2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 12:43:55 +08:00
linux-next/kernel/gen_kheaders.sh

82 lines
2.7 KiB
Bash
Raw Normal View History

Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-27 03:04:29 +08:00
#!/bin/bash
# SPDX-License-Identifier: GPL-2.0
# This script generates an archive consisting of kernel headers
# for CONFIG_IKHEADERS.
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-27 03:04:29 +08:00
set -e
sfile="$(readlink -f "$0")"
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-27 03:04:29 +08:00
outdir="$(pwd)"
tarfile=$1
cpio_dir=$outdir/$tarfile.tmp
dir_list="
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-27 03:04:29 +08:00
include/
arch/$SRCARCH/include/
"
# Support incremental builds by skipping archive generation
# if timestamps of files being archived are not changed.
# This block is useful for debugging the incremental builds.
# Uncomment it for debugging.
# if [ ! -f /tmp/iter ]; then iter=1; echo 1 > /tmp/iter;
# else iter=$(($(cat /tmp/iter) + 1)); echo $iter > /tmp/iter; fi
# find $src_file_list -name "*.h" | xargs ls -l > /tmp/src-ls-$iter
# find $obj_file_list -name "*.h" | xargs ls -l > /tmp/obj-ls-$iter
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-27 03:04:29 +08:00
# include/generated/compile.h is ignored because it is touched even when none
# of the source files changed. This causes pointless regeneration, so let us
# ignore them for md5 calculation.
pushd $srctree > /dev/null
src_files_md5="$(find $dir_list -name "*.h" |
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-27 03:04:29 +08:00
grep -v "include/generated/compile.h" |
grep -v "include/generated/autoconf.h" |
xargs ls -l | md5sum | cut -d ' ' -f1)"
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-27 03:04:29 +08:00
popd > /dev/null
obj_files_md5="$(find $dir_list -name "*.h" |
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-27 03:04:29 +08:00
grep -v "include/generated/compile.h" |
grep -v "include/generated/autoconf.h" |
xargs ls -l | md5sum | cut -d ' ' -f1)"
# Any changes to this script will also cause a rebuild of the archive.
this_file_md5="$(ls -l $sfile | md5sum | cut -d ' ' -f1)"
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-27 03:04:29 +08:00
if [ -f $tarfile ]; then tarfile_md5="$(md5sum $tarfile | cut -d ' ' -f1)"; fi
if [ -f kernel/kheaders.md5 ] &&
[ "$(cat kernel/kheaders.md5|head -1)" == "$src_files_md5" ] &&
[ "$(cat kernel/kheaders.md5|head -2|tail -1)" == "$obj_files_md5" ] &&
[ "$(cat kernel/kheaders.md5|head -3|tail -1)" == "$this_file_md5" ] &&
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-27 03:04:29 +08:00
[ "$(cat kernel/kheaders.md5|tail -1)" == "$tarfile_md5" ]; then
exit
fi
if [ "${quiet}" != "silent_" ]; then
echo " GEN $tarfile"
fi
rm -rf $cpio_dir
mkdir $cpio_dir
pushd $srctree > /dev/null
for f in $dir_list;
do find "$f" -name "*.h";
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-27 03:04:29 +08:00
done | cpio --quiet -pd $cpio_dir
popd > /dev/null
# The second CPIO can complain if files already exist which can
# happen with out of tree builds. Just silence CPIO for now.
for f in $dir_list;
do find "$f" -name "*.h";
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-27 03:04:29 +08:00
done | cpio --quiet -pd $cpio_dir >/dev/null 2>&1
# Remove comments except SDPX lines
find $cpio_dir -type f -print0 |
xargs -0 -P8 -n1 perl -pi -e 'BEGIN {undef $/;}; s/\/\*((?!SPDX).)*?\*\///smg;'
tar -Jcf $tarfile -C $cpio_dir/ . > /dev/null
echo "$src_files_md5" > kernel/kheaders.md5
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-27 03:04:29 +08:00
echo "$obj_files_md5" >> kernel/kheaders.md5
echo "$this_file_md5" >> kernel/kheaders.md5
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-27 03:04:29 +08:00
echo "$(md5sum $tarfile | cut -d ' ' -f1)" >> kernel/kheaders.md5
rm -rf $cpio_dir