2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-21 11:44:01 +08:00
linux-next/fs/xfs/xfs_inode_item.c

1052 lines
30 KiB
C
Raw Normal View History

/*
* Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_mount.h"
#include "xfs_trans_priv.h"
#include "xfs_bmap_btree.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_inode_item.h"
#include "xfs_error.h"
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-15 07:14:59 +08:00
#include "xfs_trace.h"
kmem_zone_t *xfs_ili_zone; /* inode log item zone */
static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
{
return container_of(lip, struct xfs_inode_log_item, ili_item);
}
/*
* This returns the number of iovecs needed to log the given inode item.
*
* We need one iovec for the inode log format structure, one for the
* inode core, and possibly one for the inode data/extents/b-tree root
* and one for the inode attribute data/extents/b-tree root.
*/
STATIC uint
xfs_inode_item_size(
struct xfs_log_item *lip)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
uint nvecs = 2;
/*
* Only log the data/extents/b-tree root if there is something
* left to log.
*/
iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
switch (ip->i_d.di_format) {
case XFS_DINODE_FMT_EXTENTS:
iip->ili_format.ilf_fields &=
~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
XFS_ILOG_DEV | XFS_ILOG_UUID);
if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
(ip->i_d.di_nextents > 0) &&
(ip->i_df.if_bytes > 0)) {
ASSERT(ip->i_df.if_u1.if_extents != NULL);
nvecs++;
} else {
iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
}
break;
case XFS_DINODE_FMT_BTREE:
ASSERT(ip->i_df.if_ext_max ==
XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
iip->ili_format.ilf_fields &=
~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
XFS_ILOG_DEV | XFS_ILOG_UUID);
if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
(ip->i_df.if_broot_bytes > 0)) {
ASSERT(ip->i_df.if_broot != NULL);
nvecs++;
} else {
ASSERT(!(iip->ili_format.ilf_fields &
XFS_ILOG_DBROOT));
#ifdef XFS_TRANS_DEBUG
if (iip->ili_root_size > 0) {
ASSERT(iip->ili_root_size ==
ip->i_df.if_broot_bytes);
ASSERT(memcmp(iip->ili_orig_root,
ip->i_df.if_broot,
iip->ili_root_size) == 0);
} else {
ASSERT(ip->i_df.if_broot_bytes == 0);
}
#endif
iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
}
break;
case XFS_DINODE_FMT_LOCAL:
iip->ili_format.ilf_fields &=
~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
XFS_ILOG_DEV | XFS_ILOG_UUID);
if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
(ip->i_df.if_bytes > 0)) {
ASSERT(ip->i_df.if_u1.if_data != NULL);
ASSERT(ip->i_d.di_size > 0);
nvecs++;
} else {
iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
}
break;
case XFS_DINODE_FMT_DEV:
iip->ili_format.ilf_fields &=
~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
XFS_ILOG_DEXT | XFS_ILOG_UUID);
break;
case XFS_DINODE_FMT_UUID:
iip->ili_format.ilf_fields &=
~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
XFS_ILOG_DEXT | XFS_ILOG_DEV);
break;
default:
ASSERT(0);
break;
}
/*
* If there are no attributes associated with this file,
* then there cannot be anything more to log.
* Clear all attribute-related log flags.
*/
if (!XFS_IFORK_Q(ip)) {
iip->ili_format.ilf_fields &=
~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
return nvecs;
}
/*
* Log any necessary attribute data.
*/
switch (ip->i_d.di_aformat) {
case XFS_DINODE_FMT_EXTENTS:
iip->ili_format.ilf_fields &=
~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
(ip->i_d.di_anextents > 0) &&
(ip->i_afp->if_bytes > 0)) {
ASSERT(ip->i_afp->if_u1.if_extents != NULL);
nvecs++;
} else {
iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
}
break;
case XFS_DINODE_FMT_BTREE:
iip->ili_format.ilf_fields &=
~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
(ip->i_afp->if_broot_bytes > 0)) {
ASSERT(ip->i_afp->if_broot != NULL);
nvecs++;
} else {
iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
}
break;
case XFS_DINODE_FMT_LOCAL:
iip->ili_format.ilf_fields &=
~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
(ip->i_afp->if_bytes > 0)) {
ASSERT(ip->i_afp->if_u1.if_data != NULL);
nvecs++;
} else {
iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
}
break;
default:
ASSERT(0);
break;
}
return nvecs;
}
/*
* xfs_inode_item_format_extents - convert in-core extents to on-disk form
*
* For either the data or attr fork in extent format, we need to endian convert
* the in-core extent as we place them into the on-disk inode. In this case, we
* need to do this conversion before we write the extents into the log. Because
* we don't have the disk inode to write into here, we allocate a buffer and
* format the extents into it via xfs_iextents_copy(). We free the buffer in
* the unlock routine after the copy for the log has been made.
*
* In the case of the data fork, the in-core and on-disk fork sizes can be
* different due to delayed allocation extents. We only log on-disk extents
* here, so always use the physical fork size to determine the size of the
* buffer we need to allocate.
*/
STATIC void
xfs_inode_item_format_extents(
struct xfs_inode *ip,
struct xfs_log_iovec *vecp,
int whichfork,
int type)
{
xfs_bmbt_rec_t *ext_buffer;
ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP);
if (whichfork == XFS_DATA_FORK)
ip->i_itemp->ili_extents_buf = ext_buffer;
else
ip->i_itemp->ili_aextents_buf = ext_buffer;
vecp->i_addr = ext_buffer;
vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork);
vecp->i_type = type;
}
/*
* This is called to fill in the vector of log iovecs for the
* given inode log item. It fills the first item with an inode
* log format structure, the second with the on-disk inode structure,
* and a possible third and/or fourth with the inode data/extents/b-tree
* root and inode attributes data/extents/b-tree root.
*/
STATIC void
xfs_inode_item_format(
struct xfs_log_item *lip,
struct xfs_log_iovec *vecp)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
uint nvecs;
size_t data_bytes;
xfs_mount_t *mp;
vecp->i_addr = &iip->ili_format;
vecp->i_len = sizeof(xfs_inode_log_format_t);
vecp->i_type = XLOG_REG_TYPE_IFORMAT;
vecp++;
nvecs = 1;
/*
* Clear i_update_core if the timestamps (or any other
* non-transactional modification) need flushing/logging
* and we're about to log them with the rest of the core.
*
* This is the same logic as xfs_iflush() but this code can't
* run at the same time as xfs_iflush because we're in commit
* processing here and so we have the inode lock held in
* exclusive mode. Although it doesn't really matter
* for the timestamps if both routines were to grab the
* timestamps or not. That would be ok.
*
* We clear i_update_core before copying out the data.
* This is for coordination with our timestamp updates
* that don't hold the inode lock. They will always
* update the timestamps BEFORE setting i_update_core,
* so if we clear i_update_core after they set it we
* are guaranteed to see their updates to the timestamps
* either here. Likewise, if they set it after we clear it
* here, we'll see it either on the next commit of this
* inode or the next time the inode gets flushed via
* xfs_iflush(). This depends on strongly ordered memory
* semantics, but we have that. We use the SYNCHRONIZE
* macro to make sure that the compiler does not reorder
* the i_update_core access below the data copy below.
*/
if (ip->i_update_core) {
ip->i_update_core = 0;
SYNCHRONIZE();
}
/*
2009-10-07 04:29:26 +08:00
* Make sure to get the latest timestamps from the Linux inode.
*/
2009-10-07 04:29:26 +08:00
xfs_synchronize_times(ip);
vecp->i_addr = &ip->i_d;
vecp->i_len = sizeof(struct xfs_icdinode);
vecp->i_type = XLOG_REG_TYPE_ICORE;
vecp++;
nvecs++;
iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
/*
* If this is really an old format inode, then we need to
* log it as such. This means that we have to copy the link
* count from the new field to the old. We don't have to worry
* about the new fields, because nothing trusts them as long as
* the old inode version number is there. If the superblock already
* has a new version number, then we don't bother converting back.
*/
mp = ip->i_mount;
ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
if (ip->i_d.di_version == 1) {
if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
/*
* Convert it back.
*/
ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
ip->i_d.di_onlink = ip->i_d.di_nlink;
} else {
/*
* The superblock version has already been bumped,
* so just make the conversion to the new inode
* format permanent.
*/
ip->i_d.di_version = 2;
ip->i_d.di_onlink = 0;
memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
}
}
switch (ip->i_d.di_format) {
case XFS_DINODE_FMT_EXTENTS:
ASSERT(!(iip->ili_format.ilf_fields &
(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
XFS_ILOG_DEV | XFS_ILOG_UUID)));
if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
ASSERT(ip->i_df.if_bytes > 0);
ASSERT(ip->i_df.if_u1.if_extents != NULL);
ASSERT(ip->i_d.di_nextents > 0);
ASSERT(iip->ili_extents_buf == NULL);
ASSERT((ip->i_df.if_bytes /
(uint)sizeof(xfs_bmbt_rec_t)) > 0);
#ifdef XFS_NATIVE_HOST
if (ip->i_d.di_nextents == ip->i_df.if_bytes /
(uint)sizeof(xfs_bmbt_rec_t)) {
/*
* There are no delayed allocation
* extents, so just point to the
* real extents array.
*/
vecp->i_addr = ip->i_df.if_u1.if_extents;
vecp->i_len = ip->i_df.if_bytes;
vecp->i_type = XLOG_REG_TYPE_IEXT;
} else
#endif
{
xfs_inode_item_format_extents(ip, vecp,
XFS_DATA_FORK, XLOG_REG_TYPE_IEXT);
}
ASSERT(vecp->i_len <= ip->i_df.if_bytes);
iip->ili_format.ilf_dsize = vecp->i_len;
vecp++;
nvecs++;
}
break;
case XFS_DINODE_FMT_BTREE:
ASSERT(!(iip->ili_format.ilf_fields &
(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
XFS_ILOG_DEV | XFS_ILOG_UUID)));
if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
ASSERT(ip->i_df.if_broot_bytes > 0);
ASSERT(ip->i_df.if_broot != NULL);
vecp->i_addr = ip->i_df.if_broot;
vecp->i_len = ip->i_df.if_broot_bytes;
vecp->i_type = XLOG_REG_TYPE_IBROOT;
vecp++;
nvecs++;
iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
}
break;
case XFS_DINODE_FMT_LOCAL:
ASSERT(!(iip->ili_format.ilf_fields &
(XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
XFS_ILOG_DEV | XFS_ILOG_UUID)));
if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
ASSERT(ip->i_df.if_bytes > 0);
ASSERT(ip->i_df.if_u1.if_data != NULL);
ASSERT(ip->i_d.di_size > 0);
vecp->i_addr = ip->i_df.if_u1.if_data;
/*
* Round i_bytes up to a word boundary.
* The underlying memory is guaranteed to
* to be there by xfs_idata_realloc().
*/
data_bytes = roundup(ip->i_df.if_bytes, 4);
ASSERT((ip->i_df.if_real_bytes == 0) ||
(ip->i_df.if_real_bytes == data_bytes));
vecp->i_len = (int)data_bytes;
vecp->i_type = XLOG_REG_TYPE_ILOCAL;
vecp++;
nvecs++;
iip->ili_format.ilf_dsize = (unsigned)data_bytes;
}
break;
case XFS_DINODE_FMT_DEV:
ASSERT(!(iip->ili_format.ilf_fields &
(XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
XFS_ILOG_DDATA | XFS_ILOG_UUID)));
if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
iip->ili_format.ilf_u.ilfu_rdev =
ip->i_df.if_u2.if_rdev;
}
break;
case XFS_DINODE_FMT_UUID:
ASSERT(!(iip->ili_format.ilf_fields &
(XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
XFS_ILOG_DDATA | XFS_ILOG_DEV)));
if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
iip->ili_format.ilf_u.ilfu_uuid =
ip->i_df.if_u2.if_uuid;
}
break;
default:
ASSERT(0);
break;
}
/*
* If there are no attributes associated with the file,
* then we're done.
* Assert that no attribute-related log flags are set.
*/
if (!XFS_IFORK_Q(ip)) {
ASSERT(nvecs == lip->li_desc->lid_size);
iip->ili_format.ilf_size = nvecs;
ASSERT(!(iip->ili_format.ilf_fields &
(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
return;
}
switch (ip->i_d.di_aformat) {
case XFS_DINODE_FMT_EXTENTS:
ASSERT(!(iip->ili_format.ilf_fields &
(XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
#ifdef DEBUG
int nrecs = ip->i_afp->if_bytes /
(uint)sizeof(xfs_bmbt_rec_t);
ASSERT(nrecs > 0);
ASSERT(nrecs == ip->i_d.di_anextents);
ASSERT(ip->i_afp->if_bytes > 0);
ASSERT(ip->i_afp->if_u1.if_extents != NULL);
ASSERT(ip->i_d.di_anextents > 0);
#endif
#ifdef XFS_NATIVE_HOST
/*
* There are not delayed allocation extents
* for attributes, so just point at the array.
*/
vecp->i_addr = ip->i_afp->if_u1.if_extents;
vecp->i_len = ip->i_afp->if_bytes;
vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
#else
ASSERT(iip->ili_aextents_buf == NULL);
xfs_inode_item_format_extents(ip, vecp,
XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT);
#endif
iip->ili_format.ilf_asize = vecp->i_len;
vecp++;
nvecs++;
}
break;
case XFS_DINODE_FMT_BTREE:
ASSERT(!(iip->ili_format.ilf_fields &
(XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
ASSERT(ip->i_afp->if_broot_bytes > 0);
ASSERT(ip->i_afp->if_broot != NULL);
vecp->i_addr = ip->i_afp->if_broot;
vecp->i_len = ip->i_afp->if_broot_bytes;
vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
vecp++;
nvecs++;
iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
}
break;
case XFS_DINODE_FMT_LOCAL:
ASSERT(!(iip->ili_format.ilf_fields &
(XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
ASSERT(ip->i_afp->if_bytes > 0);
ASSERT(ip->i_afp->if_u1.if_data != NULL);
vecp->i_addr = ip->i_afp->if_u1.if_data;
/*
* Round i_bytes up to a word boundary.
* The underlying memory is guaranteed to
* to be there by xfs_idata_realloc().
*/
data_bytes = roundup(ip->i_afp->if_bytes, 4);
ASSERT((ip->i_afp->if_real_bytes == 0) ||
(ip->i_afp->if_real_bytes == data_bytes));
vecp->i_len = (int)data_bytes;
vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
vecp++;
nvecs++;
iip->ili_format.ilf_asize = (unsigned)data_bytes;
}
break;
default:
ASSERT(0);
break;
}
ASSERT(nvecs == lip->li_desc->lid_size);
iip->ili_format.ilf_size = nvecs;
}
/*
* This is called to pin the inode associated with the inode log
* item in memory so it cannot be written out.
*/
STATIC void
xfs_inode_item_pin(
struct xfs_log_item *lip)
{
struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
trace_xfs_inode_pin(ip, _RET_IP_);
atomic_inc(&ip->i_pincount);
}
/*
* This is called to unpin the inode associated with the inode log
* item which was previously pinned with a call to xfs_inode_item_pin().
*
* Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
*/
STATIC void
xfs_inode_item_unpin(
struct xfs_log_item *lip,
int remove)
{
struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
trace_xfs_inode_unpin(ip, _RET_IP_);
ASSERT(atomic_read(&ip->i_pincount) > 0);
if (atomic_dec_and_test(&ip->i_pincount))
wake_up(&ip->i_ipin_wait);
}
/*
* This is called to attempt to lock the inode associated with this
* inode log item, in preparation for the push routine which does the actual
* iflush. Don't sleep on the inode lock or the flush lock.
*
* If the flush lock is already held, indicating that the inode has
* been or is in the process of being flushed, then (ideally) we'd like to
* see if the inode's buffer is still incore, and if so give it a nudge.
* We delay doing so until the pushbuf routine, though, to avoid holding
* the AIL lock across a call to the blackhole which is the buffer cache.
* Also we don't want to sleep in any device strategy routines, which can happen
* if we do the subsequent bawrite in here.
*/
STATIC uint
xfs_inode_item_trylock(
struct xfs_log_item *lip)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
if (xfs_ipincount(ip) > 0)
return XFS_ITEM_PINNED;
if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
return XFS_ITEM_LOCKED;
if (!xfs_iflock_nowait(ip)) {
/*
* inode has already been flushed to the backing buffer,
* leave it locked in shared mode, pushbuf routine will
* unlock it.
*/
return XFS_ITEM_PUSHBUF;
}
/* Stale items should force out the iclog */
if (ip->i_flags & XFS_ISTALE) {
xfs_ifunlock(ip);
/*
* we hold the AIL lock - notify the unlock routine of this
* so it doesn't try to get the lock again.
*/
xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
return XFS_ITEM_PINNED;
}
#ifdef DEBUG
if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
ASSERT(iip->ili_format.ilf_fields != 0);
ASSERT(iip->ili_logged == 0);
ASSERT(lip->li_flags & XFS_LI_IN_AIL);
}
#endif
return XFS_ITEM_SUCCESS;
}
/*
* Unlock the inode associated with the inode log item.
* Clear the fields of the inode and inode log item that
* are specific to the current transaction. If the
* hold flags is set, do not unlock the inode.
*/
STATIC void
xfs_inode_item_unlock(
struct xfs_log_item *lip)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
unsigned short lock_flags;
ASSERT(ip->i_itemp != NULL);
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
/*
* If the inode needed a separate buffer with which to log
* its extents, then free it now.
*/
if (iip->ili_extents_buf != NULL) {
ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
ASSERT(ip->i_d.di_nextents > 0);
ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
ASSERT(ip->i_df.if_bytes > 0);
kmem_free(iip->ili_extents_buf);
iip->ili_extents_buf = NULL;
}
if (iip->ili_aextents_buf != NULL) {
ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
ASSERT(ip->i_d.di_anextents > 0);
ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
ASSERT(ip->i_afp->if_bytes > 0);
kmem_free(iip->ili_aextents_buf);
iip->ili_aextents_buf = NULL;
}
lock_flags = iip->ili_lock_flags;
iip->ili_lock_flags = 0;
if (lock_flags) {
xfs_iunlock(ip, lock_flags);
IRELE(ip);
}
}
/*
* This is called to find out where the oldest active copy of the inode log
* item in the on disk log resides now that the last log write of it completed
* at the given lsn. Since we always re-log all dirty data in an inode, the
* latest copy in the on disk log is the only one that matters. Therefore,
* simply return the given lsn.
*
* If the inode has been marked stale because the cluster is being freed, we
* don't want to (re-)insert this inode into the AIL. There is a race condition
* where the cluster buffer may be unpinned before the inode is inserted into
* the AIL during transaction committed processing. If the buffer is unpinned
* before the inode item has been committed and inserted, then it is possible
xfs: unpin stale inodes directly in IOP_COMMITTED When inodes are marked stale in a transaction, they are treated specially when the inode log item is being inserted into the AIL. It tries to avoid moving the log item forward in the AIL due to a race condition with the writing the underlying buffer back to disk. The was "fixed" in commit de25c18 ("xfs: avoid moving stale inodes in the AIL"). To avoid moving the item forward, we return a LSN smaller than the commit_lsn of the completing transaction, thereby trying to trick the commit code into not moving the inode forward at all. I'm not sure this ever worked as intended - it assumes the inode is already in the AIL, but I don't think the returned LSN would have been small enough to prevent moving the inode. It appears that the reason it worked is that the lower LSN of the inodes meant they were inserted into the AIL and flushed before the inode buffer (which was moved to the commit_lsn of the transaction). The big problem is that with delayed logging, the returning of the different LSN means insertion takes the slow, non-bulk path. Worse yet is that insertion is to a position -before- the commit_lsn so it is doing a AIL traversal on every insertion, and has to walk over all the items that have already been inserted into the AIL. It's expensive. To compound the matter further, with delayed logging inodes are likely to go from clean to stale in a single checkpoint, which means they aren't even in the AIL at all when we come across them at AIL insertion time. Hence these were all getting inserted into the AIL when they simply do not need to be as inodes marked XFS_ISTALE are never written back. Transactional/recovery integrity is maintained in this case by the other items in the unlink transaction that were modified (e.g. the AGI btree blocks) and committed in the same checkpoint. So to fix this, simply unpin the stale inodes directly in xfs_inode_item_committed() and return -1 to indicate that the AIL insertion code does not need to do any further processing of these inodes. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2011-07-04 13:27:36 +08:00
* for the buffer to be written and IO completes before the inode is inserted
* into the AIL. In that case, we'd be inserting a clean, stale inode into the
* AIL which will never get removed. It will, however, get reclaimed which
* triggers an assert in xfs_inode_free() complaining about freein an inode
* still in the AIL.
*
xfs: unpin stale inodes directly in IOP_COMMITTED When inodes are marked stale in a transaction, they are treated specially when the inode log item is being inserted into the AIL. It tries to avoid moving the log item forward in the AIL due to a race condition with the writing the underlying buffer back to disk. The was "fixed" in commit de25c18 ("xfs: avoid moving stale inodes in the AIL"). To avoid moving the item forward, we return a LSN smaller than the commit_lsn of the completing transaction, thereby trying to trick the commit code into not moving the inode forward at all. I'm not sure this ever worked as intended - it assumes the inode is already in the AIL, but I don't think the returned LSN would have been small enough to prevent moving the inode. It appears that the reason it worked is that the lower LSN of the inodes meant they were inserted into the AIL and flushed before the inode buffer (which was moved to the commit_lsn of the transaction). The big problem is that with delayed logging, the returning of the different LSN means insertion takes the slow, non-bulk path. Worse yet is that insertion is to a position -before- the commit_lsn so it is doing a AIL traversal on every insertion, and has to walk over all the items that have already been inserted into the AIL. It's expensive. To compound the matter further, with delayed logging inodes are likely to go from clean to stale in a single checkpoint, which means they aren't even in the AIL at all when we come across them at AIL insertion time. Hence these were all getting inserted into the AIL when they simply do not need to be as inodes marked XFS_ISTALE are never written back. Transactional/recovery integrity is maintained in this case by the other items in the unlink transaction that were modified (e.g. the AGI btree blocks) and committed in the same checkpoint. So to fix this, simply unpin the stale inodes directly in xfs_inode_item_committed() and return -1 to indicate that the AIL insertion code does not need to do any further processing of these inodes. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2011-07-04 13:27:36 +08:00
* To avoid this, just unpin the inode directly and return a LSN of -1 so the
* transaction committed code knows that it does not need to do any further
* processing on the item.
*/
STATIC xfs_lsn_t
xfs_inode_item_committed(
struct xfs_log_item *lip,
xfs_lsn_t lsn)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
xfs: unpin stale inodes directly in IOP_COMMITTED When inodes are marked stale in a transaction, they are treated specially when the inode log item is being inserted into the AIL. It tries to avoid moving the log item forward in the AIL due to a race condition with the writing the underlying buffer back to disk. The was "fixed" in commit de25c18 ("xfs: avoid moving stale inodes in the AIL"). To avoid moving the item forward, we return a LSN smaller than the commit_lsn of the completing transaction, thereby trying to trick the commit code into not moving the inode forward at all. I'm not sure this ever worked as intended - it assumes the inode is already in the AIL, but I don't think the returned LSN would have been small enough to prevent moving the inode. It appears that the reason it worked is that the lower LSN of the inodes meant they were inserted into the AIL and flushed before the inode buffer (which was moved to the commit_lsn of the transaction). The big problem is that with delayed logging, the returning of the different LSN means insertion takes the slow, non-bulk path. Worse yet is that insertion is to a position -before- the commit_lsn so it is doing a AIL traversal on every insertion, and has to walk over all the items that have already been inserted into the AIL. It's expensive. To compound the matter further, with delayed logging inodes are likely to go from clean to stale in a single checkpoint, which means they aren't even in the AIL at all when we come across them at AIL insertion time. Hence these were all getting inserted into the AIL when they simply do not need to be as inodes marked XFS_ISTALE are never written back. Transactional/recovery integrity is maintained in this case by the other items in the unlink transaction that were modified (e.g. the AGI btree blocks) and committed in the same checkpoint. So to fix this, simply unpin the stale inodes directly in xfs_inode_item_committed() and return -1 to indicate that the AIL insertion code does not need to do any further processing of these inodes. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2011-07-04 13:27:36 +08:00
if (xfs_iflags_test(ip, XFS_ISTALE)) {
xfs_inode_item_unpin(lip, 0);
return -1;
}
return lsn;
}
/*
* This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
* failed to get the inode flush lock but did get the inode locked SHARED.
* Here we're trying to see if the inode buffer is incore, and if so whether it's
* marked delayed write. If that's the case, we'll promote it and that will
* allow the caller to write the buffer by triggering the xfsbufd to run.
*/
STATIC void
xfs_inode_item_pushbuf(
struct xfs_log_item *lip)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
struct xfs_buf *bp;
ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
/*
* If a flush is not in progress anymore, chances are that the
* inode was taken off the AIL. So, just get out.
*/
if (completion_done(&ip->i_flush) ||
!(lip->li_flags & XFS_LI_IN_AIL)) {
xfs_iunlock(ip, XFS_ILOCK_SHARED);
return;
}
bp = xfs_incore(ip->i_mount->m_ddev_targp, iip->ili_format.ilf_blkno,
iip->ili_format.ilf_len, XBF_TRYLOCK);
xfs_iunlock(ip, XFS_ILOCK_SHARED);
if (!bp)
return;
if (XFS_BUF_ISDELAYWRITE(bp))
xfs_buf_delwri_promote(bp);
xfs_buf_relse(bp);
}
/*
* This is called to asynchronously write the inode associated with this
* inode log item out to disk. The inode will already have been locked by
* a successful call to xfs_inode_item_trylock().
*/
STATIC void
xfs_inode_item_push(
struct xfs_log_item *lip)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
ASSERT(!completion_done(&ip->i_flush));
/*
* Since we were able to lock the inode's flush lock and
* we found it on the AIL, the inode must be dirty. This
* is because the inode is removed from the AIL while still
* holding the flush lock in xfs_iflush_done(). Thus, if
* we found it in the AIL and were able to obtain the flush
* lock without sleeping, then there must not have been
* anyone in the process of flushing the inode.
*/
ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
iip->ili_format.ilf_fields != 0);
/*
xfs: Use delayed write for inodes rather than async V2 We currently do background inode flush asynchronously, resulting in inodes being written in whatever order the background writeback issues them. Not only that, there are also blocking and non-blocking asynchronous inode flushes, depending on where the flush comes from. This patch completely removes asynchronous inode writeback. It removes all the strange writeback modes and replaces them with either a synchronous flush or a non-blocking delayed write flush. That is, inode flushes will only issue IO directly if they are synchronous, and background flushing may do nothing if the operation would block (e.g. on a pinned inode or buffer lock). Delayed write flushes will now result in the inode buffer sitting in the delwri queue of the buffer cache to be flushed by either an AIL push or by the xfsbufd timing out the buffer. This will allow accumulation of dirty inode buffers in memory and allow optimisation of inode cluster writeback at the xfsbufd level where we have much greater queue depths than the block layer elevators. We will also get adjacent inode cluster buffer IO merging for free when a later patch in the series allows sorting of the delayed write buffers before dispatch. This effectively means that any inode that is written back by background writeback will be seen as flush locked during AIL pushing, and will result in the buffers being pushed from there. This writeback path is currently non-optimal, but the next patch in the series will fix that problem. A side effect of this delayed write mechanism is that background inode reclaim will no longer directly flush inodes, nor can it wait on the flush lock. The result is that inode reclaim must leave the inode in the reclaimable state until it is clean. Hence attempts to reclaim a dirty inode in the background will simply skip the inode until it is clean and this allows other mechanisms (i.e. xfsbufd) to do more optimal writeback of the dirty buffers. As a result, the inode reclaim code has been rewritten so that it no longer relies on the ambiguous return values of xfs_iflush() to determine whether it is safe to reclaim an inode. Portions of this patch are derived from patches by Christoph Hellwig. Version 2: - cleanup reclaim code as suggested by Christoph - log background reclaim inode flush errors - just pass sync flags to xfs_iflush Signed-off-by: Dave Chinner <david@fromorbit.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-02-06 09:39:36 +08:00
* Push the inode to it's backing buffer. This will not remove the
* inode from the AIL - a further push will be required to trigger a
* buffer push. However, this allows all the dirty inodes to be pushed
* to the buffer before it is pushed to disk. The buffer IO completion
* will pull the inode from the AIL, mark it clean and unlock the flush
xfs: Use delayed write for inodes rather than async V2 We currently do background inode flush asynchronously, resulting in inodes being written in whatever order the background writeback issues them. Not only that, there are also blocking and non-blocking asynchronous inode flushes, depending on where the flush comes from. This patch completely removes asynchronous inode writeback. It removes all the strange writeback modes and replaces them with either a synchronous flush or a non-blocking delayed write flush. That is, inode flushes will only issue IO directly if they are synchronous, and background flushing may do nothing if the operation would block (e.g. on a pinned inode or buffer lock). Delayed write flushes will now result in the inode buffer sitting in the delwri queue of the buffer cache to be flushed by either an AIL push or by the xfsbufd timing out the buffer. This will allow accumulation of dirty inode buffers in memory and allow optimisation of inode cluster writeback at the xfsbufd level where we have much greater queue depths than the block layer elevators. We will also get adjacent inode cluster buffer IO merging for free when a later patch in the series allows sorting of the delayed write buffers before dispatch. This effectively means that any inode that is written back by background writeback will be seen as flush locked during AIL pushing, and will result in the buffers being pushed from there. This writeback path is currently non-optimal, but the next patch in the series will fix that problem. A side effect of this delayed write mechanism is that background inode reclaim will no longer directly flush inodes, nor can it wait on the flush lock. The result is that inode reclaim must leave the inode in the reclaimable state until it is clean. Hence attempts to reclaim a dirty inode in the background will simply skip the inode until it is clean and this allows other mechanisms (i.e. xfsbufd) to do more optimal writeback of the dirty buffers. As a result, the inode reclaim code has been rewritten so that it no longer relies on the ambiguous return values of xfs_iflush() to determine whether it is safe to reclaim an inode. Portions of this patch are derived from patches by Christoph Hellwig. Version 2: - cleanup reclaim code as suggested by Christoph - log background reclaim inode flush errors - just pass sync flags to xfs_iflush Signed-off-by: Dave Chinner <david@fromorbit.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-02-06 09:39:36 +08:00
* lock.
*/
(void) xfs_iflush(ip, SYNC_TRYLOCK);
xfs_iunlock(ip, XFS_ILOCK_SHARED);
}
/*
* XXX rcc - this one really has to do something. Probably needs
* to stamp in a new field in the incore inode.
*/
STATIC void
xfs_inode_item_committing(
struct xfs_log_item *lip,
xfs_lsn_t lsn)
{
INODE_ITEM(lip)->ili_last_lsn = lsn;
}
/*
* This is the ops vector shared by all buf log items.
*/
static struct xfs_item_ops xfs_inode_item_ops = {
.iop_size = xfs_inode_item_size,
.iop_format = xfs_inode_item_format,
.iop_pin = xfs_inode_item_pin,
.iop_unpin = xfs_inode_item_unpin,
.iop_trylock = xfs_inode_item_trylock,
.iop_unlock = xfs_inode_item_unlock,
.iop_committed = xfs_inode_item_committed,
.iop_push = xfs_inode_item_push,
.iop_pushbuf = xfs_inode_item_pushbuf,
.iop_committing = xfs_inode_item_committing
};
/*
* Initialize the inode log item for a newly allocated (in-core) inode.
*/
void
xfs_inode_item_init(
struct xfs_inode *ip,
struct xfs_mount *mp)
{
struct xfs_inode_log_item *iip;
ASSERT(ip->i_itemp == NULL);
iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
iip->ili_inode = ip;
xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
&xfs_inode_item_ops);
iip->ili_format.ilf_type = XFS_LI_INODE;
iip->ili_format.ilf_ino = ip->i_ino;
iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
iip->ili_format.ilf_len = ip->i_imap.im_len;
iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
}
/*
* Free the inode log item and any memory hanging off of it.
*/
void
xfs_inode_item_destroy(
xfs_inode_t *ip)
{
#ifdef XFS_TRANS_DEBUG
if (ip->i_itemp->ili_root_size != 0) {
kmem_free(ip->i_itemp->ili_orig_root);
}
#endif
kmem_zone_free(xfs_ili_zone, ip->i_itemp);
}
/*
* This is the inode flushing I/O completion routine. It is called
* from interrupt level when the buffer containing the inode is
* flushed to disk. It is responsible for removing the inode item
* from the AIL if it has not been re-logged, and unlocking the inode's
* flush lock.
*
* To reduce AIL lock traffic as much as possible, we scan the buffer log item
* list for other inodes that will run this function. We remove them from the
* buffer list so we can process all the inode IO completions in one AIL lock
* traversal.
*/
void
xfs_iflush_done(
struct xfs_buf *bp,
struct xfs_log_item *lip)
{
struct xfs_inode_log_item *iip;
struct xfs_log_item *blip;
struct xfs_log_item *next;
struct xfs_log_item *prev;
struct xfs_ail *ailp = lip->li_ailp;
int need_ail = 0;
/*
* Scan the buffer IO completions for other inodes being completed and
* attach them to the current inode log item.
*/
blip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
prev = NULL;
while (blip != NULL) {
if (lip->li_cb != xfs_iflush_done) {
prev = blip;
blip = blip->li_bio_list;
continue;
}
/* remove from list */
next = blip->li_bio_list;
if (!prev) {
XFS_BUF_SET_FSPRIVATE(bp, next);
} else {
prev->li_bio_list = next;
}
/* add to current list */
blip->li_bio_list = lip->li_bio_list;
lip->li_bio_list = blip;
/*
* while we have the item, do the unlocked check for needing
* the AIL lock.
*/
iip = INODE_ITEM(blip);
if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
need_ail++;
blip = next;
}
/* make sure we capture the state of the initial inode. */
iip = INODE_ITEM(lip);
if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
need_ail++;
/*
* We only want to pull the item from the AIL if it is
* actually there and its location in the log has not
* changed since we started the flush. Thus, we only bother
* if the ili_logged flag is set and the inode's lsn has not
* changed. First we check the lsn outside
* the lock since it's cheaper, and then we recheck while
* holding the lock before removing the inode from the AIL.
*/
if (need_ail) {
struct xfs_log_item *log_items[need_ail];
int i = 0;
spin_lock(&ailp->xa_lock);
for (blip = lip; blip; blip = blip->li_bio_list) {
iip = INODE_ITEM(blip);
if (iip->ili_logged &&
blip->li_lsn == iip->ili_flush_lsn) {
log_items[i++] = blip;
}
ASSERT(i <= need_ail);
}
/* xfs_trans_ail_delete_bulk() drops the AIL lock. */
xfs_trans_ail_delete_bulk(ailp, log_items, i);
}
/*
* clean up and unlock the flush lock now we are done. We can clear the
* ili_last_fields bits now that we know that the data corresponding to
* them is safely on disk.
*/
for (blip = lip; blip; blip = next) {
next = blip->li_bio_list;
blip->li_bio_list = NULL;
iip = INODE_ITEM(blip);
iip->ili_logged = 0;
iip->ili_last_fields = 0;
xfs_ifunlock(iip->ili_inode);
}
}
/*
* This is the inode flushing abort routine. It is called
* from xfs_iflush when the filesystem is shutting down to clean
* up the inode state.
* It is responsible for removing the inode item
* from the AIL if it has not been re-logged, and unlocking the inode's
* flush lock.
*/
void
xfs_iflush_abort(
xfs_inode_t *ip)
{
xfs_inode_log_item_t *iip = ip->i_itemp;
if (iip) {
struct xfs_ail *ailp = iip->ili_item.li_ailp;
if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
spin_lock(&ailp->xa_lock);
if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
/* xfs_trans_ail_delete() drops the AIL lock. */
xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip);
} else
spin_unlock(&ailp->xa_lock);
}
iip->ili_logged = 0;
/*
* Clear the ili_last_fields bits now that we know that the
* data corresponding to them is safely on disk.
*/
iip->ili_last_fields = 0;
/*
* Clear the inode logging fields so no more flushes are
* attempted.
*/
iip->ili_format.ilf_fields = 0;
}
/*
* Release the inode's flush lock since we're done with it.
*/
xfs_ifunlock(ip);
}
void
xfs_istale_done(
struct xfs_buf *bp,
struct xfs_log_item *lip)
{
xfs_iflush_abort(INODE_ITEM(lip)->ili_inode);
}
/*
* convert an xfs_inode_log_format struct from either 32 or 64 bit versions
* (which can have different field alignments) to the native version
*/
int
xfs_inode_item_format_convert(
xfs_log_iovec_t *buf,
xfs_inode_log_format_t *in_f)
{
if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
in_f->ilf_type = in_f32->ilf_type;
in_f->ilf_size = in_f32->ilf_size;
in_f->ilf_fields = in_f32->ilf_fields;
in_f->ilf_asize = in_f32->ilf_asize;
in_f->ilf_dsize = in_f32->ilf_dsize;
in_f->ilf_ino = in_f32->ilf_ino;
/* copy biggest field of ilf_u */
memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
in_f32->ilf_u.ilfu_uuid.__u_bits,
sizeof(uuid_t));
in_f->ilf_blkno = in_f32->ilf_blkno;
in_f->ilf_len = in_f32->ilf_len;
in_f->ilf_boffset = in_f32->ilf_boffset;
return 0;
} else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
in_f->ilf_type = in_f64->ilf_type;
in_f->ilf_size = in_f64->ilf_size;
in_f->ilf_fields = in_f64->ilf_fields;
in_f->ilf_asize = in_f64->ilf_asize;
in_f->ilf_dsize = in_f64->ilf_dsize;
in_f->ilf_ino = in_f64->ilf_ino;
/* copy biggest field of ilf_u */
memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
in_f64->ilf_u.ilfu_uuid.__u_bits,
sizeof(uuid_t));
in_f->ilf_blkno = in_f64->ilf_blkno;
in_f->ilf_len = in_f64->ilf_len;
in_f->ilf_boffset = in_f64->ilf_boffset;
return 0;
}
return EFSCORRUPTED;
}