|
|
|
* write access so that we can perform concurrent read operations between
|
|
|
|
* the CPU and GPU engines, as well as waiting for all rendering to
|
|
|
|
* complete, or waiting for the last GPU user of a "fence register". The
|
|
|
|
* object then embeds a #i915_gem_active to track the most recent (in
|
|
|
|
* retirement order) request relevant for the desired mode of access.
|
|
|
|
* The #i915_gem_active is updated with i915_gem_active_set() to track the
|
|
|
|
* most recent fence request, typically this is done as part of
|
|
|
|
* i915_vma_move_to_active().
|
|
|
|
*
|
|
|
|
* When the #i915_gem_active completes (is retired), it will
|
|
|
|
* signal its completion to the owner through a callback as well as mark
|
|
|
|
* itself as idle (i915_gem_active.request == NULL). The owner
|
|
|
|
* can then perform any action, such as delayed freeing of an active
|
|
|
|
* resource including itself.
|
|
|
|
*/
|
drm/i915: Refactor activity tracking for requests
With the introduction of requests, we amplified the number of atomic
refcounted objects we use and update every execbuffer; from none to
several references, and a set of references that need to be changed. We
also introduced interesting side-effects in the order of retiring
requests and objects.
Instead of independently tracking the last request for an object, track
the active objects for each request. The object will reside in the
buffer list of its most recent active request and so we reduce the kref
interchange to a list_move. Now retirements are entirely driven by the
request, dramatically simplifying activity tracking on the object
themselves, and removing the ambiguity between retiring objects and
retiring requests.
Furthermore with the consolidation of managing the activity tracking
centrally, we can look forward to using RCU to enable lockless lookup of
the current active requests for an object. In the future, we will be
able to query the status or wait upon rendering to an object without
even touching the struct_mutex BKL.
All told, less code, simpler and faster, and more extensible.
v2: Add a typedef for the function pointer for convenience later.
v3: Make the noop retirement callback explicit. Allow passing NULL to
the init_request_active() which is expanded to a common noop function.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1470293567-10811-16-git-send-email-chris@chris-wilson.co.uk
2016-08-04 14:52:35 +08:00
|
|
|
struct i915_gem_active;
|
|
|
|
|
|
|
|
typedef void (*i915_gem_retire_fn)(struct i915_gem_active *,
|
|
|
|
struct drm_i915_gem_request *);
|
|
|
|
|
2016-08-04 14:52:29 +08:00
|
|
|
struct i915_gem_active {
|
|
|
|
struct drm_i915_gem_request *request;
|
drm/i915: Refactor activity tracking for requests
With the introduction of requests, we amplified the number of atomic
refcounted objects we use and update every execbuffer; from none to
several references, and a set of references that need to be changed. We
also introduced interesting side-effects in the order of retiring
requests and objects.
Instead of independently tracking the last request for an object, track
the active objects for each request. The object will reside in the
buffer list of its most recent active request and so we reduce the kref
interchange to a list_move. Now retirements are entirely driven by the
request, dramatically simplifying activity tracking on the object
themselves, and removing the ambiguity between retiring objects and
retiring requests.
Furthermore with the consolidation of managing the activity tracking
centrally, we can look forward to using RCU to enable lockless lookup of
the current active requests for an object. In the future, we will be
able to query the status or wait upon rendering to an object without
even touching the struct_mutex BKL.
All told, less code, simpler and faster, and more extensible.
v2: Add a typedef for the function pointer for convenience later.
v3: Make the noop retirement callback explicit. Allow passing NULL to
the init_request_active() which is expanded to a common noop function.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1470293567-10811-16-git-send-email-chris@chris-wilson.co.uk
2016-08-04 14:52:35 +08:00
|
|
|
struct list_head link;
|
|
|
|
i915_gem_retire_fn retire;
|
2016-08-04 14:52:29 +08:00
|
|
|
};
|
|
|
|
|
drm/i915: Refactor activity tracking for requests
With the introduction of requests, we amplified the number of atomic
refcounted objects we use and update every execbuffer; from none to
several references, and a set of references that need to be changed. We
also introduced interesting side-effects in the order of retiring
requests and objects.
Instead of independently tracking the last request for an object, track
the active objects for each request. The object will reside in the
buffer list of its most recent active request and so we reduce the kref
interchange to a list_move. Now retirements are entirely driven by the
request, dramatically simplifying activity tracking on the object
themselves, and removing the ambiguity between retiring objects and
retiring requests.
Furthermore with the consolidation of managing the activity tracking
centrally, we can look forward to using RCU to enable lockless lookup of
the current active requests for an object. In the future, we will be
able to query the status or wait upon rendering to an object without
even touching the struct_mutex BKL.
All told, less code, simpler and faster, and more extensible.
v2: Add a typedef for the function pointer for convenience later.
v3: Make the noop retirement callback explicit. Allow passing NULL to
the init_request_active() which is expanded to a common noop function.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1470293567-10811-16-git-send-email-chris@chris-wilson.co.uk
2016-08-04 14:52:35 +08:00
|
|
|
void i915_gem_retire_noop(struct i915_gem_active *,
|
|
|
|
struct drm_i915_gem_request *request);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* init_request_active - prepares the activity tracker for use
|
|
|
|
* @active - the active tracker
|
|
|
|
* @func - a callback when then the tracker is retired (becomes idle),
|
|
|
|
* can be NULL
|
|
|
|
*
|
|
|
|
* init_request_active() prepares the embedded @active struct for use as
|
|
|
|
* an activity tracker, that is for tracking the last known active request
|
|
|
|
* associated with it. When the last request becomes idle, when it is retired
|
|
|
|
* after completion, the optional callback @func is invoked.
|
|
|
|
*/
|
|
|
|
static inline void
|
|
|
|
init_request_active(struct i915_gem_active *active,
|
|
|
|
i915_gem_retire_fn retire)
|
|
|
|
{
|
|
|
|
INIT_LIST_HEAD(&active->link);
|
|
|
|
active->retire = retire ?: i915_gem_retire_noop;
|
|
|
|
}
|
|
|
|
|
2016-08-04 14:52:30 +08:00
|
|
|
/**
|
|
|
|
* i915_gem_active_set - updates the tracker to watch the current request
|
|
|
|
* @active - the active tracker
|
|
|
|
* @request - the request to watch
|
|
|
|
*
|
|
|
|
* i915_gem_active_set() watches the given @request for completion. Whilst
|
|
|
|
* that @request is busy, the @active reports busy. When that @request is
|
|
|
|
* retired, the @active tracker is updated to report idle.
|
|
|
|
*/
|
2016-08-04 14:52:29 +08:00
|
|
|
static inline void
|
|
|
|
i915_gem_active_set(struct i915_gem_active *active,
|
|
|
|
struct drm_i915_gem_request *request)
|
|
|
|
{
|
drm/i915: Refactor activity tracking for requests
With the introduction of requests, we amplified the number of atomic
refcounted objects we use and update every execbuffer; from none to
several references, and a set of references that need to be changed. We
also introduced interesting side-effects in the order of retiring
requests and objects.
Instead of independently tracking the last request for an object, track
the active objects for each request. The object will reside in the
buffer list of its most recent active request and so we reduce the kref
interchange to a list_move. Now retirements are entirely driven by the
request, dramatically simplifying activity tracking on the object
themselves, and removing the ambiguity between retiring objects and
retiring requests.
Furthermore with the consolidation of managing the activity tracking
centrally, we can look forward to using RCU to enable lockless lookup of
the current active requests for an object. In the future, we will be
able to query the status or wait upon rendering to an object without
even touching the struct_mutex BKL.
All told, less code, simpler and faster, and more extensible.
v2: Add a typedef for the function pointer for convenience later.
v3: Make the noop retirement callback explicit. Allow passing NULL to
the init_request_active() which is expanded to a common noop function.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1470293567-10811-16-git-send-email-chris@chris-wilson.co.uk
2016-08-04 14:52:35 +08:00
|
|
|
list_move(&active->link, &request->active_list);
|
|
|
|
active->request = request;
|
2016-08-04 14:52:29 +08:00
|
|
|
}
|
|
|
|
|
2016-08-04 14:52:31 +08:00
|
|
|
static inline struct drm_i915_gem_request *
|
|
|
|
__i915_gem_active_peek(const struct i915_gem_active *active)
|
|
|
|
{
|
|
|
|
return active->request;
|
|
|
|
}
|
|
|
|
|
2016-08-04 14:52:30 +08:00
|
|
|
/**
|
drm/i915: Refactor activity tracking for requests
With the introduction of requests, we amplified the number of atomic
refcounted objects we use and update every execbuffer; from none to
several references, and a set of references that need to be changed. We
also introduced interesting side-effects in the order of retiring
requests and objects.
Instead of independently tracking the last request for an object, track
the active objects for each request. The object will reside in the
buffer list of its most recent active request and so we reduce the kref
interchange to a list_move. Now retirements are entirely driven by the
request, dramatically simplifying activity tracking on the object
themselves, and removing the ambiguity between retiring objects and
retiring requests.
Furthermore with the consolidation of managing the activity tracking
centrally, we can look forward to using RCU to enable lockless lookup of
the current active requests for an object. In the future, we will be
able to query the status or wait upon rendering to an object without
even touching the struct_mutex BKL.
All told, less code, simpler and faster, and more extensible.
v2: Add a typedef for the function pointer for convenience later.
v3: Make the noop retirement callback explicit. Allow passing NULL to
the init_request_active() which is expanded to a common noop function.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1470293567-10811-16-git-send-email-chris@chris-wilson.co.uk
2016-08-04 14:52:35 +08:00
|
|
|
* i915_gem_active_peek - report the active request being monitored
|
2016-08-04 14:52:30 +08:00
|
|
|
* @active - the active tracker
|
|
|
|
*
|
drm/i915: Refactor activity tracking for requests
With the introduction of requests, we amplified the number of atomic
refcounted objects we use and update every execbuffer; from none to
several references, and a set of references that need to be changed. We
also introduced interesting side-effects in the order of retiring
requests and objects.
Instead of independently tracking the last request for an object, track
the active objects for each request. The object will reside in the
buffer list of its most recent active request and so we reduce the kref
interchange to a list_move. Now retirements are entirely driven by the
request, dramatically simplifying activity tracking on the object
themselves, and removing the ambiguity between retiring objects and
retiring requests.
Furthermore with the consolidation of managing the activity tracking
centrally, we can look forward to using RCU to enable lockless lookup of
the current active requests for an object. In the future, we will be
able to query the status or wait upon rendering to an object without
even touching the struct_mutex BKL.
All told, less code, simpler and faster, and more extensible.
v2: Add a typedef for the function pointer for convenience later.
v3: Make the noop retirement callback explicit. Allow passing NULL to
the init_request_active() which is expanded to a common noop function.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1470293567-10811-16-git-send-email-chris@chris-wilson.co.uk
2016-08-04 14:52:35 +08:00
|
|
|
* i915_gem_active_peek() returns the current request being tracked if
|
|
|
|
* still active, or NULL. It does not obtain a reference on the request
|
|
|
|
* for the caller, so the caller must hold struct_mutex.
|
2016-08-04 14:52:30 +08:00
|
|
|
*/
|
|
|
|
static inline struct drm_i915_gem_request *
|
2016-08-04 14:52:31 +08:00
|
|
|
i915_gem_active_peek(const struct i915_gem_active *active, struct mutex *mutex)
|
2016-08-04 14:52:30 +08:00
|
|
|
{
|
drm/i915: Refactor activity tracking for requests
With the introduction of requests, we amplified the number of atomic
refcounted objects we use and update every execbuffer; from none to
several references, and a set of references that need to be changed. We
also introduced interesting side-effects in the order of retiring
requests and objects.
Instead of independently tracking the last request for an object, track
the active objects for each request. The object will reside in the
buffer list of its most recent active request and so we reduce the kref
interchange to a list_move. Now retirements are entirely driven by the
request, dramatically simplifying activity tracking on the object
themselves, and removing the ambiguity between retiring objects and
retiring requests.
Furthermore with the consolidation of managing the activity tracking
centrally, we can look forward to using RCU to enable lockless lookup of
the current active requests for an object. In the future, we will be
able to query the status or wait upon rendering to an object without
even touching the struct_mutex BKL.
All told, less code, simpler and faster, and more extensible.
v2: Add a typedef for the function pointer for convenience later.
v3: Make the noop retirement callback explicit. Allow passing NULL to
the init_request_active() which is expanded to a common noop function.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1470293567-10811-16-git-send-email-chris@chris-wilson.co.uk
2016-08-04 14:52:35 +08:00
|
|
|
struct drm_i915_gem_request *request;
|
|
|
|
|
|
|
|
request = active->request;
|
|
|
|
if (!request || i915_gem_request_completed(request))
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
return request;
|
2016-08-04 14:52:30 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* i915_gem_active_get - return a reference to the active request
|
|
|
|
* @active - the active tracker
|
|
|
|
*
|
|
|
|
* i915_gem_active_get() returns a reference to the active request, or NULL
|
|
|
|
* if the active tracker is idle. The caller must hold struct_mutex.
|
|
|
|
*/
|
|
|
|
static inline struct drm_i915_gem_request *
|
2016-08-04 14:52:31 +08:00
|
|
|
i915_gem_active_get(const struct i915_gem_active *active, struct mutex *mutex)
|
2016-08-04 14:52:30 +08:00
|
|
|
{
|
drm/i915: Refactor activity tracking for requests
With the introduction of requests, we amplified the number of atomic
refcounted objects we use and update every execbuffer; from none to
several references, and a set of references that need to be changed. We
also introduced interesting side-effects in the order of retiring
requests and objects.
Instead of independently tracking the last request for an object, track
the active objects for each request. The object will reside in the
buffer list of its most recent active request and so we reduce the kref
interchange to a list_move. Now retirements are entirely driven by the
request, dramatically simplifying activity tracking on the object
themselves, and removing the ambiguity between retiring objects and
retiring requests.
Furthermore with the consolidation of managing the activity tracking
centrally, we can look forward to using RCU to enable lockless lookup of
the current active requests for an object. In the future, we will be
able to query the status or wait upon rendering to an object without
even touching the struct_mutex BKL.
All told, less code, simpler and faster, and more extensible.
v2: Add a typedef for the function pointer for convenience later.
v3: Make the noop retirement callback explicit. Allow passing NULL to
the init_request_active() which is expanded to a common noop function.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1470293567-10811-16-git-send-email-chris@chris-wilson.co.uk
2016-08-04 14:52:35 +08:00
|
|
|
return i915_gem_request_get(i915_gem_active_peek(active, mutex));
|
2016-08-04 14:52:30 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* i915_gem_active_isset - report whether the active tracker is assigned
|
|
|
|
* @active - the active tracker
|
|
|
|
*
|
|
|
|
* i915_gem_active_isset() returns true if the active tracker is currently
|
|
|
|
* assigned to a request. Due to the lazy retiring, that request may be idle
|
|
|
|
* and this may report stale information.
|
|
|
|
*/
|
|
|
|
static inline bool
|
|
|
|
i915_gem_active_isset(const struct i915_gem_active *active)
|
|
|
|
{
|
|
|
|
return active->request;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* i915_gem_active_is_idle - report whether the active tracker is idle
|
|
|
|
* @active - the active tracker
|
|
|
|
*
|
|
|
|
* i915_gem_active_is_idle() returns true if the active tracker is currently
|
|
|
|
* unassigned or if the request is complete (but not yet retired). Requires
|
|
|
|
* the caller to hold struct_mutex (but that can be relaxed if desired).
|
|
|
|
*/
|
|
|
|
static inline bool
|
2016-08-04 14:52:31 +08:00
|
|
|
i915_gem_active_is_idle(const struct i915_gem_active *active,
|
|
|
|
struct mutex *mutex)
|
2016-08-04 14:52:30 +08:00
|
|
|
{
|
drm/i915: Refactor activity tracking for requests
With the introduction of requests, we amplified the number of atomic
refcounted objects we use and update every execbuffer; from none to
several references, and a set of references that need to be changed. We
also introduced interesting side-effects in the order of retiring
requests and objects.
Instead of independently tracking the last request for an object, track
the active objects for each request. The object will reside in the
buffer list of its most recent active request and so we reduce the kref
interchange to a list_move. Now retirements are entirely driven by the
request, dramatically simplifying activity tracking on the object
themselves, and removing the ambiguity between retiring objects and
retiring requests.
Furthermore with the consolidation of managing the activity tracking
centrally, we can look forward to using RCU to enable lockless lookup of
the current active requests for an object. In the future, we will be
able to query the status or wait upon rendering to an object without
even touching the struct_mutex BKL.
All told, less code, simpler and faster, and more extensible.
v2: Add a typedef for the function pointer for convenience later.
v3: Make the noop retirement callback explicit. Allow passing NULL to
the init_request_active() which is expanded to a common noop function.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1470293567-10811-16-git-send-email-chris@chris-wilson.co.uk
2016-08-04 14:52:35 +08:00
|
|
|
return !i915_gem_active_peek(active, mutex);
|
2016-08-04 14:52:30 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* i915_gem_active_wait - waits until the request is completed
|
|
|
|
* @active - the active request on which to wait
|
|
|
|
*
|
|
|
|
* i915_gem_active_wait() waits until the request is completed before
|
|
|
|
* returning. Note that it does not guarantee that the request is
|
|
|
|
* retired first, see i915_gem_active_retire().
|
drm/i915: Refactor activity tracking for requests
With the introduction of requests, we amplified the number of atomic
refcounted objects we use and update every execbuffer; from none to
several references, and a set of references that need to be changed. We
also introduced interesting side-effects in the order of retiring
requests and objects.
Instead of independently tracking the last request for an object, track
the active objects for each request. The object will reside in the
buffer list of its most recent active request and so we reduce the kref
interchange to a list_move. Now retirements are entirely driven by the
request, dramatically simplifying activity tracking on the object
themselves, and removing the ambiguity between retiring objects and
retiring requests.
Furthermore with the consolidation of managing the activity tracking
centrally, we can look forward to using RCU to enable lockless lookup of
the current active requests for an object. In the future, we will be
able to query the status or wait upon rendering to an object without
even touching the struct_mutex BKL.
All told, less code, simpler and faster, and more extensible.
v2: Add a typedef for the function pointer for convenience later.
v3: Make the noop retirement callback explicit. Allow passing NULL to
the init_request_active() which is expanded to a common noop function.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1470293567-10811-16-git-send-email-chris@chris-wilson.co.uk
2016-08-04 14:52:35 +08:00
|
|
|
*
|
|
|
|
* i915_gem_active_wait() returns immediately if the active
|
|
|
|
* request is already complete.
|
2016-08-04 14:52:30 +08:00
|
|
|
*/
|
|
|
|
static inline int __must_check
|
2016-08-04 14:52:31 +08:00
|
|
|
i915_gem_active_wait(const struct i915_gem_active *active, struct mutex *mutex)
|
2016-08-04 14:52:30 +08:00
|
|
|
{
|
|
|
|
struct drm_i915_gem_request *request;
|
|
|
|
|
2016-08-04 14:52:31 +08:00
|
|
|
request = i915_gem_active_peek(active, mutex);
|
2016-08-04 14:52:30 +08:00
|
|
|
if (!request)
|
|
|
|
return 0;
|
|
|
|
|
drm/i915: Refactor activity tracking for requests
With the introduction of requests, we amplified the number of atomic
refcounted objects we use and update every execbuffer; from none to
several references, and a set of references that need to be changed. We
also introduced interesting side-effects in the order of retiring
requests and objects.
Instead of independently tracking the last request for an object, track
the active objects for each request. The object will reside in the
buffer list of its most recent active request and so we reduce the kref
interchange to a list_move. Now retirements are entirely driven by the
request, dramatically simplifying activity tracking on the object
themselves, and removing the ambiguity between retiring objects and
retiring requests.
Furthermore with the consolidation of managing the activity tracking
centrally, we can look forward to using RCU to enable lockless lookup of
the current active requests for an object. In the future, we will be
able to query the status or wait upon rendering to an object without
even touching the struct_mutex BKL.
All told, less code, simpler and faster, and more extensible.
v2: Add a typedef for the function pointer for convenience later.
v3: Make the noop retirement callback explicit. Allow passing NULL to
the init_request_active() which is expanded to a common noop function.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1470293567-10811-16-git-send-email-chris@chris-wilson.co.uk
2016-08-04 14:52:35 +08:00
|
|
|
return __i915_wait_request(request, true, NULL, NULL);
|
2016-08-04 14:52:30 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* i915_gem_active_retire - waits until the request is retired
|
|
|
|
* @active - the active request on which to wait
|
|
|
|
*
|
|
|
|
* i915_gem_active_retire() waits until the request is completed,
|
|
|
|
* and then ensures that at least the retirement handler for this
|
|
|
|
* @active tracker is called before returning. If the @active
|
|
|
|
* tracker is idle, the function returns immediately.
|
|
|
|
*/
|
|
|
|
static inline int __must_check
|
drm/i915: Refactor activity tracking for requests
With the introduction of requests, we amplified the number of atomic
refcounted objects we use and update every execbuffer; from none to
several references, and a set of references that need to be changed. We
also introduced interesting side-effects in the order of retiring
requests and objects.
Instead of independently tracking the last request for an object, track
the active objects for each request. The object will reside in the
buffer list of its most recent active request and so we reduce the kref
interchange to a list_move. Now retirements are entirely driven by the
request, dramatically simplifying activity tracking on the object
themselves, and removing the ambiguity between retiring objects and
retiring requests.
Furthermore with the consolidation of managing the activity tracking
centrally, we can look forward to using RCU to enable lockless lookup of
the current active requests for an object. In the future, we will be
able to query the status or wait upon rendering to an object without
even touching the struct_mutex BKL.
All told, less code, simpler and faster, and more extensible.
v2: Add a typedef for the function pointer for convenience later.
v3: Make the noop retirement callback explicit. Allow passing NULL to
the init_request_active() which is expanded to a common noop function.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1470293567-10811-16-git-send-email-chris@chris-wilson.co.uk
2016-08-04 14:52:35 +08:00
|
|
|
i915_gem_active_retire(struct i915_gem_active *active,
|
2016-08-04 14:52:31 +08:00
|
|
|
struct mutex *mutex)
|
2016-08-04 14:52:30 +08:00
|
|
|
{
|
drm/i915: Refactor activity tracking for requests
With the introduction of requests, we amplified the number of atomic
refcounted objects we use and update every execbuffer; from none to
several references, and a set of references that need to be changed. We
also introduced interesting side-effects in the order of retiring
requests and objects.
Instead of independently tracking the last request for an object, track
the active objects for each request. The object will reside in the
buffer list of its most recent active request and so we reduce the kref
interchange to a list_move. Now retirements are entirely driven by the
request, dramatically simplifying activity tracking on the object
themselves, and removing the ambiguity between retiring objects and
retiring requests.
Furthermore with the consolidation of managing the activity tracking
centrally, we can look forward to using RCU to enable lockless lookup of
the current active requests for an object. In the future, we will be
able to query the status or wait upon rendering to an object without
even touching the struct_mutex BKL.
All told, less code, simpler and faster, and more extensible.
v2: Add a typedef for the function pointer for convenience later.
v3: Make the noop retirement callback explicit. Allow passing NULL to
the init_request_active() which is expanded to a common noop function.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1470293567-10811-16-git-send-email-chris@chris-wilson.co.uk
2016-08-04 14:52:35 +08:00
|
|
|
struct drm_i915_gem_request *request;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
request = active->request;
|
|
|
|
if (!request)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
ret = __i915_wait_request(request, true, NULL, NULL);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
list_del_init(&active->link);
|
|
|
|
active->request = NULL;
|
|
|
|
active->retire(active, request);
|
|
|
|
|
|
|
|
return 0;
|
2016-08-04 14:52:30 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Convenience functions for peeking at state inside active's request whilst
|
|
|
|
* guarded by the struct_mutex.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static inline uint32_t
|
2016-08-04 14:52:31 +08:00
|
|
|
i915_gem_active_get_seqno(const struct i915_gem_active *active,
|
|
|
|
struct mutex *mutex)
|
2016-08-04 14:52:30 +08:00
|
|
|
{
|
2016-08-04 14:52:31 +08:00
|
|
|
return i915_gem_request_get_seqno(i915_gem_active_peek(active, mutex));
|
2016-08-04 14:52:30 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline struct intel_engine_cs *
|
2016-08-04 14:52:31 +08:00
|
|
|
i915_gem_active_get_engine(const struct i915_gem_active *active,
|
|
|
|
struct mutex *mutex)
|
2016-08-04 14:52:30 +08:00
|
|
|
{
|
2016-08-04 14:52:31 +08:00
|
|
|
return i915_gem_request_get_engine(i915_gem_active_peek(active, mutex));
|
2016-08-04 14:52:30 +08:00
|
|
|
}
|
|
|
|
|
2016-08-04 14:52:29 +08:00
|
|
|
#define for_each_active(mask, idx) \
|
|
|
|
for (; mask ? idx = ffs(mask) - 1, 1 : 0; mask &= ~BIT(idx))
|
|
|
|
|
2016-07-20 16:21:08 +08:00
|
|
|
#endif /* I915_GEM_REQUEST_H */
|