2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 14:43:58 +08:00
linux-next/drivers/crypto/atmel-sha.c

2704 lines
66 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Cryptographic API.
*
* Support for ATMEL SHA1/SHA256 HW acceleration.
*
* Copyright (c) 2012 Eukréa Electromatique - ATMEL
* Author: Nicolas Royer <nicolas@eukrea.com>
*
* Some ideas are from omap-sham.c drivers.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/hw_random.h>
#include <linux/platform_device.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/of_device.h>
#include <linux/delay.h>
#include <linux/crypto.h>
#include <crypto/scatterwalk.h>
#include <crypto/algapi.h>
#include <crypto/sha1.h>
#include <crypto/sha2.h>
#include <crypto/hash.h>
#include <crypto/internal/hash.h>
#include "atmel-sha-regs.h"
#include "atmel-authenc.h"
#define ATMEL_SHA_PRIORITY 300
/* SHA flags */
#define SHA_FLAGS_BUSY BIT(0)
#define SHA_FLAGS_FINAL BIT(1)
#define SHA_FLAGS_DMA_ACTIVE BIT(2)
#define SHA_FLAGS_OUTPUT_READY BIT(3)
#define SHA_FLAGS_INIT BIT(4)
#define SHA_FLAGS_CPU BIT(5)
#define SHA_FLAGS_DMA_READY BIT(6)
#define SHA_FLAGS_DUMP_REG BIT(7)
/* bits[11:8] are reserved. */
#define SHA_FLAGS_FINUP BIT(16)
#define SHA_FLAGS_SG BIT(17)
#define SHA_FLAGS_ERROR BIT(23)
#define SHA_FLAGS_PAD BIT(24)
#define SHA_FLAGS_RESTORE BIT(25)
#define SHA_FLAGS_IDATAR0 BIT(26)
#define SHA_FLAGS_WAIT_DATARDY BIT(27)
#define SHA_OP_INIT 0
#define SHA_OP_UPDATE 1
#define SHA_OP_FINAL 2
#define SHA_OP_DIGEST 3
#define SHA_BUFFER_LEN (PAGE_SIZE / 16)
#define ATMEL_SHA_DMA_THRESHOLD 56
struct atmel_sha_caps {
bool has_dma;
bool has_dualbuff;
bool has_sha224;
bool has_sha_384_512;
bool has_uihv;
bool has_hmac;
};
struct atmel_sha_dev;
/*
* .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
* tested by the ahash_prepare_alg() function.
*/
struct atmel_sha_reqctx {
struct atmel_sha_dev *dd;
unsigned long flags;
unsigned long op;
u8 digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
u64 digcnt[2];
size_t bufcnt;
size_t buflen;
dma_addr_t dma_addr;
/* walk state */
struct scatterlist *sg;
unsigned int offset; /* offset in current sg */
unsigned int total; /* total request */
size_t block_size;
size_t hash_size;
u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
};
typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
struct atmel_sha_ctx {
struct atmel_sha_dev *dd;
atmel_sha_fn_t start;
unsigned long flags;
};
#define ATMEL_SHA_QUEUE_LENGTH 50
struct atmel_sha_dma {
struct dma_chan *chan;
struct dma_slave_config dma_conf;
struct scatterlist *sg;
int nents;
unsigned int last_sg_length;
};
struct atmel_sha_dev {
struct list_head list;
unsigned long phys_base;
struct device *dev;
struct clk *iclk;
int irq;
void __iomem *io_base;
spinlock_t lock;
struct tasklet_struct done_task;
crypto: atmel-sha - fix a race between the 'done' tasklet and the crypto client The 'done' tasklet handler used to check the 'BUSY' flag to either finalize the processing of a crypto request which had just completed or manage the crypto queue to start the next crypto request. On request R1 completion, the driver calls atmel_sha_finish_req(), which: 1 - clears the 'BUSY' flag since the hardware is no longer used and is ready again to process new crypto requests. 2 - notifies the above layer (the client) about the completion of the asynchronous crypto request R1 by calling its base.complete() callback. 3 - schedules the 'done' task to check the crypto queue and start to process the next crypto request (the 'BUSY' flag is supposed to be cleared at that moment) if such a pending request exists. However step 2 might wake the client up so it can now ask our driver to process a new crypto request R2. This request is enqueued by calling the atmel_sha_handle_queue() function, which sets the 'BUSY' flags then starts to process R2. If the 'done' tasklet, scheduled by step 3, runs just after, it would see that the 'BUSY' flag is set then understand that R2 has just completed, which is wrong! So the state of 'BUSY' flag is not a proper way to detect and handle crypto request completion. This patch fixes this race condition by using two different tasklets, one to handle the crypto request completion events, the other to manage the crypto queue if needed. Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2016-01-15 22:49:32 +08:00
struct tasklet_struct queue_task;
unsigned long flags;
struct crypto_queue queue;
struct ahash_request *req;
bool is_async;
bool force_complete;
atmel_sha_fn_t resume;
atmel_sha_fn_t cpu_transfer_complete;
struct atmel_sha_dma dma_lch_in;
struct atmel_sha_caps caps;
struct scatterlist tmp;
u32 hw_version;
};
struct atmel_sha_drv {
struct list_head dev_list;
spinlock_t lock;
};
static struct atmel_sha_drv atmel_sha = {
.dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
.lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
};
#ifdef VERBOSE_DEBUG
static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr)
{
switch (offset) {
case SHA_CR:
return "CR";
case SHA_MR:
return "MR";
case SHA_IER:
return "IER";
case SHA_IDR:
return "IDR";
case SHA_IMR:
return "IMR";
case SHA_ISR:
return "ISR";
case SHA_MSR:
return "MSR";
case SHA_BCR:
return "BCR";
case SHA_REG_DIN(0):
case SHA_REG_DIN(1):
case SHA_REG_DIN(2):
case SHA_REG_DIN(3):
case SHA_REG_DIN(4):
case SHA_REG_DIN(5):
case SHA_REG_DIN(6):
case SHA_REG_DIN(7):
case SHA_REG_DIN(8):
case SHA_REG_DIN(9):
case SHA_REG_DIN(10):
case SHA_REG_DIN(11):
case SHA_REG_DIN(12):
case SHA_REG_DIN(13):
case SHA_REG_DIN(14):
case SHA_REG_DIN(15):
snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2);
break;
case SHA_REG_DIGEST(0):
case SHA_REG_DIGEST(1):
case SHA_REG_DIGEST(2):
case SHA_REG_DIGEST(3):
case SHA_REG_DIGEST(4):
case SHA_REG_DIGEST(5):
case SHA_REG_DIGEST(6):
case SHA_REG_DIGEST(7):
case SHA_REG_DIGEST(8):
case SHA_REG_DIGEST(9):
case SHA_REG_DIGEST(10):
case SHA_REG_DIGEST(11):
case SHA_REG_DIGEST(12):
case SHA_REG_DIGEST(13):
case SHA_REG_DIGEST(14):
case SHA_REG_DIGEST(15):
if (wr)
snprintf(tmp, sz, "IDATAR[%u]",
16u + ((offset - SHA_REG_DIGEST(0)) >> 2));
else
snprintf(tmp, sz, "ODATAR[%u]",
(offset - SHA_REG_DIGEST(0)) >> 2);
break;
case SHA_HW_VERSION:
return "HWVER";
default:
snprintf(tmp, sz, "0x%02x", offset);
break;
}
return tmp;
}
#endif /* VERBOSE_DEBUG */
static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
{
u32 value = readl_relaxed(dd->io_base + offset);
#ifdef VERBOSE_DEBUG
if (dd->flags & SHA_FLAGS_DUMP_REG) {
char tmp[16];
dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
atmel_sha_reg_name(offset, tmp, sizeof(tmp), false));
}
#endif /* VERBOSE_DEBUG */
return value;
}
static inline void atmel_sha_write(struct atmel_sha_dev *dd,
u32 offset, u32 value)
{
#ifdef VERBOSE_DEBUG
if (dd->flags & SHA_FLAGS_DUMP_REG) {
char tmp[16];
dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
atmel_sha_reg_name(offset, tmp, sizeof(tmp), true));
}
#endif /* VERBOSE_DEBUG */
writel_relaxed(value, dd->io_base + offset);
}
static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
{
struct ahash_request *req = dd->req;
dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY |
SHA_FLAGS_DUMP_REG);
clk_disable(dd->iclk);
if ((dd->is_async || dd->force_complete) && req->base.complete)
req->base.complete(&req->base, err);
/* handle new request */
tasklet_schedule(&dd->queue_task);
return err;
}
static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
{
size_t count;
while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
count = min(ctx->sg->length - ctx->offset, ctx->total);
count = min(count, ctx->buflen - ctx->bufcnt);
if (count <= 0) {
/*
* Check if count <= 0 because the buffer is full or
* because the sg length is 0. In the latest case,
* check if there is another sg in the list, a 0 length
* sg doesn't necessarily mean the end of the sg list.
*/
if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
ctx->sg = sg_next(ctx->sg);
continue;
} else {
break;
}
}
scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
ctx->offset, count, 0);
ctx->bufcnt += count;
ctx->offset += count;
ctx->total -= count;
if (ctx->offset == ctx->sg->length) {
ctx->sg = sg_next(ctx->sg);
if (ctx->sg)
ctx->offset = 0;
else
ctx->total = 0;
}
}
return 0;
}
/*
* The purpose of this padding is to ensure that the padded message is a
* multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
* The bit "1" is appended at the end of the message followed by
* "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
* 128 bits block (SHA384/SHA512) equals to the message length in bits
* is appended.
*
* For SHA1/SHA224/SHA256, padlen is calculated as followed:
* - if message length < 56 bytes then padlen = 56 - message length
* - else padlen = 64 + 56 - message length
*
* For SHA384/SHA512, padlen is calculated as followed:
* - if message length < 112 bytes then padlen = 112 - message length
* - else padlen = 128 + 112 - message length
*/
static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
{
unsigned int index, padlen;
__be64 bits[2];
u64 size[2];
size[0] = ctx->digcnt[0];
size[1] = ctx->digcnt[1];
size[0] += ctx->bufcnt;
if (size[0] < ctx->bufcnt)
size[1]++;
size[0] += length;
if (size[0] < length)
size[1]++;
bits[1] = cpu_to_be64(size[0] << 3);
bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
case SHA_FLAGS_SHA384:
case SHA_FLAGS_SHA512:
index = ctx->bufcnt & 0x7f;
padlen = (index < 112) ? (112 - index) : ((128+112) - index);
*(ctx->buffer + ctx->bufcnt) = 0x80;
memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
ctx->bufcnt += padlen + 16;
ctx->flags |= SHA_FLAGS_PAD;
break;
default:
index = ctx->bufcnt & 0x3f;
padlen = (index < 56) ? (56 - index) : ((64+56) - index);
*(ctx->buffer + ctx->bufcnt) = 0x80;
memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
ctx->bufcnt += padlen + 8;
ctx->flags |= SHA_FLAGS_PAD;
break;
}
}
static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
{
struct atmel_sha_dev *dd = NULL;
struct atmel_sha_dev *tmp;
spin_lock_bh(&atmel_sha.lock);
if (!tctx->dd) {
list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
dd = tmp;
break;
}
tctx->dd = dd;
} else {
dd = tctx->dd;
}
spin_unlock_bh(&atmel_sha.lock);
return dd;
}
static int atmel_sha_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
ctx->dd = dd;
ctx->flags = 0;
dev_dbg(dd->dev, "init: digest size: %d\n",
crypto_ahash_digestsize(tfm));
switch (crypto_ahash_digestsize(tfm)) {
case SHA1_DIGEST_SIZE:
ctx->flags |= SHA_FLAGS_SHA1;
ctx->block_size = SHA1_BLOCK_SIZE;
break;
case SHA224_DIGEST_SIZE:
ctx->flags |= SHA_FLAGS_SHA224;
ctx->block_size = SHA224_BLOCK_SIZE;
break;
case SHA256_DIGEST_SIZE:
ctx->flags |= SHA_FLAGS_SHA256;
ctx->block_size = SHA256_BLOCK_SIZE;
break;
case SHA384_DIGEST_SIZE:
ctx->flags |= SHA_FLAGS_SHA384;
ctx->block_size = SHA384_BLOCK_SIZE;
break;
case SHA512_DIGEST_SIZE:
ctx->flags |= SHA_FLAGS_SHA512;
ctx->block_size = SHA512_BLOCK_SIZE;
break;
default:
return -EINVAL;
}
ctx->bufcnt = 0;
ctx->digcnt[0] = 0;
ctx->digcnt[1] = 0;
ctx->buflen = SHA_BUFFER_LEN;
return 0;
}
static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
u32 valmr = SHA_MR_MODE_AUTO;
unsigned int i, hashsize = 0;
if (likely(dma)) {
if (!dd->caps.has_dma)
atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
valmr = SHA_MR_MODE_PDC;
if (dd->caps.has_dualbuff)
valmr |= SHA_MR_DUALBUFF;
} else {
atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
}
switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
case SHA_FLAGS_SHA1:
valmr |= SHA_MR_ALGO_SHA1;
hashsize = SHA1_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA224:
valmr |= SHA_MR_ALGO_SHA224;
hashsize = SHA256_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA256:
valmr |= SHA_MR_ALGO_SHA256;
hashsize = SHA256_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA384:
valmr |= SHA_MR_ALGO_SHA384;
hashsize = SHA512_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA512:
valmr |= SHA_MR_ALGO_SHA512;
hashsize = SHA512_DIGEST_SIZE;
break;
default:
break;
}
/* Setting CR_FIRST only for the first iteration */
if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
} else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
const u32 *hash = (const u32 *)ctx->digest;
/*
* Restore the hardware context: update the User Initialize
* Hash Value (UIHV) with the value saved when the latest
* 'update' operation completed on this very same crypto
* request.
*/
ctx->flags &= ~SHA_FLAGS_RESTORE;
atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
for (i = 0; i < hashsize / sizeof(u32); ++i)
atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
valmr |= SHA_MR_UIHV;
}
/*
* WARNING: If the UIHV feature is not available, the hardware CANNOT
* process concurrent requests: the internal registers used to store
* the hash/digest are still set to the partial digest output values
* computed during the latest round.
*/
atmel_sha_write(dd, SHA_MR, valmr);
}
static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd,
atmel_sha_fn_t resume)
{
u32 isr = atmel_sha_read(dd, SHA_ISR);
if (unlikely(isr & SHA_INT_DATARDY))
return resume(dd);
dd->resume = resume;
atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
return -EINPROGRESS;
}
static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
size_t length, int final)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
int count, len32;
const u32 *buffer = (const u32 *)buf;
dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
ctx->digcnt[1], ctx->digcnt[0], length, final);
atmel_sha_write_ctrl(dd, 0);
/* should be non-zero before next lines to disable clocks later */
ctx->digcnt[0] += length;
if (ctx->digcnt[0] < length)
ctx->digcnt[1]++;
if (final)
dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
len32 = DIV_ROUND_UP(length, sizeof(u32));
dd->flags |= SHA_FLAGS_CPU;
for (count = 0; count < len32; count++)
atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
return -EINPROGRESS;
}
static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
int len32;
dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
ctx->digcnt[1], ctx->digcnt[0], length1, final);
len32 = DIV_ROUND_UP(length1, sizeof(u32));
atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
atmel_sha_write(dd, SHA_TPR, dma_addr1);
atmel_sha_write(dd, SHA_TCR, len32);
len32 = DIV_ROUND_UP(length2, sizeof(u32));
atmel_sha_write(dd, SHA_TNPR, dma_addr2);
atmel_sha_write(dd, SHA_TNCR, len32);
atmel_sha_write_ctrl(dd, 1);
/* should be non-zero before next lines to disable clocks later */
ctx->digcnt[0] += length1;
if (ctx->digcnt[0] < length1)
ctx->digcnt[1]++;
if (final)
dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
dd->flags |= SHA_FLAGS_DMA_ACTIVE;
/* Start DMA transfer */
atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
return -EINPROGRESS;
}
static void atmel_sha_dma_callback(void *data)
{
struct atmel_sha_dev *dd = data;
dd->is_async = true;
/* dma_lch_in - completed - wait DATRDY */
atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
}
static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
struct dma_async_tx_descriptor *in_desc;
struct scatterlist sg[2];
dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
ctx->digcnt[1], ctx->digcnt[0], length1, final);
dd->dma_lch_in.dma_conf.src_maxburst = 16;
dd->dma_lch_in.dma_conf.dst_maxburst = 16;
dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
if (length2) {
sg_init_table(sg, 2);
sg_dma_address(&sg[0]) = dma_addr1;
sg_dma_len(&sg[0]) = length1;
sg_dma_address(&sg[1]) = dma_addr2;
sg_dma_len(&sg[1]) = length2;
in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
} else {
sg_init_table(sg, 1);
sg_dma_address(&sg[0]) = dma_addr1;
sg_dma_len(&sg[0]) = length1;
in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
}
if (!in_desc)
return atmel_sha_complete(dd, -EINVAL);
in_desc->callback = atmel_sha_dma_callback;
in_desc->callback_param = dd;
atmel_sha_write_ctrl(dd, 1);
/* should be non-zero before next lines to disable clocks later */
ctx->digcnt[0] += length1;
if (ctx->digcnt[0] < length1)
ctx->digcnt[1]++;
if (final)
dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
dd->flags |= SHA_FLAGS_DMA_ACTIVE;
/* Start DMA transfer */
dmaengine_submit(in_desc);
dma_async_issue_pending(dd->dma_lch_in.chan);
return -EINPROGRESS;
}
static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
{
if (dd->caps.has_dma)
return atmel_sha_xmit_dma(dd, dma_addr1, length1,
dma_addr2, length2, final);
else
return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
dma_addr2, length2, final);
}
static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
int bufcnt;
atmel_sha_append_sg(ctx);
atmel_sha_fill_padding(ctx, 0);
bufcnt = ctx->bufcnt;
ctx->bufcnt = 0;
return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
}
static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
struct atmel_sha_reqctx *ctx,
size_t length, int final)
{
ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen +
ctx->block_size);
return atmel_sha_complete(dd, -EINVAL);
}
ctx->flags &= ~SHA_FLAGS_SG;
/* next call does not fail... so no unmap in the case of error */
return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
}
static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
unsigned int final;
size_t count;
atmel_sha_append_sg(ctx);
final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
if (final)
atmel_sha_fill_padding(ctx, 0);
if (final || (ctx->bufcnt == ctx->buflen)) {
count = ctx->bufcnt;
ctx->bufcnt = 0;
return atmel_sha_xmit_dma_map(dd, ctx, count, final);
}
return 0;
}
static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
unsigned int length, final, tail;
struct scatterlist *sg;
unsigned int count;
if (!ctx->total)
return 0;
if (ctx->bufcnt || ctx->offset)
return atmel_sha_update_dma_slow(dd);
dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
sg = ctx->sg;
if (!IS_ALIGNED(sg->offset, sizeof(u32)))
return atmel_sha_update_dma_slow(dd);
if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
/* size is not ctx->block_size aligned */
return atmel_sha_update_dma_slow(dd);
length = min(ctx->total, sg->length);
if (sg_is_last(sg)) {
if (!(ctx->flags & SHA_FLAGS_FINUP)) {
/* not last sg must be ctx->block_size aligned */
tail = length & (ctx->block_size - 1);
length -= tail;
}
}
ctx->total -= length;
ctx->offset = length; /* offset where to start slow */
final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
/* Add padding */
if (final) {
tail = length & (ctx->block_size - 1);
length -= tail;
ctx->total += tail;
ctx->offset = length; /* offset where to start slow */
sg = ctx->sg;
atmel_sha_append_sg(ctx);
atmel_sha_fill_padding(ctx, length);
ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
dev_err(dd->dev, "dma %zu bytes error\n",
ctx->buflen + ctx->block_size);
return atmel_sha_complete(dd, -EINVAL);
}
if (length == 0) {
ctx->flags &= ~SHA_FLAGS_SG;
count = ctx->bufcnt;
ctx->bufcnt = 0;
return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
0, final);
} else {
ctx->sg = sg;
if (!dma_map_sg(dd->dev, ctx->sg, 1,
DMA_TO_DEVICE)) {
dev_err(dd->dev, "dma_map_sg error\n");
return atmel_sha_complete(dd, -EINVAL);
}
ctx->flags |= SHA_FLAGS_SG;
count = ctx->bufcnt;
ctx->bufcnt = 0;
return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
length, ctx->dma_addr, count, final);
}
}
if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
dev_err(dd->dev, "dma_map_sg error\n");
return atmel_sha_complete(dd, -EINVAL);
}
ctx->flags |= SHA_FLAGS_SG;
/* next call does not fail... so no unmap in the case of error */
return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
0, final);
}
static void atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
if (ctx->flags & SHA_FLAGS_SG) {
dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
if (ctx->sg->length == ctx->offset) {
ctx->sg = sg_next(ctx->sg);
if (ctx->sg)
ctx->offset = 0;
}
if (ctx->flags & SHA_FLAGS_PAD) {
dma_unmap_single(dd->dev, ctx->dma_addr,
ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
}
} else {
dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
ctx->block_size, DMA_TO_DEVICE);
}
}
static int atmel_sha_update_req(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
int err;
dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
if (ctx->flags & SHA_FLAGS_CPU)
err = atmel_sha_update_cpu(dd);
else
err = atmel_sha_update_dma_start(dd);
/* wait for dma completion before can take more data */
dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
err, ctx->digcnt[1], ctx->digcnt[0]);
return err;
}
static int atmel_sha_final_req(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
int err = 0;
int count;
if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
atmel_sha_fill_padding(ctx, 0);
count = ctx->bufcnt;
ctx->bufcnt = 0;
err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
}
/* faster to handle last block with cpu */
else {
atmel_sha_fill_padding(ctx, 0);
count = ctx->bufcnt;
ctx->bufcnt = 0;
err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
}
dev_dbg(dd->dev, "final_req: err: %d\n", err);
return err;
}
static void atmel_sha_copy_hash(struct ahash_request *req)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
u32 *hash = (u32 *)ctx->digest;
unsigned int i, hashsize;
switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
case SHA_FLAGS_SHA1:
hashsize = SHA1_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA224:
case SHA_FLAGS_SHA256:
hashsize = SHA256_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA384:
case SHA_FLAGS_SHA512:
hashsize = SHA512_DIGEST_SIZE;
break;
default:
/* Should not happen... */
return;
}
for (i = 0; i < hashsize / sizeof(u32); ++i)
hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
ctx->flags |= SHA_FLAGS_RESTORE;
}
static void atmel_sha_copy_ready_hash(struct ahash_request *req)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
if (!req->result)
return;
switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
default:
case SHA_FLAGS_SHA1:
memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
break;
case SHA_FLAGS_SHA224:
memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
break;
case SHA_FLAGS_SHA256:
memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
break;
case SHA_FLAGS_SHA384:
memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
break;
case SHA_FLAGS_SHA512:
memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
break;
}
}
static int atmel_sha_finish(struct ahash_request *req)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
struct atmel_sha_dev *dd = ctx->dd;
if (ctx->digcnt[0] || ctx->digcnt[1])
atmel_sha_copy_ready_hash(req);
dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1],
ctx->digcnt[0], ctx->bufcnt);
return 0;
}
static void atmel_sha_finish_req(struct ahash_request *req, int err)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
struct atmel_sha_dev *dd = ctx->dd;
if (!err) {
atmel_sha_copy_hash(req);
if (SHA_FLAGS_FINAL & dd->flags)
err = atmel_sha_finish(req);
} else {
ctx->flags |= SHA_FLAGS_ERROR;
}
/* atomic operation is not needed here */
(void)atmel_sha_complete(dd, err);
}
static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
{
int err;
err = clk_enable(dd->iclk);
if (err)
return err;
if (!(SHA_FLAGS_INIT & dd->flags)) {
atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
dd->flags |= SHA_FLAGS_INIT;
}
return 0;
}
static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
{
return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
}
static int atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
{
int err;
err = atmel_sha_hw_init(dd);
if (err)
return err;
dd->hw_version = atmel_sha_get_version(dd);
dev_info(dd->dev,
"version: 0x%x\n", dd->hw_version);
clk_disable(dd->iclk);
return 0;
}
static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
struct ahash_request *req)
{
struct crypto_async_request *async_req, *backlog;
struct atmel_sha_ctx *ctx;
unsigned long flags;
bool start_async;
int err = 0, ret = 0;
spin_lock_irqsave(&dd->lock, flags);
if (req)
ret = ahash_enqueue_request(&dd->queue, req);
if (SHA_FLAGS_BUSY & dd->flags) {
spin_unlock_irqrestore(&dd->lock, flags);
return ret;
}
backlog = crypto_get_backlog(&dd->queue);
async_req = crypto_dequeue_request(&dd->queue);
if (async_req)
dd->flags |= SHA_FLAGS_BUSY;
spin_unlock_irqrestore(&dd->lock, flags);
if (!async_req)
return ret;
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
ctx = crypto_tfm_ctx(async_req->tfm);
dd->req = ahash_request_cast(async_req);
start_async = (dd->req != req);
dd->is_async = start_async;
dd->force_complete = false;
/* WARNING: ctx->start() MAY change dd->is_async. */
err = ctx->start(dd);
return (start_async) ? ret : err;
}
static int atmel_sha_done(struct atmel_sha_dev *dd);
static int atmel_sha_start(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
int err;
dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
ctx->op, req->nbytes);
err = atmel_sha_hw_init(dd);
if (err)
return atmel_sha_complete(dd, err);
/*
* atmel_sha_update_req() and atmel_sha_final_req() can return either:
* -EINPROGRESS: the hardware is busy and the SHA driver will resume
* its job later in the done_task.
* This is the main path.
*
* 0: the SHA driver can continue its job then release the hardware
* later, if needed, with atmel_sha_finish_req().
* This is the alternate path.
*
* < 0: an error has occurred so atmel_sha_complete(dd, err) has already
* been called, hence the hardware has been released.
* The SHA driver must stop its job without calling
* atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
* called a second time.
*
* Please note that currently, atmel_sha_final_req() never returns 0.
*/
dd->resume = atmel_sha_done;
if (ctx->op == SHA_OP_UPDATE) {
err = atmel_sha_update_req(dd);
if (!err && (ctx->flags & SHA_FLAGS_FINUP))
/* no final() after finup() */
err = atmel_sha_final_req(dd);
} else if (ctx->op == SHA_OP_FINAL) {
err = atmel_sha_final_req(dd);
}
if (!err)
/* done_task will not finish it, so do it here */
atmel_sha_finish_req(req, err);
dev_dbg(dd->dev, "exit, err: %d\n", err);
return err;
}
static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
struct atmel_sha_dev *dd = tctx->dd;
ctx->op = op;
return atmel_sha_handle_queue(dd, req);
}
static int atmel_sha_update(struct ahash_request *req)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
if (!req->nbytes)
return 0;
ctx->total = req->nbytes;
ctx->sg = req->src;
ctx->offset = 0;
if (ctx->flags & SHA_FLAGS_FINUP) {
if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
/* faster to use CPU for short transfers */
ctx->flags |= SHA_FLAGS_CPU;
} else if (ctx->bufcnt + ctx->total < ctx->buflen) {
atmel_sha_append_sg(ctx);
return 0;
}
return atmel_sha_enqueue(req, SHA_OP_UPDATE);
}
static int atmel_sha_final(struct ahash_request *req)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
ctx->flags |= SHA_FLAGS_FINUP;
if (ctx->flags & SHA_FLAGS_ERROR)
return 0; /* uncompleted hash is not needed */
if (ctx->flags & SHA_FLAGS_PAD)
/* copy ready hash (+ finalize hmac) */
return atmel_sha_finish(req);
return atmel_sha_enqueue(req, SHA_OP_FINAL);
}
static int atmel_sha_finup(struct ahash_request *req)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
int err1, err2;
ctx->flags |= SHA_FLAGS_FINUP;
err1 = atmel_sha_update(req);
if (err1 == -EINPROGRESS ||
(err1 == -EBUSY && (ahash_request_flags(req) &
CRYPTO_TFM_REQ_MAY_BACKLOG)))
return err1;
/*
* final() has to be always called to cleanup resources
* even if udpate() failed, except EINPROGRESS
*/
err2 = atmel_sha_final(req);
return err1 ?: err2;
}
static int atmel_sha_digest(struct ahash_request *req)
{
return atmel_sha_init(req) ?: atmel_sha_finup(req);
}
static int atmel_sha_export(struct ahash_request *req, void *out)
{
const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
memcpy(out, ctx, sizeof(*ctx));
return 0;
}
static int atmel_sha_import(struct ahash_request *req, const void *in)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
memcpy(ctx, in, sizeof(*ctx));
return 0;
}
static int atmel_sha_cra_init(struct crypto_tfm *tfm)
{
struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct atmel_sha_reqctx));
ctx->start = atmel_sha_start;
return 0;
}
static void atmel_sha_alg_init(struct ahash_alg *alg)
{
alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_ctx);
alg->halg.base.cra_module = THIS_MODULE;
alg->halg.base.cra_init = atmel_sha_cra_init;
alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
alg->init = atmel_sha_init;
alg->update = atmel_sha_update;
alg->final = atmel_sha_final;
alg->finup = atmel_sha_finup;
alg->digest = atmel_sha_digest;
alg->export = atmel_sha_export;
alg->import = atmel_sha_import;
}
static struct ahash_alg sha_1_256_algs[] = {
{
.halg.base.cra_name = "sha1",
.halg.base.cra_driver_name = "atmel-sha1",
.halg.base.cra_blocksize = SHA1_BLOCK_SIZE,
.halg.digestsize = SHA1_DIGEST_SIZE,
},
{
.halg.base.cra_name = "sha256",
.halg.base.cra_driver_name = "atmel-sha256",
.halg.base.cra_blocksize = SHA256_BLOCK_SIZE,
.halg.digestsize = SHA256_DIGEST_SIZE,
},
};
static struct ahash_alg sha_224_alg = {
.halg.base.cra_name = "sha224",
.halg.base.cra_driver_name = "atmel-sha224",
.halg.base.cra_blocksize = SHA224_BLOCK_SIZE,
.halg.digestsize = SHA224_DIGEST_SIZE,
};
static struct ahash_alg sha_384_512_algs[] = {
{
.halg.base.cra_name = "sha384",
.halg.base.cra_driver_name = "atmel-sha384",
.halg.base.cra_blocksize = SHA384_BLOCK_SIZE,
.halg.base.cra_alignmask = 0x3,
.halg.digestsize = SHA384_DIGEST_SIZE,
},
{
.halg.base.cra_name = "sha512",
.halg.base.cra_driver_name = "atmel-sha512",
.halg.base.cra_blocksize = SHA512_BLOCK_SIZE,
.halg.base.cra_alignmask = 0x3,
.halg.digestsize = SHA512_DIGEST_SIZE,
},
};
crypto: atmel-sha - fix a race between the 'done' tasklet and the crypto client The 'done' tasklet handler used to check the 'BUSY' flag to either finalize the processing of a crypto request which had just completed or manage the crypto queue to start the next crypto request. On request R1 completion, the driver calls atmel_sha_finish_req(), which: 1 - clears the 'BUSY' flag since the hardware is no longer used and is ready again to process new crypto requests. 2 - notifies the above layer (the client) about the completion of the asynchronous crypto request R1 by calling its base.complete() callback. 3 - schedules the 'done' task to check the crypto queue and start to process the next crypto request (the 'BUSY' flag is supposed to be cleared at that moment) if such a pending request exists. However step 2 might wake the client up so it can now ask our driver to process a new crypto request R2. This request is enqueued by calling the atmel_sha_handle_queue() function, which sets the 'BUSY' flags then starts to process R2. If the 'done' tasklet, scheduled by step 3, runs just after, it would see that the 'BUSY' flag is set then understand that R2 has just completed, which is wrong! So the state of 'BUSY' flag is not a proper way to detect and handle crypto request completion. This patch fixes this race condition by using two different tasklets, one to handle the crypto request completion events, the other to manage the crypto queue if needed. Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2016-01-15 22:49:32 +08:00
static void atmel_sha_queue_task(unsigned long data)
{
struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
atmel_sha_handle_queue(dd, NULL);
}
static int atmel_sha_done(struct atmel_sha_dev *dd)
{
int err = 0;
if (SHA_FLAGS_CPU & dd->flags) {
if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
goto finish;
}
} else if (SHA_FLAGS_DMA_READY & dd->flags) {
if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
atmel_sha_update_dma_stop(dd);
}
if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
/* hash or semi-hash ready */
dd->flags &= ~(SHA_FLAGS_DMA_READY |
SHA_FLAGS_OUTPUT_READY);
err = atmel_sha_update_dma_start(dd);
if (err != -EINPROGRESS)
goto finish;
}
}
return err;
finish:
/* finish curent request */
atmel_sha_finish_req(dd->req, err);
return err;
}
static void atmel_sha_done_task(unsigned long data)
{
struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
dd->is_async = true;
(void)dd->resume(dd);
}
static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
{
struct atmel_sha_dev *sha_dd = dev_id;
u32 reg;
reg = atmel_sha_read(sha_dd, SHA_ISR);
if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
atmel_sha_write(sha_dd, SHA_IDR, reg);
if (SHA_FLAGS_BUSY & sha_dd->flags) {
sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
if (!(SHA_FLAGS_CPU & sha_dd->flags))
sha_dd->flags |= SHA_FLAGS_DMA_READY;
tasklet_schedule(&sha_dd->done_task);
} else {
dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
}
return IRQ_HANDLED;
}
return IRQ_NONE;
}
/* DMA transfer functions */
static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd,
struct scatterlist *sg,
size_t len)
{
struct atmel_sha_dma *dma = &dd->dma_lch_in;
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
size_t bs = ctx->block_size;
int nents;
for (nents = 0; sg; sg = sg_next(sg), ++nents) {
if (!IS_ALIGNED(sg->offset, sizeof(u32)))
return false;
/*
* This is the last sg, the only one that is allowed to
* have an unaligned length.
*/
if (len <= sg->length) {
dma->nents = nents + 1;
dma->last_sg_length = sg->length;
sg->length = ALIGN(len, sizeof(u32));
return true;
}
/* All other sg lengths MUST be aligned to the block size. */
if (!IS_ALIGNED(sg->length, bs))
return false;
len -= sg->length;
}
return false;
}
static void atmel_sha_dma_callback2(void *data)
{
struct atmel_sha_dev *dd = data;
struct atmel_sha_dma *dma = &dd->dma_lch_in;
struct scatterlist *sg;
int nents;
dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
sg = dma->sg;
for (nents = 0; nents < dma->nents - 1; ++nents)
sg = sg_next(sg);
sg->length = dma->last_sg_length;
dd->is_async = true;
(void)atmel_sha_wait_for_data_ready(dd, dd->resume);
}
static int atmel_sha_dma_start(struct atmel_sha_dev *dd,
struct scatterlist *src,
size_t len,
atmel_sha_fn_t resume)
{
struct atmel_sha_dma *dma = &dd->dma_lch_in;
struct dma_slave_config *config = &dma->dma_conf;
struct dma_chan *chan = dma->chan;
struct dma_async_tx_descriptor *desc;
dma_cookie_t cookie;
unsigned int sg_len;
int err;
dd->resume = resume;
/*
* dma->nents has already been initialized by
* atmel_sha_dma_check_aligned().
*/
dma->sg = src;
sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
if (!sg_len) {
err = -ENOMEM;
goto exit;
}
config->src_maxburst = 16;
config->dst_maxburst = 16;
err = dmaengine_slave_config(chan, config);
if (err)
goto unmap_sg;
desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc) {
err = -ENOMEM;
goto unmap_sg;
}
desc->callback = atmel_sha_dma_callback2;
desc->callback_param = dd;
cookie = dmaengine_submit(desc);
err = dma_submit_error(cookie);
if (err)
goto unmap_sg;
dma_async_issue_pending(chan);
return -EINPROGRESS;
unmap_sg:
dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
exit:
return atmel_sha_complete(dd, err);
}
/* CPU transfer functions */
static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
const u32 *words = (const u32 *)ctx->buffer;
size_t i, num_words;
u32 isr, din, din_inc;
din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1;
for (;;) {
/* Write data into the Input Data Registers. */
num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32));
for (i = 0, din = 0; i < num_words; ++i, din += din_inc)
atmel_sha_write(dd, SHA_REG_DIN(din), words[i]);
ctx->offset += ctx->bufcnt;
ctx->total -= ctx->bufcnt;
if (!ctx->total)
break;
/*
* Prepare next block:
* Fill ctx->buffer now with the next data to be written into
* IDATARx: it gives time for the SHA hardware to process
* the current data so the SHA_INT_DATARDY flag might be set
* in SHA_ISR when polling this register at the beginning of
* the next loop.
*/
ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
ctx->offset, ctx->bufcnt, 0);
/* Wait for hardware to be ready again. */
isr = atmel_sha_read(dd, SHA_ISR);
if (!(isr & SHA_INT_DATARDY)) {
/* Not ready yet. */
dd->resume = atmel_sha_cpu_transfer;
atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
return -EINPROGRESS;
}
}
if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY)))
return dd->cpu_transfer_complete(dd);
return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete);
}
static int atmel_sha_cpu_start(struct atmel_sha_dev *dd,
struct scatterlist *sg,
unsigned int len,
bool idatar0_only,
bool wait_data_ready,
atmel_sha_fn_t resume)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
if (!len)
return resume(dd);
ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY);
if (idatar0_only)
ctx->flags |= SHA_FLAGS_IDATAR0;
if (wait_data_ready)
ctx->flags |= SHA_FLAGS_WAIT_DATARDY;
ctx->sg = sg;
ctx->total = len;
ctx->offset = 0;
/* Prepare the first block to be written. */
ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
ctx->offset, ctx->bufcnt, 0);
dd->cpu_transfer_complete = resume;
return atmel_sha_cpu_transfer(dd);
}
static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd,
const void *data, unsigned int datalen,
bool auto_padding,
atmel_sha_fn_t resume)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
u32 msglen = (auto_padding) ? datalen : 0;
u32 mr = SHA_MR_MODE_AUTO;
if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding))
return atmel_sha_complete(dd, -EINVAL);
mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
atmel_sha_write(dd, SHA_MR, mr);
atmel_sha_write(dd, SHA_MSR, msglen);
atmel_sha_write(dd, SHA_BCR, msglen);
atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
sg_init_one(&dd->tmp, data, datalen);
return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume);
}
/* hmac functions */
struct atmel_sha_hmac_key {
bool valid;
unsigned int keylen;
u8 buffer[SHA512_BLOCK_SIZE];
u8 *keydup;
};
static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey)
{
memset(hkey, 0, sizeof(*hkey));
}
static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey)
{
kfree(hkey->keydup);
memset(hkey, 0, sizeof(*hkey));
}
static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey,
const u8 *key,
unsigned int keylen)
{
atmel_sha_hmac_key_release(hkey);
if (keylen > sizeof(hkey->buffer)) {
hkey->keydup = kmemdup(key, keylen, GFP_KERNEL);
if (!hkey->keydup)
return -ENOMEM;
} else {
memcpy(hkey->buffer, key, keylen);
}
hkey->valid = true;
hkey->keylen = keylen;
return 0;
}
static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey,
const u8 **key,
unsigned int *keylen)
{
if (!hkey->valid)
return false;
*keylen = hkey->keylen;
*key = (hkey->keydup) ? hkey->keydup : hkey->buffer;
return true;
}
struct atmel_sha_hmac_ctx {
struct atmel_sha_ctx base;
struct atmel_sha_hmac_key hkey;
u32 ipad[SHA512_BLOCK_SIZE / sizeof(u32)];
u32 opad[SHA512_BLOCK_SIZE / sizeof(u32)];
atmel_sha_fn_t resume;
};
static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
atmel_sha_fn_t resume);
static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
const u8 *key, unsigned int keylen);
static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd);
static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd);
static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd);
static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd);
static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd);
static int atmel_sha_hmac_final(struct atmel_sha_dev *dd);
static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd);
static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd);
static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
atmel_sha_fn_t resume)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
unsigned int keylen;
const u8 *key;
size_t bs;
hmac->resume = resume;
switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
case SHA_FLAGS_SHA1:
ctx->block_size = SHA1_BLOCK_SIZE;
ctx->hash_size = SHA1_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA224:
ctx->block_size = SHA224_BLOCK_SIZE;
ctx->hash_size = SHA256_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA256:
ctx->block_size = SHA256_BLOCK_SIZE;
ctx->hash_size = SHA256_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA384:
ctx->block_size = SHA384_BLOCK_SIZE;
ctx->hash_size = SHA512_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA512:
ctx->block_size = SHA512_BLOCK_SIZE;
ctx->hash_size = SHA512_DIGEST_SIZE;
break;
default:
return atmel_sha_complete(dd, -EINVAL);
}
bs = ctx->block_size;
if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen)))
return resume(dd);
/* Compute K' from K. */
if (unlikely(keylen > bs))
return atmel_sha_hmac_prehash_key(dd, key, keylen);
/* Prepare ipad. */
memcpy((u8 *)hmac->ipad, key, keylen);
memset((u8 *)hmac->ipad + keylen, 0, bs - keylen);
return atmel_sha_hmac_compute_ipad_hash(dd);
}
static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
const u8 *key, unsigned int keylen)
{
return atmel_sha_cpu_hash(dd, key, keylen, true,
atmel_sha_hmac_prehash_key_done);
}
static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
size_t ds = crypto_ahash_digestsize(tfm);
size_t bs = ctx->block_size;
size_t i, num_words = ds / sizeof(u32);
/* Prepare ipad. */
for (i = 0; i < num_words; ++i)
hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
memset((u8 *)hmac->ipad + ds, 0, bs - ds);
return atmel_sha_hmac_compute_ipad_hash(dd);
}
static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
size_t bs = ctx->block_size;
size_t i, num_words = bs / sizeof(u32);
memcpy(hmac->opad, hmac->ipad, bs);
for (i = 0; i < num_words; ++i) {
hmac->ipad[i] ^= 0x36363636;
hmac->opad[i] ^= 0x5c5c5c5c;
}
return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false,
atmel_sha_hmac_compute_opad_hash);
}
static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
size_t bs = ctx->block_size;
size_t hs = ctx->hash_size;
size_t i, num_words = hs / sizeof(u32);
for (i = 0; i < num_words; ++i)
hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
return atmel_sha_cpu_hash(dd, hmac->opad, bs, false,
atmel_sha_hmac_setup_done);
}
static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
size_t hs = ctx->hash_size;
size_t i, num_words = hs / sizeof(u32);
for (i = 0; i < num_words; ++i)
hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
atmel_sha_hmac_key_release(&hmac->hkey);
return hmac->resume(dd);
}
static int atmel_sha_hmac_start(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
int err;
err = atmel_sha_hw_init(dd);
if (err)
return atmel_sha_complete(dd, err);
switch (ctx->op) {
case SHA_OP_INIT:
err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done);
break;
case SHA_OP_UPDATE:
dd->resume = atmel_sha_done;
err = atmel_sha_update_req(dd);
break;
case SHA_OP_FINAL:
dd->resume = atmel_sha_hmac_final;
err = atmel_sha_final_req(dd);
break;
case SHA_OP_DIGEST:
err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2);
break;
default:
return atmel_sha_complete(dd, -EINVAL);
}
return err;
}
static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
return atmel_sha_hmac_key_set(&hmac->hkey, key, keylen);
}
static int atmel_sha_hmac_init(struct ahash_request *req)
{
int err;
err = atmel_sha_init(req);
if (err)
return err;
return atmel_sha_enqueue(req, SHA_OP_INIT);
}
static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
size_t bs = ctx->block_size;
size_t hs = ctx->hash_size;
ctx->bufcnt = 0;
ctx->digcnt[0] = bs;
ctx->digcnt[1] = 0;
ctx->flags |= SHA_FLAGS_RESTORE;
memcpy(ctx->digest, hmac->ipad, hs);
return atmel_sha_complete(dd, 0);
}
static int atmel_sha_hmac_final(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
u32 *digest = (u32 *)ctx->digest;
size_t ds = crypto_ahash_digestsize(tfm);
size_t bs = ctx->block_size;
size_t hs = ctx->hash_size;
size_t i, num_words;
u32 mr;
/* Save d = SHA((K' + ipad) | msg). */
num_words = ds / sizeof(u32);
for (i = 0; i < num_words; ++i)
digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
/* Restore context to finish computing SHA((K' + opad) | d). */
atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
num_words = hs / sizeof(u32);
for (i = 0; i < num_words; ++i)
atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV;
mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
atmel_sha_write(dd, SHA_MR, mr);
atmel_sha_write(dd, SHA_MSR, bs + ds);
atmel_sha_write(dd, SHA_BCR, ds);
atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
sg_init_one(&dd->tmp, digest, ds);
return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true,
atmel_sha_hmac_final_done);
}
static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd)
{
/*
* req->result might not be sizeof(u32) aligned, so copy the
* digest into ctx->digest[] before memcpy() the data into
* req->result.
*/
atmel_sha_copy_hash(dd->req);
atmel_sha_copy_ready_hash(dd->req);
return atmel_sha_complete(dd, 0);
}
static int atmel_sha_hmac_digest(struct ahash_request *req)
{
int err;
err = atmel_sha_init(req);
if (err)
return err;
return atmel_sha_enqueue(req, SHA_OP_DIGEST);
}
static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
size_t hs = ctx->hash_size;
size_t i, num_words = hs / sizeof(u32);
bool use_dma = false;
u32 mr;
/* Special case for empty message. */
if (!req->nbytes)
return atmel_sha_complete(dd, -EINVAL); // TODO:
/* Check DMA threshold and alignment. */
if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD &&
atmel_sha_dma_check_aligned(dd, req->src, req->nbytes))
use_dma = true;
/* Write both initial hash values to compute a HMAC. */
atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
for (i = 0; i < num_words; ++i)
atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
for (i = 0; i < num_words; ++i)
atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
/* Write the Mode, Message Size, Bytes Count then Control Registers. */
mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF);
mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
if (use_dma)
mr |= SHA_MR_MODE_IDATAR0;
else
mr |= SHA_MR_MODE_AUTO;
atmel_sha_write(dd, SHA_MR, mr);
atmel_sha_write(dd, SHA_MSR, req->nbytes);
atmel_sha_write(dd, SHA_BCR, req->nbytes);
atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
/* Process data. */
if (use_dma)
return atmel_sha_dma_start(dd, req->src, req->nbytes,
atmel_sha_hmac_final_done);
return atmel_sha_cpu_start(dd, req->src, req->nbytes, false, true,
atmel_sha_hmac_final_done);
}
static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm)
{
struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct atmel_sha_reqctx));
hmac->base.start = atmel_sha_hmac_start;
atmel_sha_hmac_key_init(&hmac->hkey);
return 0;
}
static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm)
{
struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
atmel_sha_hmac_key_release(&hmac->hkey);
}
static void atmel_sha_hmac_alg_init(struct ahash_alg *alg)
{
alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx);
alg->halg.base.cra_module = THIS_MODULE;
alg->halg.base.cra_init = atmel_sha_hmac_cra_init;
alg->halg.base.cra_exit = atmel_sha_hmac_cra_exit;
alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
alg->init = atmel_sha_hmac_init;
alg->update = atmel_sha_update;
alg->final = atmel_sha_final;
alg->digest = atmel_sha_hmac_digest;
alg->setkey = atmel_sha_hmac_setkey;
alg->export = atmel_sha_export;
alg->import = atmel_sha_import;
}
static struct ahash_alg sha_hmac_algs[] = {
{
.halg.base.cra_name = "hmac(sha1)",
.halg.base.cra_driver_name = "atmel-hmac-sha1",
.halg.base.cra_blocksize = SHA1_BLOCK_SIZE,
.halg.digestsize = SHA1_DIGEST_SIZE,
},
{
.halg.base.cra_name = "hmac(sha224)",
.halg.base.cra_driver_name = "atmel-hmac-sha224",
.halg.base.cra_blocksize = SHA224_BLOCK_SIZE,
.halg.digestsize = SHA224_DIGEST_SIZE,
},
{
.halg.base.cra_name = "hmac(sha256)",
.halg.base.cra_driver_name = "atmel-hmac-sha256",
.halg.base.cra_blocksize = SHA256_BLOCK_SIZE,
.halg.digestsize = SHA256_DIGEST_SIZE,
},
{
.halg.base.cra_name = "hmac(sha384)",
.halg.base.cra_driver_name = "atmel-hmac-sha384",
.halg.base.cra_blocksize = SHA384_BLOCK_SIZE,
.halg.digestsize = SHA384_DIGEST_SIZE,
},
{
.halg.base.cra_name = "hmac(sha512)",
.halg.base.cra_driver_name = "atmel-hmac-sha512",
.halg.base.cra_blocksize = SHA512_BLOCK_SIZE,
.halg.digestsize = SHA512_DIGEST_SIZE,
},
};
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
/* authenc functions */
static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd);
static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd);
static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd);
struct atmel_sha_authenc_ctx {
struct crypto_ahash *tfm;
};
struct atmel_sha_authenc_reqctx {
struct atmel_sha_reqctx base;
atmel_aes_authenc_fn_t cb;
struct atmel_aes_dev *aes_dev;
/* _init() parameters. */
struct scatterlist *assoc;
u32 assoclen;
u32 textlen;
/* _final() parameters. */
u32 *digest;
unsigned int digestlen;
};
static void atmel_sha_authenc_complete(struct crypto_async_request *areq,
int err)
{
struct ahash_request *req = areq->data;
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async);
}
static int atmel_sha_authenc_start(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
int err;
/*
* Force atmel_sha_complete() to call req->base.complete(), ie
* atmel_sha_authenc_complete(), which in turn calls authctx->cb().
*/
dd->force_complete = true;
err = atmel_sha_hw_init(dd);
return authctx->cb(authctx->aes_dev, err, dd->is_async);
}
bool atmel_sha_authenc_is_ready(void)
{
struct atmel_sha_ctx dummy;
dummy.dd = NULL;
return (atmel_sha_find_dev(&dummy) != NULL);
}
EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready);
unsigned int atmel_sha_authenc_get_reqsize(void)
{
return sizeof(struct atmel_sha_authenc_reqctx);
}
EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize);
struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode)
{
struct atmel_sha_authenc_ctx *auth;
struct crypto_ahash *tfm;
struct atmel_sha_ctx *tctx;
const char *name;
int err = -EINVAL;
switch (mode & SHA_FLAGS_MODE_MASK) {
case SHA_FLAGS_HMAC_SHA1:
name = "atmel-hmac-sha1";
break;
case SHA_FLAGS_HMAC_SHA224:
name = "atmel-hmac-sha224";
break;
case SHA_FLAGS_HMAC_SHA256:
name = "atmel-hmac-sha256";
break;
case SHA_FLAGS_HMAC_SHA384:
name = "atmel-hmac-sha384";
break;
case SHA_FLAGS_HMAC_SHA512:
name = "atmel-hmac-sha512";
break;
default:
goto error;
}
tfm = crypto_alloc_ahash(name, 0, 0);
if (IS_ERR(tfm)) {
err = PTR_ERR(tfm);
goto error;
}
tctx = crypto_ahash_ctx(tfm);
tctx->start = atmel_sha_authenc_start;
tctx->flags = mode;
auth = kzalloc(sizeof(*auth), GFP_KERNEL);
if (!auth) {
err = -ENOMEM;
goto err_free_ahash;
}
auth->tfm = tfm;
return auth;
err_free_ahash:
crypto_free_ahash(tfm);
error:
return ERR_PTR(err);
}
EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn);
void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth)
{
if (auth)
crypto_free_ahash(auth->tfm);
kfree(auth);
}
EXPORT_SYMBOL_GPL(atmel_sha_authenc_free);
int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth,
const u8 *key, unsigned int keylen, u32 flags)
{
struct crypto_ahash *tfm = auth->tfm;
crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
crypto_ahash_set_flags(tfm, flags & CRYPTO_TFM_REQ_MASK);
return crypto_ahash_setkey(tfm, key, keylen);
}
EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey);
int atmel_sha_authenc_schedule(struct ahash_request *req,
struct atmel_sha_authenc_ctx *auth,
atmel_aes_authenc_fn_t cb,
struct atmel_aes_dev *aes_dev)
{
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
struct atmel_sha_reqctx *ctx = &authctx->base;
struct crypto_ahash *tfm = auth->tfm;
struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
struct atmel_sha_dev *dd;
/* Reset request context (MUST be done first). */
memset(authctx, 0, sizeof(*authctx));
/* Get SHA device. */
dd = atmel_sha_find_dev(tctx);
if (!dd)
return cb(aes_dev, -ENODEV, false);
/* Init request context. */
ctx->dd = dd;
ctx->buflen = SHA_BUFFER_LEN;
authctx->cb = cb;
authctx->aes_dev = aes_dev;
ahash_request_set_tfm(req, tfm);
ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req);
return atmel_sha_handle_queue(dd, req);
}
EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule);
int atmel_sha_authenc_init(struct ahash_request *req,
struct scatterlist *assoc, unsigned int assoclen,
unsigned int textlen,
atmel_aes_authenc_fn_t cb,
struct atmel_aes_dev *aes_dev)
{
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
struct atmel_sha_reqctx *ctx = &authctx->base;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
struct atmel_sha_dev *dd = ctx->dd;
if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32))))
return atmel_sha_complete(dd, -EINVAL);
authctx->cb = cb;
authctx->aes_dev = aes_dev;
authctx->assoc = assoc;
authctx->assoclen = assoclen;
authctx->textlen = textlen;
ctx->flags = hmac->base.flags;
return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2);
}
EXPORT_SYMBOL_GPL(atmel_sha_authenc_init);
static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
struct atmel_sha_reqctx *ctx = &authctx->base;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
size_t hs = ctx->hash_size;
size_t i, num_words = hs / sizeof(u32);
u32 mr, msg_size;
atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
for (i = 0; i < num_words; ++i)
atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
for (i = 0; i < num_words; ++i)
atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
mr = (SHA_MR_MODE_IDATAR0 |
SHA_MR_HMAC |
SHA_MR_DUALBUFF);
mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
atmel_sha_write(dd, SHA_MR, mr);
msg_size = authctx->assoclen + authctx->textlen;
atmel_sha_write(dd, SHA_MSR, msg_size);
atmel_sha_write(dd, SHA_BCR, msg_size);
atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
/* Process assoc data. */
return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen,
true, false,
atmel_sha_authenc_init_done);
}
static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
return authctx->cb(authctx->aes_dev, 0, dd->is_async);
}
int atmel_sha_authenc_final(struct ahash_request *req,
u32 *digest, unsigned int digestlen,
atmel_aes_authenc_fn_t cb,
struct atmel_aes_dev *aes_dev)
{
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
struct atmel_sha_reqctx *ctx = &authctx->base;
struct atmel_sha_dev *dd = ctx->dd;
switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
case SHA_FLAGS_SHA1:
authctx->digestlen = SHA1_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA224:
authctx->digestlen = SHA224_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA256:
authctx->digestlen = SHA256_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA384:
authctx->digestlen = SHA384_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA512:
authctx->digestlen = SHA512_DIGEST_SIZE;
break;
default:
return atmel_sha_complete(dd, -EINVAL);
}
if (authctx->digestlen > digestlen)
authctx->digestlen = digestlen;
authctx->cb = cb;
authctx->aes_dev = aes_dev;
authctx->digest = digest;
return atmel_sha_wait_for_data_ready(dd,
atmel_sha_authenc_final_done);
}
EXPORT_SYMBOL_GPL(atmel_sha_authenc_final);
static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
size_t i, num_words = authctx->digestlen / sizeof(u32);
for (i = 0; i < num_words; ++i)
authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
return atmel_sha_complete(dd, 0);
}
void atmel_sha_authenc_abort(struct ahash_request *req)
{
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
struct atmel_sha_reqctx *ctx = &authctx->base;
struct atmel_sha_dev *dd = ctx->dd;
/* Prevent atmel_sha_complete() from calling req->base.complete(). */
dd->is_async = false;
dd->force_complete = false;
(void)atmel_sha_complete(dd, 0);
}
EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort);
#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
{
int i;
if (dd->caps.has_hmac)
for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++)
crypto_unregister_ahash(&sha_hmac_algs[i]);
for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
crypto_unregister_ahash(&sha_1_256_algs[i]);
if (dd->caps.has_sha224)
crypto_unregister_ahash(&sha_224_alg);
if (dd->caps.has_sha_384_512) {
for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
crypto_unregister_ahash(&sha_384_512_algs[i]);
}
}
static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
{
int err, i, j;
for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
atmel_sha_alg_init(&sha_1_256_algs[i]);
err = crypto_register_ahash(&sha_1_256_algs[i]);
if (err)
goto err_sha_1_256_algs;
}
if (dd->caps.has_sha224) {
atmel_sha_alg_init(&sha_224_alg);
err = crypto_register_ahash(&sha_224_alg);
if (err)
goto err_sha_224_algs;
}
if (dd->caps.has_sha_384_512) {
for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
atmel_sha_alg_init(&sha_384_512_algs[i]);
err = crypto_register_ahash(&sha_384_512_algs[i]);
if (err)
goto err_sha_384_512_algs;
}
}
if (dd->caps.has_hmac) {
for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) {
atmel_sha_hmac_alg_init(&sha_hmac_algs[i]);
err = crypto_register_ahash(&sha_hmac_algs[i]);
if (err)
goto err_sha_hmac_algs;
}
}
return 0;
/*i = ARRAY_SIZE(sha_hmac_algs);*/
err_sha_hmac_algs:
for (j = 0; j < i; j++)
crypto_unregister_ahash(&sha_hmac_algs[j]);
i = ARRAY_SIZE(sha_384_512_algs);
err_sha_384_512_algs:
for (j = 0; j < i; j++)
crypto_unregister_ahash(&sha_384_512_algs[j]);
crypto_unregister_ahash(&sha_224_alg);
err_sha_224_algs:
i = ARRAY_SIZE(sha_1_256_algs);
err_sha_1_256_algs:
for (j = 0; j < i; j++)
crypto_unregister_ahash(&sha_1_256_algs[j]);
return err;
}
static int atmel_sha_dma_init(struct atmel_sha_dev *dd)
{
dd->dma_lch_in.chan = dma_request_chan(dd->dev, "tx");
if (IS_ERR(dd->dma_lch_in.chan)) {
dev_err(dd->dev, "DMA channel is not available\n");
return PTR_ERR(dd->dma_lch_in.chan);
}
dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
SHA_REG_DIN(0);
dd->dma_lch_in.dma_conf.src_maxburst = 1;
dd->dma_lch_in.dma_conf.src_addr_width =
DMA_SLAVE_BUSWIDTH_4_BYTES;
dd->dma_lch_in.dma_conf.dst_maxburst = 1;
dd->dma_lch_in.dma_conf.dst_addr_width =
DMA_SLAVE_BUSWIDTH_4_BYTES;
dd->dma_lch_in.dma_conf.device_fc = false;
return 0;
}
static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
{
dma_release_channel(dd->dma_lch_in.chan);
}
static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
{
dd->caps.has_dma = 0;
dd->caps.has_dualbuff = 0;
dd->caps.has_sha224 = 0;
dd->caps.has_sha_384_512 = 0;
dd->caps.has_uihv = 0;
dd->caps.has_hmac = 0;
/* keep only major version number */
switch (dd->hw_version & 0xff0) {
case 0x510:
dd->caps.has_dma = 1;
dd->caps.has_dualbuff = 1;
dd->caps.has_sha224 = 1;
dd->caps.has_sha_384_512 = 1;
dd->caps.has_uihv = 1;
dd->caps.has_hmac = 1;
break;
case 0x420:
dd->caps.has_dma = 1;
dd->caps.has_dualbuff = 1;
dd->caps.has_sha224 = 1;
dd->caps.has_sha_384_512 = 1;
dd->caps.has_uihv = 1;
break;
case 0x410:
dd->caps.has_dma = 1;
dd->caps.has_dualbuff = 1;
dd->caps.has_sha224 = 1;
dd->caps.has_sha_384_512 = 1;
break;
case 0x400:
dd->caps.has_dma = 1;
dd->caps.has_dualbuff = 1;
dd->caps.has_sha224 = 1;
break;
case 0x320:
break;
default:
dev_warn(dd->dev,
"Unmanaged sha version, set minimum capabilities\n");
break;
}
}
#if defined(CONFIG_OF)
static const struct of_device_id atmel_sha_dt_ids[] = {
{ .compatible = "atmel,at91sam9g46-sha" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
#endif
static int atmel_sha_probe(struct platform_device *pdev)
{
struct atmel_sha_dev *sha_dd;
struct device *dev = &pdev->dev;
struct resource *sha_res;
int err;
sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
if (!sha_dd)
return -ENOMEM;
sha_dd->dev = dev;
platform_set_drvdata(pdev, sha_dd);
INIT_LIST_HEAD(&sha_dd->list);
spin_lock_init(&sha_dd->lock);
tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
(unsigned long)sha_dd);
crypto: atmel-sha - fix a race between the 'done' tasklet and the crypto client The 'done' tasklet handler used to check the 'BUSY' flag to either finalize the processing of a crypto request which had just completed or manage the crypto queue to start the next crypto request. On request R1 completion, the driver calls atmel_sha_finish_req(), which: 1 - clears the 'BUSY' flag since the hardware is no longer used and is ready again to process new crypto requests. 2 - notifies the above layer (the client) about the completion of the asynchronous crypto request R1 by calling its base.complete() callback. 3 - schedules the 'done' task to check the crypto queue and start to process the next crypto request (the 'BUSY' flag is supposed to be cleared at that moment) if such a pending request exists. However step 2 might wake the client up so it can now ask our driver to process a new crypto request R2. This request is enqueued by calling the atmel_sha_handle_queue() function, which sets the 'BUSY' flags then starts to process R2. If the 'done' tasklet, scheduled by step 3, runs just after, it would see that the 'BUSY' flag is set then understand that R2 has just completed, which is wrong! So the state of 'BUSY' flag is not a proper way to detect and handle crypto request completion. This patch fixes this race condition by using two different tasklets, one to handle the crypto request completion events, the other to manage the crypto queue if needed. Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2016-01-15 22:49:32 +08:00
tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
(unsigned long)sha_dd);
crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
/* Get the base address */
sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!sha_res) {
dev_err(dev, "no MEM resource info\n");
err = -ENODEV;
goto err_tasklet_kill;
}
sha_dd->phys_base = sha_res->start;
/* Get the IRQ */
sha_dd->irq = platform_get_irq(pdev, 0);
if (sha_dd->irq < 0) {
err = sha_dd->irq;
goto err_tasklet_kill;
}
err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
IRQF_SHARED, "atmel-sha", sha_dd);
if (err) {
dev_err(dev, "unable to request sha irq.\n");
goto err_tasklet_kill;
}
/* Initializing the clock */
sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
if (IS_ERR(sha_dd->iclk)) {
dev_err(dev, "clock initialization failed.\n");
err = PTR_ERR(sha_dd->iclk);
goto err_tasklet_kill;
}
sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res);
if (IS_ERR(sha_dd->io_base)) {
dev_err(dev, "can't ioremap\n");
err = PTR_ERR(sha_dd->io_base);
goto err_tasklet_kill;
}
err = clk_prepare(sha_dd->iclk);
if (err)
goto err_tasklet_kill;
err = atmel_sha_hw_version_init(sha_dd);
if (err)
goto err_iclk_unprepare;
atmel_sha_get_cap(sha_dd);
if (sha_dd->caps.has_dma) {
err = atmel_sha_dma_init(sha_dd);
if (err)
goto err_iclk_unprepare;
dev_info(dev, "using %s for DMA transfers\n",
dma_chan_name(sha_dd->dma_lch_in.chan));
}
spin_lock(&atmel_sha.lock);
list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
spin_unlock(&atmel_sha.lock);
err = atmel_sha_register_algs(sha_dd);
if (err)
goto err_algs;
dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
sha_dd->caps.has_sha224 ? "/SHA224" : "",
sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
return 0;
err_algs:
spin_lock(&atmel_sha.lock);
list_del(&sha_dd->list);
spin_unlock(&atmel_sha.lock);
if (sha_dd->caps.has_dma)
atmel_sha_dma_cleanup(sha_dd);
err_iclk_unprepare:
clk_unprepare(sha_dd->iclk);
err_tasklet_kill:
crypto: atmel-sha - fix a race between the 'done' tasklet and the crypto client The 'done' tasklet handler used to check the 'BUSY' flag to either finalize the processing of a crypto request which had just completed or manage the crypto queue to start the next crypto request. On request R1 completion, the driver calls atmel_sha_finish_req(), which: 1 - clears the 'BUSY' flag since the hardware is no longer used and is ready again to process new crypto requests. 2 - notifies the above layer (the client) about the completion of the asynchronous crypto request R1 by calling its base.complete() callback. 3 - schedules the 'done' task to check the crypto queue and start to process the next crypto request (the 'BUSY' flag is supposed to be cleared at that moment) if such a pending request exists. However step 2 might wake the client up so it can now ask our driver to process a new crypto request R2. This request is enqueued by calling the atmel_sha_handle_queue() function, which sets the 'BUSY' flags then starts to process R2. If the 'done' tasklet, scheduled by step 3, runs just after, it would see that the 'BUSY' flag is set then understand that R2 has just completed, which is wrong! So the state of 'BUSY' flag is not a proper way to detect and handle crypto request completion. This patch fixes this race condition by using two different tasklets, one to handle the crypto request completion events, the other to manage the crypto queue if needed. Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2016-01-15 22:49:32 +08:00
tasklet_kill(&sha_dd->queue_task);
tasklet_kill(&sha_dd->done_task);
return err;
}
static int atmel_sha_remove(struct platform_device *pdev)
{
struct atmel_sha_dev *sha_dd;
sha_dd = platform_get_drvdata(pdev);
if (!sha_dd)
return -ENODEV;
spin_lock(&atmel_sha.lock);
list_del(&sha_dd->list);
spin_unlock(&atmel_sha.lock);
atmel_sha_unregister_algs(sha_dd);
crypto: atmel-sha - fix a race between the 'done' tasklet and the crypto client The 'done' tasklet handler used to check the 'BUSY' flag to either finalize the processing of a crypto request which had just completed or manage the crypto queue to start the next crypto request. On request R1 completion, the driver calls atmel_sha_finish_req(), which: 1 - clears the 'BUSY' flag since the hardware is no longer used and is ready again to process new crypto requests. 2 - notifies the above layer (the client) about the completion of the asynchronous crypto request R1 by calling its base.complete() callback. 3 - schedules the 'done' task to check the crypto queue and start to process the next crypto request (the 'BUSY' flag is supposed to be cleared at that moment) if such a pending request exists. However step 2 might wake the client up so it can now ask our driver to process a new crypto request R2. This request is enqueued by calling the atmel_sha_handle_queue() function, which sets the 'BUSY' flags then starts to process R2. If the 'done' tasklet, scheduled by step 3, runs just after, it would see that the 'BUSY' flag is set then understand that R2 has just completed, which is wrong! So the state of 'BUSY' flag is not a proper way to detect and handle crypto request completion. This patch fixes this race condition by using two different tasklets, one to handle the crypto request completion events, the other to manage the crypto queue if needed. Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2016-01-15 22:49:32 +08:00
tasklet_kill(&sha_dd->queue_task);
tasklet_kill(&sha_dd->done_task);
if (sha_dd->caps.has_dma)
atmel_sha_dma_cleanup(sha_dd);
clk_unprepare(sha_dd->iclk);
return 0;
}
static struct platform_driver atmel_sha_driver = {
.probe = atmel_sha_probe,
.remove = atmel_sha_remove,
.driver = {
.name = "atmel_sha",
.of_match_table = of_match_ptr(atmel_sha_dt_ids),
},
};
module_platform_driver(atmel_sha_driver);
MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");