2005-04-17 06:20:36 +08:00
|
|
|
#ifndef _LINUX_SWAP_H
|
|
|
|
#define _LINUX_SWAP_H
|
|
|
|
|
|
|
|
#include <linux/spinlock.h>
|
|
|
|
#include <linux/linkage.h>
|
|
|
|
#include <linux/mmzone.h>
|
|
|
|
#include <linux/list.h>
|
2008-02-07 16:13:56 +08:00
|
|
|
#include <linux/memcontrol.h>
|
2005-04-17 06:20:36 +08:00
|
|
|
#include <linux/sched.h>
|
2008-10-19 11:26:53 +08:00
|
|
|
#include <linux/node.h>
|
2013-02-23 08:34:37 +08:00
|
|
|
#include <linux/fs.h>
|
2011-07-27 07:09:06 +08:00
|
|
|
#include <linux/atomic.h>
|
2013-07-04 06:02:34 +08:00
|
|
|
#include <linux/page-flags.h>
|
2005-04-17 06:20:36 +08:00
|
|
|
#include <asm/page.h>
|
|
|
|
|
2006-09-26 14:31:20 +08:00
|
|
|
struct notifier_block;
|
|
|
|
|
2006-09-26 14:32:42 +08:00
|
|
|
struct bio;
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
#define SWAP_FLAG_PREFER 0x8000 /* set if swap priority specified */
|
|
|
|
#define SWAP_FLAG_PRIO_MASK 0x7fff
|
|
|
|
#define SWAP_FLAG_PRIO_SHIFT 0
|
swap: discard while swapping only if SWAP_FLAG_DISCARD_PAGES
Considering the use cases where the swap device supports discard:
a) and can do it quickly;
b) but it's slow to do in small granularities (or concurrent with other
I/O);
c) but the implementation is so horrendous that you don't even want to
send one down;
And assuming that the sysadmin considers it useful to send the discards down
at all, we would (probably) want the following solutions:
i. do the fine-grained discards for freed swap pages, if device is
capable of doing so optimally;
ii. do single-time (batched) swap area discards, either at swapon
or via something like fstrim (not implemented yet);
iii. allow doing both single-time and fine-grained discards; or
iv. turn it off completely (default behavior)
As implemented today, one can only enable/disable discards for swap, but
one cannot select, for instance, solution (ii) on a swap device like (b)
even though the single-time discard is regarded to be interesting, or
necessary to the workload because it would imply (1), and the device is
not capable of performing it optimally.
This patch addresses the scenario depicted above by introducing a way to
ensure the (probably) wanted solutions (i, ii, iii and iv) can be flexibly
flagged through swapon(8) to allow a sysadmin to select the best suitable
swap discard policy accordingly to system constraints.
This patch introduces SWAP_FLAG_DISCARD_PAGES and SWAP_FLAG_DISCARD_ONCE
new flags to allow more flexibe swap discard policies being flagged
through swapon(8). The default behavior is to keep both single-time, or
batched, area discards (SWAP_FLAG_DISCARD_ONCE) and fine-grained discards
for page-clusters (SWAP_FLAG_DISCARD_PAGES) enabled, in order to keep
consistentcy with older kernel behavior, as well as maintain compatibility
with older swapon(8). However, through the new introduced flags the best
suitable discard policy can be selected accordingly to any given swap
device constraint.
[akpm@linux-foundation.org: tweak comments]
Signed-off-by: Rafael Aquini <aquini@redhat.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Karel Zak <kzak@redhat.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:02:46 +08:00
|
|
|
#define SWAP_FLAG_DISCARD 0x10000 /* enable discard for swap */
|
|
|
|
#define SWAP_FLAG_DISCARD_ONCE 0x20000 /* discard swap area at swapon-time */
|
|
|
|
#define SWAP_FLAG_DISCARD_PAGES 0x40000 /* discard page-clusters after use */
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2012-03-29 05:42:42 +08:00
|
|
|
#define SWAP_FLAGS_VALID (SWAP_FLAG_PRIO_MASK | SWAP_FLAG_PREFER | \
|
swap: discard while swapping only if SWAP_FLAG_DISCARD_PAGES
Considering the use cases where the swap device supports discard:
a) and can do it quickly;
b) but it's slow to do in small granularities (or concurrent with other
I/O);
c) but the implementation is so horrendous that you don't even want to
send one down;
And assuming that the sysadmin considers it useful to send the discards down
at all, we would (probably) want the following solutions:
i. do the fine-grained discards for freed swap pages, if device is
capable of doing so optimally;
ii. do single-time (batched) swap area discards, either at swapon
or via something like fstrim (not implemented yet);
iii. allow doing both single-time and fine-grained discards; or
iv. turn it off completely (default behavior)
As implemented today, one can only enable/disable discards for swap, but
one cannot select, for instance, solution (ii) on a swap device like (b)
even though the single-time discard is regarded to be interesting, or
necessary to the workload because it would imply (1), and the device is
not capable of performing it optimally.
This patch addresses the scenario depicted above by introducing a way to
ensure the (probably) wanted solutions (i, ii, iii and iv) can be flexibly
flagged through swapon(8) to allow a sysadmin to select the best suitable
swap discard policy accordingly to system constraints.
This patch introduces SWAP_FLAG_DISCARD_PAGES and SWAP_FLAG_DISCARD_ONCE
new flags to allow more flexibe swap discard policies being flagged
through swapon(8). The default behavior is to keep both single-time, or
batched, area discards (SWAP_FLAG_DISCARD_ONCE) and fine-grained discards
for page-clusters (SWAP_FLAG_DISCARD_PAGES) enabled, in order to keep
consistentcy with older kernel behavior, as well as maintain compatibility
with older swapon(8). However, through the new introduced flags the best
suitable discard policy can be selected accordingly to any given swap
device constraint.
[akpm@linux-foundation.org: tweak comments]
Signed-off-by: Rafael Aquini <aquini@redhat.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Karel Zak <kzak@redhat.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:02:46 +08:00
|
|
|
SWAP_FLAG_DISCARD | SWAP_FLAG_DISCARD_ONCE | \
|
|
|
|
SWAP_FLAG_DISCARD_PAGES)
|
2012-03-29 05:42:42 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
static inline int current_is_kswapd(void)
|
|
|
|
{
|
|
|
|
return current->flags & PF_KSWAPD;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* MAX_SWAPFILES defines the maximum number of swaptypes: things which can
|
|
|
|
* be swapped to. The swap type and the offset into that swap type are
|
|
|
|
* encoded into pte's and into pgoff_t's in the swapcache. Using five bits
|
|
|
|
* for the type means that the maximum number of swapcache pages is 27 bits
|
|
|
|
* on 32-bit-pgoff_t architectures. And that assumes that the architecture packs
|
|
|
|
* the type/offset into the pte as 5/27 as well.
|
|
|
|
*/
|
|
|
|
#define MAX_SWAPFILES_SHIFT 5
|
2009-09-16 17:50:05 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Use some of the swap files numbers for other purposes. This
|
|
|
|
* is a convenient way to hook into the VM to trigger special
|
|
|
|
* actions on faults.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* NUMA node memory migration support
|
|
|
|
*/
|
|
|
|
#ifdef CONFIG_MIGRATION
|
|
|
|
#define SWP_MIGRATION_NUM 2
|
|
|
|
#define SWP_MIGRATION_READ (MAX_SWAPFILES + SWP_HWPOISON_NUM)
|
|
|
|
#define SWP_MIGRATION_WRITE (MAX_SWAPFILES + SWP_HWPOISON_NUM + 1)
|
[PATCH] Swapless page migration: add R/W migration entries
Implement read/write migration ptes
We take the upper two swapfiles for the two types of migration ptes and define
a series of macros in swapops.h.
The VM is modified to handle the migration entries. migration entries can
only be encountered when the page they are pointing to is locked. This limits
the number of places one has to fix. We also check in copy_pte_range and in
mprotect_pte_range() for migration ptes.
We check for migration ptes in do_swap_cache and call a function that will
then wait on the page lock. This allows us to effectively stop all accesses
to apge.
Migration entries are created by try_to_unmap if called for migration and
removed by local functions in migrate.c
From: Hugh Dickins <hugh@veritas.com>
Several times while testing swapless page migration (I've no NUMA, just
hacking it up to migrate recklessly while running load), I've hit the
BUG_ON(!PageLocked(p)) in migration_entry_to_page.
This comes from an orphaned migration entry, unrelated to the current
correctly locked migration, but hit by remove_anon_migration_ptes as it
checks an address in each vma of the anon_vma list.
Such an orphan may be left behind if an earlier migration raced with fork:
copy_one_pte can duplicate a migration entry from parent to child, after
remove_anon_migration_ptes has checked the child vma, but before it has
removed it from the parent vma. (If the process were later to fault on this
orphaned entry, it would hit the same BUG from migration_entry_wait.)
This could be fixed by locking anon_vma in copy_one_pte, but we'd rather
not. There's no such problem with file pages, because vma_prio_tree_add
adds child vma after parent vma, and the page table locking at each end is
enough to serialize. Follow that example with anon_vma: add new vmas to the
tail instead of the head.
(There's no corresponding problem when inserting migration entries,
because a missed pte will leave the page count and mapcount high, which is
allowed for. And there's no corresponding problem when migrating via swap,
because a leftover swap entry will be correctly faulted. But the swapless
method has no refcounting of its entries.)
From: Ingo Molnar <mingo@elte.hu>
pte_unmap_unlock() takes the pte pointer as an argument.
From: Hugh Dickins <hugh@veritas.com>
Several times while testing swapless page migration, gcc has tried to exec
a pointer instead of a string: smells like COW mappings are not being
properly write-protected on fork.
The protection in copy_one_pte looks very convincing, until at last you
realize that the second arg to make_migration_entry is a boolean "write",
and SWP_MIGRATION_READ is 30.
Anyway, it's better done like in change_pte_range, using
is_write_migration_entry and make_migration_entry_read.
From: Hugh Dickins <hugh@veritas.com>
Remove unnecessary obfuscation from sys_swapon's range check on swap type,
which blew up causing memory corruption once swapless migration made
MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Christoph Lameter <clameter@engr.sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
From: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:35 +08:00
|
|
|
#else
|
2009-09-16 17:50:05 +08:00
|
|
|
#define SWP_MIGRATION_NUM 0
|
[PATCH] Swapless page migration: add R/W migration entries
Implement read/write migration ptes
We take the upper two swapfiles for the two types of migration ptes and define
a series of macros in swapops.h.
The VM is modified to handle the migration entries. migration entries can
only be encountered when the page they are pointing to is locked. This limits
the number of places one has to fix. We also check in copy_pte_range and in
mprotect_pte_range() for migration ptes.
We check for migration ptes in do_swap_cache and call a function that will
then wait on the page lock. This allows us to effectively stop all accesses
to apge.
Migration entries are created by try_to_unmap if called for migration and
removed by local functions in migrate.c
From: Hugh Dickins <hugh@veritas.com>
Several times while testing swapless page migration (I've no NUMA, just
hacking it up to migrate recklessly while running load), I've hit the
BUG_ON(!PageLocked(p)) in migration_entry_to_page.
This comes from an orphaned migration entry, unrelated to the current
correctly locked migration, but hit by remove_anon_migration_ptes as it
checks an address in each vma of the anon_vma list.
Such an orphan may be left behind if an earlier migration raced with fork:
copy_one_pte can duplicate a migration entry from parent to child, after
remove_anon_migration_ptes has checked the child vma, but before it has
removed it from the parent vma. (If the process were later to fault on this
orphaned entry, it would hit the same BUG from migration_entry_wait.)
This could be fixed by locking anon_vma in copy_one_pte, but we'd rather
not. There's no such problem with file pages, because vma_prio_tree_add
adds child vma after parent vma, and the page table locking at each end is
enough to serialize. Follow that example with anon_vma: add new vmas to the
tail instead of the head.
(There's no corresponding problem when inserting migration entries,
because a missed pte will leave the page count and mapcount high, which is
allowed for. And there's no corresponding problem when migrating via swap,
because a leftover swap entry will be correctly faulted. But the swapless
method has no refcounting of its entries.)
From: Ingo Molnar <mingo@elte.hu>
pte_unmap_unlock() takes the pte pointer as an argument.
From: Hugh Dickins <hugh@veritas.com>
Several times while testing swapless page migration, gcc has tried to exec
a pointer instead of a string: smells like COW mappings are not being
properly write-protected on fork.
The protection in copy_one_pte looks very convincing, until at last you
realize that the second arg to make_migration_entry is a boolean "write",
and SWP_MIGRATION_READ is 30.
Anyway, it's better done like in change_pte_range, using
is_write_migration_entry and make_migration_entry_read.
From: Hugh Dickins <hugh@veritas.com>
Remove unnecessary obfuscation from sys_swapon's range check on swap type,
which blew up causing memory corruption once swapless migration made
MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Christoph Lameter <clameter@engr.sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
From: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 17:03:35 +08:00
|
|
|
#endif
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2009-09-16 17:50:05 +08:00
|
|
|
/*
|
|
|
|
* Handling of hardware poisoned pages with memory corruption.
|
|
|
|
*/
|
|
|
|
#ifdef CONFIG_MEMORY_FAILURE
|
|
|
|
#define SWP_HWPOISON_NUM 1
|
|
|
|
#define SWP_HWPOISON MAX_SWAPFILES
|
|
|
|
#else
|
|
|
|
#define SWP_HWPOISON_NUM 0
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define MAX_SWAPFILES \
|
|
|
|
((1 << MAX_SWAPFILES_SHIFT) - SWP_MIGRATION_NUM - SWP_HWPOISON_NUM)
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
/*
|
|
|
|
* Magic header for a swap area. The first part of the union is
|
|
|
|
* what the swap magic looks like for the old (limited to 128MB)
|
|
|
|
* swap area format, the second part of the union adds - in the
|
|
|
|
* old reserved area - some extra information. Note that the first
|
|
|
|
* kilobyte is reserved for boot loader or disk label stuff...
|
|
|
|
*
|
|
|
|
* Having the magic at the end of the PAGE_SIZE makes detecting swap
|
|
|
|
* areas somewhat tricky on machines that support multiple page sizes.
|
|
|
|
* For 2.5 we'll probably want to move the magic to just beyond the
|
|
|
|
* bootbits...
|
|
|
|
*/
|
|
|
|
union swap_header {
|
|
|
|
struct {
|
|
|
|
char reserved[PAGE_SIZE - 10];
|
|
|
|
char magic[10]; /* SWAP-SPACE or SWAPSPACE2 */
|
|
|
|
} magic;
|
|
|
|
struct {
|
2006-06-23 17:03:14 +08:00
|
|
|
char bootbits[1024]; /* Space for disklabel etc. */
|
|
|
|
__u32 version;
|
|
|
|
__u32 last_page;
|
|
|
|
__u32 nr_badpages;
|
|
|
|
unsigned char sws_uuid[16];
|
|
|
|
unsigned char sws_volume[16];
|
|
|
|
__u32 padding[117];
|
|
|
|
__u32 badpages[1];
|
2005-04-17 06:20:36 +08:00
|
|
|
} info;
|
|
|
|
};
|
|
|
|
|
|
|
|
/* A swap entry has to fit into a "unsigned long", as
|
|
|
|
* the entry is hidden in the "index" field of the
|
|
|
|
* swapper address space.
|
|
|
|
*/
|
|
|
|
typedef struct {
|
|
|
|
unsigned long val;
|
|
|
|
} swp_entry_t;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* current->reclaim_state points to one of these when a task is running
|
|
|
|
* memory reclaim
|
|
|
|
*/
|
|
|
|
struct reclaim_state {
|
|
|
|
unsigned long reclaimed_slab;
|
|
|
|
};
|
|
|
|
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
|
|
|
|
struct address_space;
|
|
|
|
struct sysinfo;
|
|
|
|
struct writeback_control;
|
|
|
|
struct zone;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A swap extent maps a range of a swapfile's PAGE_SIZE pages onto a range of
|
|
|
|
* disk blocks. A list of swap extents maps the entire swapfile. (Where the
|
|
|
|
* term `swapfile' refers to either a blockdevice or an IS_REG file. Apart
|
|
|
|
* from setup, they're handled identically.
|
|
|
|
*
|
|
|
|
* We always assume that blocks are of size PAGE_SIZE.
|
|
|
|
*/
|
|
|
|
struct swap_extent {
|
|
|
|
struct list_head list;
|
|
|
|
pgoff_t start_page;
|
|
|
|
pgoff_t nr_pages;
|
|
|
|
sector_t start_block;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Max bad pages in the new format..
|
|
|
|
*/
|
|
|
|
#define __swapoffset(x) ((unsigned long)&((union swap_header *)0)->x)
|
|
|
|
#define MAX_SWAP_BADPAGES \
|
|
|
|
((__swapoffset(magic.magic) - __swapoffset(info.badpages)) / sizeof(int))
|
|
|
|
|
|
|
|
enum {
|
|
|
|
SWP_USED = (1 << 0), /* is slot in swap_info[] used? */
|
|
|
|
SWP_WRITEOK = (1 << 1), /* ok to write to this swap? */
|
swap: discard while swapping only if SWAP_FLAG_DISCARD_PAGES
Considering the use cases where the swap device supports discard:
a) and can do it quickly;
b) but it's slow to do in small granularities (or concurrent with other
I/O);
c) but the implementation is so horrendous that you don't even want to
send one down;
And assuming that the sysadmin considers it useful to send the discards down
at all, we would (probably) want the following solutions:
i. do the fine-grained discards for freed swap pages, if device is
capable of doing so optimally;
ii. do single-time (batched) swap area discards, either at swapon
or via something like fstrim (not implemented yet);
iii. allow doing both single-time and fine-grained discards; or
iv. turn it off completely (default behavior)
As implemented today, one can only enable/disable discards for swap, but
one cannot select, for instance, solution (ii) on a swap device like (b)
even though the single-time discard is regarded to be interesting, or
necessary to the workload because it would imply (1), and the device is
not capable of performing it optimally.
This patch addresses the scenario depicted above by introducing a way to
ensure the (probably) wanted solutions (i, ii, iii and iv) can be flexibly
flagged through swapon(8) to allow a sysadmin to select the best suitable
swap discard policy accordingly to system constraints.
This patch introduces SWAP_FLAG_DISCARD_PAGES and SWAP_FLAG_DISCARD_ONCE
new flags to allow more flexibe swap discard policies being flagged
through swapon(8). The default behavior is to keep both single-time, or
batched, area discards (SWAP_FLAG_DISCARD_ONCE) and fine-grained discards
for page-clusters (SWAP_FLAG_DISCARD_PAGES) enabled, in order to keep
consistentcy with older kernel behavior, as well as maintain compatibility
with older swapon(8). However, through the new introduced flags the best
suitable discard policy can be selected accordingly to any given swap
device constraint.
[akpm@linux-foundation.org: tweak comments]
Signed-off-by: Rafael Aquini <aquini@redhat.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Karel Zak <kzak@redhat.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:02:46 +08:00
|
|
|
SWP_DISCARDABLE = (1 << 2), /* blkdev support discard */
|
2009-01-07 06:39:53 +08:00
|
|
|
SWP_DISCARDING = (1 << 3), /* now discarding a free cluster */
|
2009-01-07 06:39:54 +08:00
|
|
|
SWP_SOLIDSTATE = (1 << 4), /* blkdev seeks are cheap */
|
swap_info: swap count continuations
Swap is duplicated (reference count incremented by one) whenever the same
swap page is inserted into another mm (when forking finds a swap entry in
place of a pte, or when reclaim unmaps a pte to insert the swap entry).
swap_info_struct's vmalloc'ed swap_map is the array of these reference
counts: but what happens when the unsigned short (or unsigned char since
the preceding patch) is full? (and its high bit is kept for a cache flag)
We then lose track of it, never freeing, leaving it in use until swapoff:
at which point we _hope_ that a single pass will have found all instances,
assume there are no more, and will lose user data if we're wrong.
Swapping of KSM pages has not yet been enabled; but it is implemented,
and makes it very easy for a user to overflow the maximum swap count:
possible with ordinary process pages, but unlikely, even when pid_max
has been raised from PID_MAX_DEFAULT.
This patch implements swap count continuations: when the count overflows,
a continuation page is allocated and linked to the original vmalloc'ed
map page, and this used to hold the continuation counts for that entry
and its neighbours. These continuation pages are seldom referenced:
the common paths all work on the original swap_map, only referring to
a continuation page when the low "digit" of a count is incremented or
decremented through SWAP_MAP_MAX.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:58:46 +08:00
|
|
|
SWP_CONTINUED = (1 << 5), /* swap_map has count continuation */
|
2010-05-17 13:32:42 +08:00
|
|
|
SWP_BLKDEV = (1 << 6), /* its a block device */
|
2012-08-01 07:44:55 +08:00
|
|
|
SWP_FILE = (1 << 7), /* set after swap_activate success */
|
swap: discard while swapping only if SWAP_FLAG_DISCARD_PAGES
Considering the use cases where the swap device supports discard:
a) and can do it quickly;
b) but it's slow to do in small granularities (or concurrent with other
I/O);
c) but the implementation is so horrendous that you don't even want to
send one down;
And assuming that the sysadmin considers it useful to send the discards down
at all, we would (probably) want the following solutions:
i. do the fine-grained discards for freed swap pages, if device is
capable of doing so optimally;
ii. do single-time (batched) swap area discards, either at swapon
or via something like fstrim (not implemented yet);
iii. allow doing both single-time and fine-grained discards; or
iv. turn it off completely (default behavior)
As implemented today, one can only enable/disable discards for swap, but
one cannot select, for instance, solution (ii) on a swap device like (b)
even though the single-time discard is regarded to be interesting, or
necessary to the workload because it would imply (1), and the device is
not capable of performing it optimally.
This patch addresses the scenario depicted above by introducing a way to
ensure the (probably) wanted solutions (i, ii, iii and iv) can be flexibly
flagged through swapon(8) to allow a sysadmin to select the best suitable
swap discard policy accordingly to system constraints.
This patch introduces SWAP_FLAG_DISCARD_PAGES and SWAP_FLAG_DISCARD_ONCE
new flags to allow more flexibe swap discard policies being flagged
through swapon(8). The default behavior is to keep both single-time, or
batched, area discards (SWAP_FLAG_DISCARD_ONCE) and fine-grained discards
for page-clusters (SWAP_FLAG_DISCARD_PAGES) enabled, in order to keep
consistentcy with older kernel behavior, as well as maintain compatibility
with older swapon(8). However, through the new introduced flags the best
suitable discard policy can be selected accordingly to any given swap
device constraint.
[akpm@linux-foundation.org: tweak comments]
Signed-off-by: Rafael Aquini <aquini@redhat.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Karel Zak <kzak@redhat.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:02:46 +08:00
|
|
|
SWP_AREA_DISCARD = (1 << 8), /* single-time swap area discards */
|
|
|
|
SWP_PAGE_DISCARD = (1 << 9), /* freed swap page-cluster discards */
|
[PATCH] swap: scan_swap_map drop swap_device_lock
get_swap_page has often shown up on latency traces, doing lengthy scans while
holding two spinlocks. swap_list_lock is already dropped, now scan_swap_map
drop swap_device_lock before scanning the swap_map.
While scanning for an empty cluster, don't worry that racing tasks may
allocate what was free and free what was allocated; but when allocating an
entry, check it's still free after retaking the lock. Avoid dropping the lock
in the expected common path. No barriers beyond the locks, just let the
cookie crumble; highest_bit limit is volatile, but benign.
Guard against swapoff: must check SWP_WRITEOK before allocating, must raise
SWP_SCANNING reference count while in scan_swap_map, swapoff wait for that to
fall - just use schedule_timeout, we don't want to burden scan_swap_map
itself, and it's very unlikely that anyone can really still be in
scan_swap_map once swapoff gets this far.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-04 06:54:39 +08:00
|
|
|
/* add others here before... */
|
swap: discard while swapping only if SWAP_FLAG_DISCARD_PAGES
Considering the use cases where the swap device supports discard:
a) and can do it quickly;
b) but it's slow to do in small granularities (or concurrent with other
I/O);
c) but the implementation is so horrendous that you don't even want to
send one down;
And assuming that the sysadmin considers it useful to send the discards down
at all, we would (probably) want the following solutions:
i. do the fine-grained discards for freed swap pages, if device is
capable of doing so optimally;
ii. do single-time (batched) swap area discards, either at swapon
or via something like fstrim (not implemented yet);
iii. allow doing both single-time and fine-grained discards; or
iv. turn it off completely (default behavior)
As implemented today, one can only enable/disable discards for swap, but
one cannot select, for instance, solution (ii) on a swap device like (b)
even though the single-time discard is regarded to be interesting, or
necessary to the workload because it would imply (1), and the device is
not capable of performing it optimally.
This patch addresses the scenario depicted above by introducing a way to
ensure the (probably) wanted solutions (i, ii, iii and iv) can be flexibly
flagged through swapon(8) to allow a sysadmin to select the best suitable
swap discard policy accordingly to system constraints.
This patch introduces SWAP_FLAG_DISCARD_PAGES and SWAP_FLAG_DISCARD_ONCE
new flags to allow more flexibe swap discard policies being flagged
through swapon(8). The default behavior is to keep both single-time, or
batched, area discards (SWAP_FLAG_DISCARD_ONCE) and fine-grained discards
for page-clusters (SWAP_FLAG_DISCARD_PAGES) enabled, in order to keep
consistentcy with older kernel behavior, as well as maintain compatibility
with older swapon(8). However, through the new introduced flags the best
suitable discard policy can be selected accordingly to any given swap
device constraint.
[akpm@linux-foundation.org: tweak comments]
Signed-off-by: Rafael Aquini <aquini@redhat.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Karel Zak <kzak@redhat.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:02:46 +08:00
|
|
|
SWP_SCANNING = (1 << 10), /* refcount in scan_swap_map */
|
2005-04-17 06:20:36 +08:00
|
|
|
};
|
|
|
|
|
2013-02-23 08:32:12 +08:00
|
|
|
#define SWAP_CLUSTER_MAX 32UL
|
2010-05-25 05:32:27 +08:00
|
|
|
#define COMPACT_CLUSTER_MAX SWAP_CLUSTER_MAX
|
2005-04-17 06:20:36 +08:00
|
|
|
|
mm: vmscan: kswapd should not free an excessive number of pages when balancing small zones
When reclaiming for order-0 pages, kswapd requires that all zones be
balanced. Each cycle through balance_pgdat() does background ageing on
all zones if necessary and applies equal pressure on the inactive zone
unless a lot of pages are free already.
A "lot of free pages" is defined as a "balance gap" above the high
watermark which is currently 7*high_watermark. Historically this was
reasonable as min_free_kbytes was small. However, on systems using huge
pages, it is recommended that min_free_kbytes is higher and it is tuned
with hugeadm --set-recommended-min_free_kbytes. With the introduction of
transparent huge page support, this recommended value is also applied. On
X86-64 with 4G of memory, min_free_kbytes becomes 67584 so one would
expect around 68M of memory to be free. The Normal zone is approximately
35000 pages so under even normal memory pressure such as copying a large
file, it gets exhausted quickly. As it is getting exhausted, kswapd
applies pressure equally to all zones, including the DMA32 zone. DMA32 is
approximately 700,000 pages with a high watermark of around 23,000 pages.
In this situation, kswapd will reclaim around (23000*8 where 8 is the high
watermark + balance gap of 7 * high watermark) pages or 718M of pages
before the zone is ignored. What the user sees is that free memory far
higher than it should be.
To avoid an excessive number of pages being reclaimed from the larger
zones, explicitely defines the "balance gap" to be either 1% of the zone
or the low watermark for the zone, whichever is smaller. While kswapd
will check all zones to apply pressure, it'll ignore zones that meets the
(high_wmark + balance_gap) watermark.
To test this, 80G were copied from a partition and the amount of memory
being used was recorded. A comparison of a patch and unpatched kernel can
be seen at
http://www.csn.ul.ie/~mel/postings/minfree-20110222/memory-usage-hydra.ps
and shows that kswapd is not reclaiming as much memory with the patch
applied.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: "Chen, Tim C" <tim.c.chen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 07:33:04 +08:00
|
|
|
/*
|
|
|
|
* Ratio between the present memory in the zone and the "gap" that
|
|
|
|
* we're allowing kswapd to shrink in addition to the per-zone high
|
|
|
|
* wmark, even for zones that already have the high wmark satisfied,
|
|
|
|
* in order to provide better per-zone lru behavior. We are ok to
|
|
|
|
* spend not more than 1% of the memory for this zone balancing "gap".
|
|
|
|
*/
|
|
|
|
#define KSWAPD_ZONE_BALANCE_GAP_RATIO 100
|
|
|
|
|
swap_info: swap count continuations
Swap is duplicated (reference count incremented by one) whenever the same
swap page is inserted into another mm (when forking finds a swap entry in
place of a pte, or when reclaim unmaps a pte to insert the swap entry).
swap_info_struct's vmalloc'ed swap_map is the array of these reference
counts: but what happens when the unsigned short (or unsigned char since
the preceding patch) is full? (and its high bit is kept for a cache flag)
We then lose track of it, never freeing, leaving it in use until swapoff:
at which point we _hope_ that a single pass will have found all instances,
assume there are no more, and will lose user data if we're wrong.
Swapping of KSM pages has not yet been enabled; but it is implemented,
and makes it very easy for a user to overflow the maximum swap count:
possible with ordinary process pages, but unlikely, even when pid_max
has been raised from PID_MAX_DEFAULT.
This patch implements swap count continuations: when the count overflows,
a continuation page is allocated and linked to the original vmalloc'ed
map page, and this used to hold the continuation counts for that entry
and its neighbours. These continuation pages are seldom referenced:
the common paths all work on the original swap_map, only referring to
a continuation page when the low "digit" of a count is incremented or
decremented through SWAP_MAP_MAX.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:58:46 +08:00
|
|
|
#define SWAP_MAP_MAX 0x3e /* Max duplication count, in first swap_map */
|
|
|
|
#define SWAP_MAP_BAD 0x3f /* Note pageblock is bad, in first swap_map */
|
|
|
|
#define SWAP_HAS_CACHE 0x40 /* Flag page is cached, in first swap_map */
|
|
|
|
#define SWAP_CONT_MAX 0x7f /* Max count, in each swap_map continuation */
|
|
|
|
#define COUNT_CONTINUED 0x80 /* See swap_map continuation for full count */
|
2009-12-15 09:58:47 +08:00
|
|
|
#define SWAP_MAP_SHMEM 0xbf /* Owned by shmem/tmpfs, in first swap_map */
|
2009-12-15 09:58:44 +08:00
|
|
|
|
swap: change block allocation algorithm for SSD
I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to
20~30% CPU time (when cluster is hard to find, the CPU time can be up to
80%), which becomes a bottleneck. scan_swap_map() scans a byte array to
search a 256 page cluster, which is very slow.
Here I introduced a simple algorithm to search cluster. Since we only
care about 256 pages cluster, we can just use a counter to track if a
cluster is free. Every 256 pages use one int to store the counter. If
the counter of a cluster is 0, the cluster is free. All free clusters
will be added to a list, so searching cluster is very efficient. With
this, scap_swap_map() overhead disappears.
This might help low end SD card swap too. Because if the cluster is
aligned, SD firmware can do flash erase more efficiently.
We only enable the algorithm for SSD. Hard disk swap isn't fast enough
and has downside with the algorithm which might introduce regression (see
below).
The patch slightly changes which cluster is choosen. It always adds free
cluster to list tail. This can help wear leveling for low end SSD too.
And if no cluster found, the scan_swap_map() will do search from the end
of last cluster. So if no cluster found, the scan_swap_map() will do
search from the end of last free cluster, which is random. For SSD, this
isn't a problem at all.
Another downside is the cluster must be aligned to 256 pages, which will
reduce the chance to find a cluster. I would expect this isn't a big
problem for SSD because of the non-seek penality. (And this is the reason
I only enable the algorithm for SSD).
Signed-off-by: Shaohua Li <shli@fusionio.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Kyungmin Park <kmpark@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rafael Aquini <aquini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:20:28 +08:00
|
|
|
/*
|
|
|
|
* We use this to track usage of a cluster. A cluster is a block of swap disk
|
|
|
|
* space with SWAPFILE_CLUSTER pages long and naturally aligns in disk. All
|
|
|
|
* free clusters are organized into a list. We fetch an entry from the list to
|
|
|
|
* get a free cluster.
|
|
|
|
*
|
|
|
|
* The data field stores next cluster if the cluster is free or cluster usage
|
|
|
|
* counter otherwise. The flags field determines if a cluster is free. This is
|
|
|
|
* protected by swap_info_struct.lock.
|
|
|
|
*/
|
|
|
|
struct swap_cluster_info {
|
|
|
|
unsigned int data:24;
|
|
|
|
unsigned int flags:8;
|
|
|
|
};
|
|
|
|
#define CLUSTER_FLAG_FREE 1 /* This cluster is free */
|
|
|
|
#define CLUSTER_FLAG_NEXT_NULL 2 /* This cluster has no next cluster */
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
/*
|
|
|
|
* The in-memory structure used to track swap areas.
|
|
|
|
*/
|
|
|
|
struct swap_info_struct {
|
2009-12-15 09:58:41 +08:00
|
|
|
unsigned long flags; /* SWP_USED etc: see above */
|
|
|
|
signed short prio; /* swap priority of this type */
|
|
|
|
signed char type; /* strange name for an index */
|
|
|
|
signed char next; /* next type on the swap list */
|
2009-12-15 09:58:48 +08:00
|
|
|
unsigned int max; /* extent of the swap_map */
|
|
|
|
unsigned char *swap_map; /* vmalloc'ed array of usage counts */
|
swap: change block allocation algorithm for SSD
I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to
20~30% CPU time (when cluster is hard to find, the CPU time can be up to
80%), which becomes a bottleneck. scan_swap_map() scans a byte array to
search a 256 page cluster, which is very slow.
Here I introduced a simple algorithm to search cluster. Since we only
care about 256 pages cluster, we can just use a counter to track if a
cluster is free. Every 256 pages use one int to store the counter. If
the counter of a cluster is 0, the cluster is free. All free clusters
will be added to a list, so searching cluster is very efficient. With
this, scap_swap_map() overhead disappears.
This might help low end SD card swap too. Because if the cluster is
aligned, SD firmware can do flash erase more efficiently.
We only enable the algorithm for SSD. Hard disk swap isn't fast enough
and has downside with the algorithm which might introduce regression (see
below).
The patch slightly changes which cluster is choosen. It always adds free
cluster to list tail. This can help wear leveling for low end SSD too.
And if no cluster found, the scan_swap_map() will do search from the end
of last cluster. So if no cluster found, the scan_swap_map() will do
search from the end of last free cluster, which is random. For SSD, this
isn't a problem at all.
Another downside is the cluster must be aligned to 256 pages, which will
reduce the chance to find a cluster. I would expect this isn't a big
problem for SSD because of the non-seek penality. (And this is the reason
I only enable the algorithm for SSD).
Signed-off-by: Shaohua Li <shli@fusionio.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Kyungmin Park <kmpark@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rafael Aquini <aquini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:20:28 +08:00
|
|
|
struct swap_cluster_info *cluster_info; /* cluster info. Only for SSD */
|
|
|
|
struct swap_cluster_info free_cluster_head; /* free cluster list head */
|
|
|
|
struct swap_cluster_info free_cluster_tail; /* free cluster list tail */
|
2009-12-15 09:58:48 +08:00
|
|
|
unsigned int lowest_bit; /* index of first free in swap_map */
|
|
|
|
unsigned int highest_bit; /* index of last free in swap_map */
|
|
|
|
unsigned int pages; /* total of usable pages of swap */
|
|
|
|
unsigned int inuse_pages; /* number of those currently in use */
|
|
|
|
unsigned int cluster_next; /* likely index for next allocation */
|
|
|
|
unsigned int cluster_nr; /* countdown to next cluster search */
|
|
|
|
struct swap_extent *curr_swap_extent;
|
|
|
|
struct swap_extent first_swap_extent;
|
|
|
|
struct block_device *bdev; /* swap device or bdev of swap file */
|
|
|
|
struct file *swap_file; /* seldom referenced */
|
|
|
|
unsigned int old_block_size; /* seldom referenced */
|
2012-04-10 07:08:06 +08:00
|
|
|
#ifdef CONFIG_FRONTSWAP
|
|
|
|
unsigned long *frontswap_map; /* frontswap in-use, one bit per page */
|
|
|
|
atomic_t frontswap_pages; /* frontswap pages in-use counter */
|
|
|
|
#endif
|
swap: add per-partition lock for swapfile
swap_lock is heavily contended when I test swap to 3 fast SSD (even
slightly slower than swap to 2 such SSD). The main contention comes
from swap_info_get(). This patch tries to fix the gap with adding a new
per-partition lock.
Global data like nr_swapfiles, total_swap_pages, least_priority and
swap_list are still protected by swap_lock.
nr_swap_pages is an atomic now, it can be changed without swap_lock. In
theory, it's possible get_swap_page() finds no swap pages but actually
there are free swap pages. But sounds not a big problem.
Accessing partition specific data (like scan_swap_map and so on) is only
protected by swap_info_struct.lock.
Changing swap_info_struct.flags need hold swap_lock and
swap_info_struct.lock, because scan_scan_map() will check it. read the
flags is ok with either the locks hold.
If both swap_lock and swap_info_struct.lock must be hold, we always hold
the former first to avoid deadlock.
swap_entry_free() can change swap_list. To delete that code, we add a
new highest_priority_index. Whenever get_swap_page() is called, we
check it. If it's valid, we use it.
It's a pity get_swap_page() still holds swap_lock(). But in practice,
swap_lock() isn't heavily contended in my test with this patch (or I can
say there are other much more heavier bottlenecks like TLB flush). And
BTW, looks get_swap_page() doesn't really need the lock. We never free
swap_info[] and we check SWAP_WRITEOK flag. The only risk without the
lock is we could swapout to some low priority swap, but we can quickly
recover after several rounds of swap, so sounds not a big deal to me.
But I'd prefer to fix this if it's a real problem.
"swap: make each swap partition have one address_space" improved the
swapout speed from 1.7G/s to 2G/s. This patch further improves the
speed to 2.3G/s, so around 15% improvement. It's a multi-process test,
so TLB flush isn't the biggest bottleneck before the patches.
[arnd@arndb.de: fix it for nommu]
[hughd@google.com: add missing unlock]
[minchan@kernel.org: get rid of lockdep whinge on sys_swapon]
Signed-off-by: Shaohua Li <shli@fusionio.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Seth Jennings <sjenning@linux.vnet.ibm.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Dan Magenheimer <dan.magenheimer@oracle.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 08:34:38 +08:00
|
|
|
spinlock_t lock; /*
|
|
|
|
* protect map scan related fields like
|
|
|
|
* swap_map, lowest_bit, highest_bit,
|
|
|
|
* inuse_pages, cluster_next,
|
swap: make swap discard async
swap can do cluster discard for SSD, which is good, but there are some
problems here:
1. swap do the discard just before page reclaim gets a swap entry and
writes the disk sectors. This is useless for high end SSD, because an
overwrite to a sector implies a discard to original sector too. A
discard + overwrite == overwrite.
2. the purpose of doing discard is to improve SSD firmware garbage
collection. Idealy we should send discard as early as possible, so
firmware can do something smart. Sending discard just after swap entry
is freed is considered early compared to sending discard before write.
Of course, if workload is already bound to gc speed, sending discard
earlier or later doesn't make
3. block discard is a sync API, which will delay scan_swap_map()
significantly.
4. Write and discard command can be executed parallel in PCIe SSD.
Making swap discard async can make execution more efficiently.
This patch makes swap discard async and moves discard to where swap entry
is freed. Discard and write have no dependence now, so above issues can
be avoided. Idealy we should do discard for any freed sectors, but some
SSD discard is very slow. This patch still does discard for a whole
cluster.
My test does a several round of 'mmap, write, unmap', which will trigger a
lot of swap discard. In a fusionio card, with this patch, the test
runtime is reduced to 18% of the time without it, so around 5.5x faster.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Shaohua Li <shli@fusionio.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Kyungmin Park <kmpark@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rafael Aquini <aquini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:20:30 +08:00
|
|
|
* cluster_nr, lowest_alloc,
|
|
|
|
* highest_alloc, free/discard cluster
|
|
|
|
* list. other fields are only changed
|
|
|
|
* at swapon/swapoff, so are protected
|
|
|
|
* by swap_lock. changing flags need
|
|
|
|
* hold this lock and swap_lock. If
|
|
|
|
* both locks need hold, hold swap_lock
|
|
|
|
* first.
|
swap: add per-partition lock for swapfile
swap_lock is heavily contended when I test swap to 3 fast SSD (even
slightly slower than swap to 2 such SSD). The main contention comes
from swap_info_get(). This patch tries to fix the gap with adding a new
per-partition lock.
Global data like nr_swapfiles, total_swap_pages, least_priority and
swap_list are still protected by swap_lock.
nr_swap_pages is an atomic now, it can be changed without swap_lock. In
theory, it's possible get_swap_page() finds no swap pages but actually
there are free swap pages. But sounds not a big problem.
Accessing partition specific data (like scan_swap_map and so on) is only
protected by swap_info_struct.lock.
Changing swap_info_struct.flags need hold swap_lock and
swap_info_struct.lock, because scan_scan_map() will check it. read the
flags is ok with either the locks hold.
If both swap_lock and swap_info_struct.lock must be hold, we always hold
the former first to avoid deadlock.
swap_entry_free() can change swap_list. To delete that code, we add a
new highest_priority_index. Whenever get_swap_page() is called, we
check it. If it's valid, we use it.
It's a pity get_swap_page() still holds swap_lock(). But in practice,
swap_lock() isn't heavily contended in my test with this patch (or I can
say there are other much more heavier bottlenecks like TLB flush). And
BTW, looks get_swap_page() doesn't really need the lock. We never free
swap_info[] and we check SWAP_WRITEOK flag. The only risk without the
lock is we could swapout to some low priority swap, but we can quickly
recover after several rounds of swap, so sounds not a big deal to me.
But I'd prefer to fix this if it's a real problem.
"swap: make each swap partition have one address_space" improved the
swapout speed from 1.7G/s to 2G/s. This patch further improves the
speed to 2.3G/s, so around 15% improvement. It's a multi-process test,
so TLB flush isn't the biggest bottleneck before the patches.
[arnd@arndb.de: fix it for nommu]
[hughd@google.com: add missing unlock]
[minchan@kernel.org: get rid of lockdep whinge on sys_swapon]
Signed-off-by: Shaohua Li <shli@fusionio.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Seth Jennings <sjenning@linux.vnet.ibm.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Dan Magenheimer <dan.magenheimer@oracle.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 08:34:38 +08:00
|
|
|
*/
|
swap: make swap discard async
swap can do cluster discard for SSD, which is good, but there are some
problems here:
1. swap do the discard just before page reclaim gets a swap entry and
writes the disk sectors. This is useless for high end SSD, because an
overwrite to a sector implies a discard to original sector too. A
discard + overwrite == overwrite.
2. the purpose of doing discard is to improve SSD firmware garbage
collection. Idealy we should send discard as early as possible, so
firmware can do something smart. Sending discard just after swap entry
is freed is considered early compared to sending discard before write.
Of course, if workload is already bound to gc speed, sending discard
earlier or later doesn't make
3. block discard is a sync API, which will delay scan_swap_map()
significantly.
4. Write and discard command can be executed parallel in PCIe SSD.
Making swap discard async can make execution more efficiently.
This patch makes swap discard async and moves discard to where swap entry
is freed. Discard and write have no dependence now, so above issues can
be avoided. Idealy we should do discard for any freed sectors, but some
SSD discard is very slow. This patch still does discard for a whole
cluster.
My test does a several round of 'mmap, write, unmap', which will trigger a
lot of swap discard. In a fusionio card, with this patch, the test
runtime is reduced to 18% of the time without it, so around 5.5x faster.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Shaohua Li <shli@fusionio.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Kyungmin Park <kmpark@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rafael Aquini <aquini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 05:20:30 +08:00
|
|
|
struct work_struct discard_work; /* discard worker */
|
|
|
|
struct swap_cluster_info discard_cluster_head; /* list head of discard clusters */
|
|
|
|
struct swap_cluster_info discard_cluster_tail; /* list tail of discard clusters */
|
2005-04-17 06:20:36 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
struct swap_list_t {
|
|
|
|
int head; /* head of priority-ordered swapfile list */
|
|
|
|
int next; /* swapfile to be used next */
|
|
|
|
};
|
|
|
|
|
|
|
|
/* linux/mm/page_alloc.c */
|
|
|
|
extern unsigned long totalram_pages;
|
2006-04-11 13:52:59 +08:00
|
|
|
extern unsigned long totalreserve_pages;
|
2012-01-11 07:07:42 +08:00
|
|
|
extern unsigned long dirty_balance_reserve;
|
2013-02-23 08:35:43 +08:00
|
|
|
extern unsigned long nr_free_buffer_pages(void);
|
|
|
|
extern unsigned long nr_free_pagecache_pages(void);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2007-02-10 17:43:03 +08:00
|
|
|
/* Definition of global_page_state not available yet */
|
|
|
|
#define nr_free_pages() global_page_state(NR_FREE_PAGES)
|
|
|
|
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
/* linux/mm/swap.c */
|
2013-07-04 06:02:34 +08:00
|
|
|
extern void __lru_cache_add(struct page *);
|
|
|
|
extern void lru_cache_add(struct page *);
|
2012-05-30 06:07:09 +08:00
|
|
|
extern void lru_add_page_tail(struct page *page, struct page *page_tail,
|
2013-04-30 06:08:36 +08:00
|
|
|
struct lruvec *lruvec, struct list_head *head);
|
2008-02-14 07:03:15 +08:00
|
|
|
extern void activate_page(struct page *);
|
|
|
|
extern void mark_page_accessed(struct page *);
|
2005-04-17 06:20:36 +08:00
|
|
|
extern void lru_add_drain(void);
|
2012-03-22 07:34:06 +08:00
|
|
|
extern void lru_add_drain_cpu(int cpu);
|
2006-01-19 09:42:27 +08:00
|
|
|
extern int lru_add_drain_all(void);
|
2008-04-28 17:12:38 +08:00
|
|
|
extern void rotate_reclaimable_page(struct page *page);
|
2011-03-23 07:32:52 +08:00
|
|
|
extern void deactivate_page(struct page *page);
|
2005-04-17 06:20:36 +08:00
|
|
|
extern void swap_setup(void);
|
|
|
|
|
Unevictable LRU Infrastructure
When the system contains lots of mlocked or otherwise unevictable pages,
the pageout code (kswapd) can spend lots of time scanning over these
pages. Worse still, the presence of lots of unevictable pages can confuse
kswapd into thinking that more aggressive pageout modes are required,
resulting in all kinds of bad behaviour.
Infrastructure to manage pages excluded from reclaim--i.e., hidden from
vmscan. Based on a patch by Larry Woodman of Red Hat. Reworked to
maintain "unevictable" pages on a separate per-zone LRU list, to "hide"
them from vmscan.
Kosaki Motohiro added the support for the memory controller unevictable
lru list.
Pages on the unevictable list have both PG_unevictable and PG_lru set.
Thus, PG_unevictable is analogous to and mutually exclusive with
PG_active--it specifies which LRU list the page is on.
The unevictable infrastructure is enabled by a new mm Kconfig option
[CONFIG_]UNEVICTABLE_LRU.
A new function 'page_evictable(page, vma)' in vmscan.c tests whether or
not a page may be evictable. Subsequent patches will add the various
!evictable tests. We'll want to keep these tests light-weight for use in
shrink_active_list() and, possibly, the fault path.
To avoid races between tasks putting pages [back] onto an LRU list and
tasks that might be moving the page from non-evictable to evictable state,
the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()'
-- tests the "evictability" of a page after placing it on the LRU, before
dropping the reference. If the page has become unevictable,
putback_lru_page() will redo the 'putback', thus moving the page to the
unevictable list. This way, we avoid "stranding" evictable pages on the
unevictable list.
[akpm@linux-foundation.org: fix fallout from out-of-order merge]
[riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build]
[nishimura@mxp.nes.nec.co.jp: remove redundant mapping check]
[kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework]
[kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c]
[kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure]
[kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch]
[kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:39 +08:00
|
|
|
extern void add_page_to_unevictable_list(struct page *page);
|
|
|
|
|
2008-10-19 11:26:19 +08:00
|
|
|
/**
|
|
|
|
* lru_cache_add: add a page to the page lists
|
|
|
|
* @page: the page to add
|
|
|
|
*/
|
2008-10-19 11:26:32 +08:00
|
|
|
static inline void lru_cache_add_anon(struct page *page)
|
2008-10-19 11:26:19 +08:00
|
|
|
{
|
2013-07-04 06:02:34 +08:00
|
|
|
ClearPageActive(page);
|
|
|
|
__lru_cache_add(page);
|
2008-10-19 11:26:19 +08:00
|
|
|
}
|
|
|
|
|
2008-10-19 11:26:32 +08:00
|
|
|
static inline void lru_cache_add_file(struct page *page)
|
|
|
|
{
|
2013-07-04 06:02:34 +08:00
|
|
|
ClearPageActive(page);
|
|
|
|
__lru_cache_add(page);
|
2008-10-19 11:26:32 +08:00
|
|
|
}
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
/* linux/mm/vmscan.c */
|
2008-04-28 17:12:12 +08:00
|
|
|
extern unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
|
2009-04-01 06:23:31 +08:00
|
|
|
gfp_t gfp_mask, nodemask_t *mask);
|
2012-05-30 06:06:54 +08:00
|
|
|
extern int __isolate_lru_page(struct page *page, isolate_mode_t mode);
|
2011-09-15 07:21:58 +08:00
|
|
|
extern unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem,
|
|
|
|
gfp_t gfp_mask, bool noswap);
|
|
|
|
extern unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
|
|
|
|
gfp_t gfp_mask, bool noswap,
|
|
|
|
struct zone *zone,
|
|
|
|
unsigned long *nr_scanned);
|
2006-03-22 16:08:19 +08:00
|
|
|
extern unsigned long shrink_all_memory(unsigned long nr_pages);
|
2005-04-17 06:20:36 +08:00
|
|
|
extern int vm_swappiness;
|
2006-03-22 16:09:12 +08:00
|
|
|
extern int remove_mapping(struct address_space *mapping, struct page *page);
|
2013-02-23 08:35:48 +08:00
|
|
|
extern unsigned long vm_total_pages;
|
2006-03-22 16:09:12 +08:00
|
|
|
|
2006-01-19 09:42:31 +08:00
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
extern int zone_reclaim_mode;
|
2006-07-03 15:24:13 +08:00
|
|
|
extern int sysctl_min_unmapped_ratio;
|
2006-09-26 14:31:52 +08:00
|
|
|
extern int sysctl_min_slab_ratio;
|
2006-01-19 09:42:31 +08:00
|
|
|
extern int zone_reclaim(struct zone *, gfp_t, unsigned int);
|
|
|
|
#else
|
|
|
|
#define zone_reclaim_mode 0
|
|
|
|
static inline int zone_reclaim(struct zone *z, gfp_t mask, unsigned int order)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2012-10-09 07:33:18 +08:00
|
|
|
extern int page_evictable(struct page *page);
|
SHM_UNLOCK: fix Unevictable pages stranded after swap
Commit cc39c6a9bbde ("mm: account skipped entries to avoid looping in
find_get_pages") correctly fixed an infinite loop; but left a problem
that find_get_pages() on shmem would return 0 (appearing to callers to
mean end of tree) when it meets a run of nr_pages swap entries.
The only uses of find_get_pages() on shmem are via pagevec_lookup(),
called from invalidate_mapping_pages(), and from shmctl SHM_UNLOCK's
scan_mapping_unevictable_pages(). The first is already commented, and
not worth worrying about; but the second can leave pages on the
Unevictable list after an unusual sequence of swapping and locking.
Fix that by using shmem_find_get_pages_and_swap() (then ignoring the
swap) instead of pagevec_lookup().
But I don't want to contaminate vmscan.c with shmem internals, nor
shmem.c with LRU locking. So move scan_mapping_unevictable_pages() into
shmem.c, renaming it shmem_unlock_mapping(); and rename
check_move_unevictable_page() to check_move_unevictable_pages(), looping
down an array of pages, oftentimes under the same lock.
Leave out the "rotate unevictable list" block: that's a leftover from
when this was used for /proc/sys/vm/scan_unevictable_pages, whose flawed
handling involved looking at pages at tail of LRU.
Was there significance to the sequence first ClearPageUnevictable, then
test page_evictable, then SetPageUnevictable here? I think not, we're
under LRU lock, and have no barriers between those.
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: <stable@vger.kernel.org> [back to 3.1 but will need respins]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-21 06:34:21 +08:00
|
|
|
extern void check_move_unevictable_pages(struct page **, int nr_pages);
|
2008-10-19 11:26:53 +08:00
|
|
|
|
|
|
|
extern unsigned long scan_unevictable_pages;
|
2009-09-24 06:57:19 +08:00
|
|
|
extern int scan_unevictable_handler(struct ctl_table *, int,
|
2008-10-19 11:26:53 +08:00
|
|
|
void __user *, size_t *, loff_t *);
|
2010-10-27 05:21:28 +08:00
|
|
|
#ifdef CONFIG_NUMA
|
2008-10-19 11:26:53 +08:00
|
|
|
extern int scan_unevictable_register_node(struct node *node);
|
|
|
|
extern void scan_unevictable_unregister_node(struct node *node);
|
2010-10-27 05:21:28 +08:00
|
|
|
#else
|
|
|
|
static inline int scan_unevictable_register_node(struct node *node)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
static inline void scan_unevictable_unregister_node(struct node *node)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
#endif
|
Unevictable LRU Infrastructure
When the system contains lots of mlocked or otherwise unevictable pages,
the pageout code (kswapd) can spend lots of time scanning over these
pages. Worse still, the presence of lots of unevictable pages can confuse
kswapd into thinking that more aggressive pageout modes are required,
resulting in all kinds of bad behaviour.
Infrastructure to manage pages excluded from reclaim--i.e., hidden from
vmscan. Based on a patch by Larry Woodman of Red Hat. Reworked to
maintain "unevictable" pages on a separate per-zone LRU list, to "hide"
them from vmscan.
Kosaki Motohiro added the support for the memory controller unevictable
lru list.
Pages on the unevictable list have both PG_unevictable and PG_lru set.
Thus, PG_unevictable is analogous to and mutually exclusive with
PG_active--it specifies which LRU list the page is on.
The unevictable infrastructure is enabled by a new mm Kconfig option
[CONFIG_]UNEVICTABLE_LRU.
A new function 'page_evictable(page, vma)' in vmscan.c tests whether or
not a page may be evictable. Subsequent patches will add the various
!evictable tests. We'll want to keep these tests light-weight for use in
shrink_active_list() and, possibly, the fault path.
To avoid races between tasks putting pages [back] onto an LRU list and
tasks that might be moving the page from non-evictable to evictable state,
the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()'
-- tests the "evictability" of a page after placing it on the LRU, before
dropping the reference. If the page has become unevictable,
putback_lru_page() will redo the 'putback', thus moving the page to the
unevictable list. This way, we avoid "stranding" evictable pages on the
unevictable list.
[akpm@linux-foundation.org: fix fallout from out-of-order merge]
[riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build]
[nishimura@mxp.nes.nec.co.jp: remove redundant mapping check]
[kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework]
[kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c]
[kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure]
[kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch]
[kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:39 +08:00
|
|
|
|
2006-06-27 17:53:33 +08:00
|
|
|
extern int kswapd_run(int nid);
|
2009-12-15 09:58:33 +08:00
|
|
|
extern void kswapd_stop(int nid);
|
2012-08-01 07:43:02 +08:00
|
|
|
#ifdef CONFIG_MEMCG
|
2011-07-27 07:08:21 +08:00
|
|
|
extern int mem_cgroup_swappiness(struct mem_cgroup *mem);
|
|
|
|
#else
|
|
|
|
static inline int mem_cgroup_swappiness(struct mem_cgroup *mem)
|
|
|
|
{
|
|
|
|
return vm_swappiness;
|
|
|
|
}
|
|
|
|
#endif
|
2012-08-01 07:43:02 +08:00
|
|
|
#ifdef CONFIG_MEMCG_SWAP
|
2012-04-06 05:25:16 +08:00
|
|
|
extern void mem_cgroup_uncharge_swap(swp_entry_t ent);
|
|
|
|
#else
|
|
|
|
static inline void mem_cgroup_uncharge_swap(swp_entry_t ent)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
#endif
|
2005-04-17 06:20:36 +08:00
|
|
|
#ifdef CONFIG_SWAP
|
|
|
|
/* linux/mm/page_io.c */
|
2009-06-17 06:33:02 +08:00
|
|
|
extern int swap_readpage(struct page *);
|
2005-04-17 06:20:36 +08:00
|
|
|
extern int swap_writepage(struct page *page, struct writeback_control *wbc);
|
2013-04-30 06:08:35 +08:00
|
|
|
extern void end_swap_bio_write(struct bio *bio, int err);
|
|
|
|
extern int __swap_writepage(struct page *page, struct writeback_control *wbc,
|
|
|
|
void (*end_write_func)(struct bio *, int));
|
2012-08-01 07:44:55 +08:00
|
|
|
extern int swap_set_page_dirty(struct page *page);
|
2007-09-27 18:47:43 +08:00
|
|
|
extern void end_swap_bio_read(struct bio *bio, int err);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2012-08-01 07:44:57 +08:00
|
|
|
int add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
|
|
|
|
unsigned long nr_pages, sector_t start_block);
|
|
|
|
int generic_swapfile_activate(struct swap_info_struct *, struct file *,
|
|
|
|
sector_t *);
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
/* linux/mm/swap_state.c */
|
2013-02-23 08:34:37 +08:00
|
|
|
extern struct address_space swapper_spaces[];
|
|
|
|
#define swap_address_space(entry) (&swapper_spaces[swp_type(entry)])
|
|
|
|
extern unsigned long total_swapcache_pages(void);
|
2005-04-17 06:20:36 +08:00
|
|
|
extern void show_swap_cache_info(void);
|
2013-04-30 06:08:36 +08:00
|
|
|
extern int add_to_swap(struct page *, struct list_head *list);
|
2008-02-05 14:28:50 +08:00
|
|
|
extern int add_to_swap_cache(struct page *, swp_entry_t, gfp_t);
|
2013-04-30 06:08:34 +08:00
|
|
|
extern int __add_to_swap_cache(struct page *page, swp_entry_t entry);
|
2005-04-17 06:20:36 +08:00
|
|
|
extern void __delete_from_swap_cache(struct page *);
|
|
|
|
extern void delete_from_swap_cache(struct page *);
|
|
|
|
extern void free_page_and_swap_cache(struct page *);
|
|
|
|
extern void free_pages_and_swap_cache(struct page **, int);
|
2008-02-05 14:28:41 +08:00
|
|
|
extern struct page *lookup_swap_cache(swp_entry_t);
|
swapin needs gfp_mask for loop on tmpfs
Building in a filesystem on a loop device on a tmpfs file can hang when
swapping, the loop thread caught in that infamous throttle_vm_writeout.
In theory this is a long standing problem, which I've either never seen in
practice, or long ago suppressed the recollection, after discounting my load
and my tmpfs size as unrealistically high. But now, with the new aops, it has
become easy to hang on one machine.
Loop used to grab_cache_page before the old prepare_write to tmpfs, which
seems to have been enough to free up some memory for any swapin needed; but
the new write_begin lets tmpfs find or allocate the page (much nicer, since
grab_cache_page missed tmpfs pages in swapcache).
When allocating a fresh page, tmpfs respects loop's mapping_gfp_mask, which
has __GFP_IO|__GFP_FS stripped off, and throttle_vm_writeout is designed to
break out when __GFP_IO or GFP_FS is unset; but when tmfps swaps in,
read_swap_cache_async allocates with GFP_HIGHUSER_MOVABLE regardless of the
mapping_gfp_mask - hence the hang.
So, pass gfp_mask down the line from shmem_getpage to shmem_swapin to
swapin_readahead to read_swap_cache_async to add_to_swap_cache.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 14:28:42 +08:00
|
|
|
extern struct page *read_swap_cache_async(swp_entry_t, gfp_t,
|
2008-02-05 14:28:41 +08:00
|
|
|
struct vm_area_struct *vma, unsigned long addr);
|
swapin needs gfp_mask for loop on tmpfs
Building in a filesystem on a loop device on a tmpfs file can hang when
swapping, the loop thread caught in that infamous throttle_vm_writeout.
In theory this is a long standing problem, which I've either never seen in
practice, or long ago suppressed the recollection, after discounting my load
and my tmpfs size as unrealistically high. But now, with the new aops, it has
become easy to hang on one machine.
Loop used to grab_cache_page before the old prepare_write to tmpfs, which
seems to have been enough to free up some memory for any swapin needed; but
the new write_begin lets tmpfs find or allocate the page (much nicer, since
grab_cache_page missed tmpfs pages in swapcache).
When allocating a fresh page, tmpfs respects loop's mapping_gfp_mask, which
has __GFP_IO|__GFP_FS stripped off, and throttle_vm_writeout is designed to
break out when __GFP_IO or GFP_FS is unset; but when tmfps swaps in,
read_swap_cache_async allocates with GFP_HIGHUSER_MOVABLE regardless of the
mapping_gfp_mask - hence the hang.
So, pass gfp_mask down the line from shmem_getpage to shmem_swapin to
swapin_readahead to read_swap_cache_async to add_to_swap_cache.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 14:28:42 +08:00
|
|
|
extern struct page *swapin_readahead(swp_entry_t, gfp_t,
|
2008-02-05 14:28:41 +08:00
|
|
|
struct vm_area_struct *vma, unsigned long addr);
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
/* linux/mm/swapfile.c */
|
swap: add per-partition lock for swapfile
swap_lock is heavily contended when I test swap to 3 fast SSD (even
slightly slower than swap to 2 such SSD). The main contention comes
from swap_info_get(). This patch tries to fix the gap with adding a new
per-partition lock.
Global data like nr_swapfiles, total_swap_pages, least_priority and
swap_list are still protected by swap_lock.
nr_swap_pages is an atomic now, it can be changed without swap_lock. In
theory, it's possible get_swap_page() finds no swap pages but actually
there are free swap pages. But sounds not a big problem.
Accessing partition specific data (like scan_swap_map and so on) is only
protected by swap_info_struct.lock.
Changing swap_info_struct.flags need hold swap_lock and
swap_info_struct.lock, because scan_scan_map() will check it. read the
flags is ok with either the locks hold.
If both swap_lock and swap_info_struct.lock must be hold, we always hold
the former first to avoid deadlock.
swap_entry_free() can change swap_list. To delete that code, we add a
new highest_priority_index. Whenever get_swap_page() is called, we
check it. If it's valid, we use it.
It's a pity get_swap_page() still holds swap_lock(). But in practice,
swap_lock() isn't heavily contended in my test with this patch (or I can
say there are other much more heavier bottlenecks like TLB flush). And
BTW, looks get_swap_page() doesn't really need the lock. We never free
swap_info[] and we check SWAP_WRITEOK flag. The only risk without the
lock is we could swapout to some low priority swap, but we can quickly
recover after several rounds of swap, so sounds not a big deal to me.
But I'd prefer to fix this if it's a real problem.
"swap: make each swap partition have one address_space" improved the
swapout speed from 1.7G/s to 2G/s. This patch further improves the
speed to 2.3G/s, so around 15% improvement. It's a multi-process test,
so TLB flush isn't the biggest bottleneck before the patches.
[arnd@arndb.de: fix it for nommu]
[hughd@google.com: add missing unlock]
[minchan@kernel.org: get rid of lockdep whinge on sys_swapon]
Signed-off-by: Shaohua Li <shli@fusionio.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Seth Jennings <sjenning@linux.vnet.ibm.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Dan Magenheimer <dan.magenheimer@oracle.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 08:34:38 +08:00
|
|
|
extern atomic_long_t nr_swap_pages;
|
2005-04-17 06:20:36 +08:00
|
|
|
extern long total_swap_pages;
|
swap: add per-partition lock for swapfile
swap_lock is heavily contended when I test swap to 3 fast SSD (even
slightly slower than swap to 2 such SSD). The main contention comes
from swap_info_get(). This patch tries to fix the gap with adding a new
per-partition lock.
Global data like nr_swapfiles, total_swap_pages, least_priority and
swap_list are still protected by swap_lock.
nr_swap_pages is an atomic now, it can be changed without swap_lock. In
theory, it's possible get_swap_page() finds no swap pages but actually
there are free swap pages. But sounds not a big problem.
Accessing partition specific data (like scan_swap_map and so on) is only
protected by swap_info_struct.lock.
Changing swap_info_struct.flags need hold swap_lock and
swap_info_struct.lock, because scan_scan_map() will check it. read the
flags is ok with either the locks hold.
If both swap_lock and swap_info_struct.lock must be hold, we always hold
the former first to avoid deadlock.
swap_entry_free() can change swap_list. To delete that code, we add a
new highest_priority_index. Whenever get_swap_page() is called, we
check it. If it's valid, we use it.
It's a pity get_swap_page() still holds swap_lock(). But in practice,
swap_lock() isn't heavily contended in my test with this patch (or I can
say there are other much more heavier bottlenecks like TLB flush). And
BTW, looks get_swap_page() doesn't really need the lock. We never free
swap_info[] and we check SWAP_WRITEOK flag. The only risk without the
lock is we could swapout to some low priority swap, but we can quickly
recover after several rounds of swap, so sounds not a big deal to me.
But I'd prefer to fix this if it's a real problem.
"swap: make each swap partition have one address_space" improved the
swapout speed from 1.7G/s to 2G/s. This patch further improves the
speed to 2.3G/s, so around 15% improvement. It's a multi-process test,
so TLB flush isn't the biggest bottleneck before the patches.
[arnd@arndb.de: fix it for nommu]
[hughd@google.com: add missing unlock]
[minchan@kernel.org: get rid of lockdep whinge on sys_swapon]
Signed-off-by: Shaohua Li <shli@fusionio.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Seth Jennings <sjenning@linux.vnet.ibm.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Dan Magenheimer <dan.magenheimer@oracle.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 08:34:38 +08:00
|
|
|
|
|
|
|
/* Swap 50% full? Release swapcache more aggressively.. */
|
|
|
|
static inline bool vm_swap_full(void)
|
|
|
|
{
|
|
|
|
return atomic_long_read(&nr_swap_pages) * 2 < total_swap_pages;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline long get_nr_swap_pages(void)
|
|
|
|
{
|
|
|
|
return atomic_long_read(&nr_swap_pages);
|
|
|
|
}
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
extern void si_swapinfo(struct sysinfo *);
|
|
|
|
extern swp_entry_t get_swap_page(void);
|
2010-09-10 07:38:07 +08:00
|
|
|
extern swp_entry_t get_swap_page_of_type(int);
|
swap_info: swap count continuations
Swap is duplicated (reference count incremented by one) whenever the same
swap page is inserted into another mm (when forking finds a swap entry in
place of a pte, or when reclaim unmaps a pte to insert the swap entry).
swap_info_struct's vmalloc'ed swap_map is the array of these reference
counts: but what happens when the unsigned short (or unsigned char since
the preceding patch) is full? (and its high bit is kept for a cache flag)
We then lose track of it, never freeing, leaving it in use until swapoff:
at which point we _hope_ that a single pass will have found all instances,
assume there are no more, and will lose user data if we're wrong.
Swapping of KSM pages has not yet been enabled; but it is implemented,
and makes it very easy for a user to overflow the maximum swap count:
possible with ordinary process pages, but unlikely, even when pid_max
has been raised from PID_MAX_DEFAULT.
This patch implements swap count continuations: when the count overflows,
a continuation page is allocated and linked to the original vmalloc'ed
map page, and this used to hold the continuation counts for that entry
and its neighbours. These continuation pages are seldom referenced:
the common paths all work on the original swap_map, only referring to
a continuation page when the low "digit" of a count is incremented or
decremented through SWAP_MAP_MAX.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:58:46 +08:00
|
|
|
extern int add_swap_count_continuation(swp_entry_t, gfp_t);
|
2009-12-15 09:58:47 +08:00
|
|
|
extern void swap_shmem_alloc(swp_entry_t);
|
swap_info: swap count continuations
Swap is duplicated (reference count incremented by one) whenever the same
swap page is inserted into another mm (when forking finds a swap entry in
place of a pte, or when reclaim unmaps a pte to insert the swap entry).
swap_info_struct's vmalloc'ed swap_map is the array of these reference
counts: but what happens when the unsigned short (or unsigned char since
the preceding patch) is full? (and its high bit is kept for a cache flag)
We then lose track of it, never freeing, leaving it in use until swapoff:
at which point we _hope_ that a single pass will have found all instances,
assume there are no more, and will lose user data if we're wrong.
Swapping of KSM pages has not yet been enabled; but it is implemented,
and makes it very easy for a user to overflow the maximum swap count:
possible with ordinary process pages, but unlikely, even when pid_max
has been raised from PID_MAX_DEFAULT.
This patch implements swap count continuations: when the count overflows,
a continuation page is allocated and linked to the original vmalloc'ed
map page, and this used to hold the continuation counts for that entry
and its neighbours. These continuation pages are seldom referenced:
the common paths all work on the original swap_map, only referring to
a continuation page when the low "digit" of a count is incremented or
decremented through SWAP_MAP_MAX.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:58:46 +08:00
|
|
|
extern int swap_duplicate(swp_entry_t);
|
|
|
|
extern int swapcache_prepare(swp_entry_t);
|
2005-04-17 06:20:36 +08:00
|
|
|
extern void swap_free(swp_entry_t);
|
2009-06-17 06:32:52 +08:00
|
|
|
extern void swapcache_free(swp_entry_t, struct page *page);
|
2009-01-07 06:40:10 +08:00
|
|
|
extern int free_swap_and_cache(swp_entry_t);
|
2007-01-06 08:36:28 +08:00
|
|
|
extern int swap_type_of(dev_t, sector_t, struct block_device **);
|
2006-03-23 18:59:59 +08:00
|
|
|
extern unsigned int count_swap_pages(int, int);
|
2009-12-15 09:58:49 +08:00
|
|
|
extern sector_t map_swap_page(struct page *, struct block_device **);
|
2006-12-07 12:34:10 +08:00
|
|
|
extern sector_t swapdev_block(int, pgoff_t);
|
shmem: replace page if mapping excludes its zone
The GMA500 GPU driver uses GEM shmem objects, but with a new twist: the
backing RAM has to be below 4GB. Not a problem while the boards
supported only 4GB: but now Intel's D2700MUD boards support 8GB, and
their GMA3600 is managed by the GMA500 driver.
shmem/tmpfs has never pretended to support hardware restrictions on the
backing memory, but it might have appeared to do so before v3.1, and
even now it works fine until a page is swapped out then back in. When
read_cache_page_gfp() supplied a freshly allocated page for copy, that
compensated for whatever choice might have been made by earlier swapin
readahead; but swapoff was likely to destroy the illusion.
We'd like to continue to support GMA500, so now add a new
shmem_should_replace_page() check on the zone when about to move a page
from swapcache to filecache (in swapin and swapoff cases), with
shmem_replace_page() to allocate and substitute a suitable page (given
gma500/gem.c's mapping_set_gfp_mask GFP_KERNEL | __GFP_DMA32).
This does involve a minor extension to mem_cgroup_replace_page_cache()
(the page may or may not have already been charged); and I've removed a
comment and call to mem_cgroup_uncharge_cache_page(), which in fact is
always a no-op while PageSwapCache.
Also removed optimization of an unlikely path in shmem_getpage_gfp(),
now that we need to check PageSwapCache more carefully (a racing caller
might already have made the copy). And at one point shmem_unuse_inode()
needs to use the hitherto private page_swapcount(), to guard against
racing with inode eviction.
It would make sense to extend shmem_should_replace_page(), to cover
cpuset and NUMA mempolicy restrictions too, but set that aside for now:
needs a cleanup of shmem mempolicy handling, and more testing, and ought
to handle swap faults in do_swap_page() as well as shmem.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Hellwig <hch@infradead.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: Stephane Marchesin <marcheu@chromium.org>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Rob Clark <rob.clark@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-30 06:06:38 +08:00
|
|
|
extern int page_swapcount(struct page *);
|
2012-08-01 07:44:47 +08:00
|
|
|
extern struct swap_info_struct *page_swap_info(struct page *);
|
2009-01-07 06:39:34 +08:00
|
|
|
extern int reuse_swap_page(struct page *);
|
2009-01-07 06:39:36 +08:00
|
|
|
extern int try_to_free_swap(struct page *);
|
2005-04-17 06:20:36 +08:00
|
|
|
struct backing_dev_info;
|
|
|
|
|
2012-08-01 07:43:02 +08:00
|
|
|
#ifdef CONFIG_MEMCG
|
2009-06-18 07:27:17 +08:00
|
|
|
extern void
|
|
|
|
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout);
|
2009-01-08 10:07:56 +08:00
|
|
|
#else
|
2009-01-08 10:08:00 +08:00
|
|
|
static inline void
|
2009-06-18 07:27:17 +08:00
|
|
|
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
|
2009-01-08 10:08:00 +08:00
|
|
|
{
|
|
|
|
}
|
|
|
|
#endif
|
2009-01-08 10:07:56 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
#else /* CONFIG_SWAP */
|
|
|
|
|
swap: add per-partition lock for swapfile
swap_lock is heavily contended when I test swap to 3 fast SSD (even
slightly slower than swap to 2 such SSD). The main contention comes
from swap_info_get(). This patch tries to fix the gap with adding a new
per-partition lock.
Global data like nr_swapfiles, total_swap_pages, least_priority and
swap_list are still protected by swap_lock.
nr_swap_pages is an atomic now, it can be changed without swap_lock. In
theory, it's possible get_swap_page() finds no swap pages but actually
there are free swap pages. But sounds not a big problem.
Accessing partition specific data (like scan_swap_map and so on) is only
protected by swap_info_struct.lock.
Changing swap_info_struct.flags need hold swap_lock and
swap_info_struct.lock, because scan_scan_map() will check it. read the
flags is ok with either the locks hold.
If both swap_lock and swap_info_struct.lock must be hold, we always hold
the former first to avoid deadlock.
swap_entry_free() can change swap_list. To delete that code, we add a
new highest_priority_index. Whenever get_swap_page() is called, we
check it. If it's valid, we use it.
It's a pity get_swap_page() still holds swap_lock(). But in practice,
swap_lock() isn't heavily contended in my test with this patch (or I can
say there are other much more heavier bottlenecks like TLB flush). And
BTW, looks get_swap_page() doesn't really need the lock. We never free
swap_info[] and we check SWAP_WRITEOK flag. The only risk without the
lock is we could swapout to some low priority swap, but we can quickly
recover after several rounds of swap, so sounds not a big deal to me.
But I'd prefer to fix this if it's a real problem.
"swap: make each swap partition have one address_space" improved the
swapout speed from 1.7G/s to 2G/s. This patch further improves the
speed to 2.3G/s, so around 15% improvement. It's a multi-process test,
so TLB flush isn't the biggest bottleneck before the patches.
[arnd@arndb.de: fix it for nommu]
[hughd@google.com: add missing unlock]
[minchan@kernel.org: get rid of lockdep whinge on sys_swapon]
Signed-off-by: Shaohua Li <shli@fusionio.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Seth Jennings <sjenning@linux.vnet.ibm.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Dan Magenheimer <dan.magenheimer@oracle.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 08:34:38 +08:00
|
|
|
#define get_nr_swap_pages() 0L
|
2009-01-07 06:39:41 +08:00
|
|
|
#define total_swap_pages 0L
|
2013-02-23 08:34:37 +08:00
|
|
|
#define total_swapcache_pages() 0UL
|
swap: add per-partition lock for swapfile
swap_lock is heavily contended when I test swap to 3 fast SSD (even
slightly slower than swap to 2 such SSD). The main contention comes
from swap_info_get(). This patch tries to fix the gap with adding a new
per-partition lock.
Global data like nr_swapfiles, total_swap_pages, least_priority and
swap_list are still protected by swap_lock.
nr_swap_pages is an atomic now, it can be changed without swap_lock. In
theory, it's possible get_swap_page() finds no swap pages but actually
there are free swap pages. But sounds not a big problem.
Accessing partition specific data (like scan_swap_map and so on) is only
protected by swap_info_struct.lock.
Changing swap_info_struct.flags need hold swap_lock and
swap_info_struct.lock, because scan_scan_map() will check it. read the
flags is ok with either the locks hold.
If both swap_lock and swap_info_struct.lock must be hold, we always hold
the former first to avoid deadlock.
swap_entry_free() can change swap_list. To delete that code, we add a
new highest_priority_index. Whenever get_swap_page() is called, we
check it. If it's valid, we use it.
It's a pity get_swap_page() still holds swap_lock(). But in practice,
swap_lock() isn't heavily contended in my test with this patch (or I can
say there are other much more heavier bottlenecks like TLB flush). And
BTW, looks get_swap_page() doesn't really need the lock. We never free
swap_info[] and we check SWAP_WRITEOK flag. The only risk without the
lock is we could swapout to some low priority swap, but we can quickly
recover after several rounds of swap, so sounds not a big deal to me.
But I'd prefer to fix this if it's a real problem.
"swap: make each swap partition have one address_space" improved the
swapout speed from 1.7G/s to 2G/s. This patch further improves the
speed to 2.3G/s, so around 15% improvement. It's a multi-process test,
so TLB flush isn't the biggest bottleneck before the patches.
[arnd@arndb.de: fix it for nommu]
[hughd@google.com: add missing unlock]
[minchan@kernel.org: get rid of lockdep whinge on sys_swapon]
Signed-off-by: Shaohua Li <shli@fusionio.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Seth Jennings <sjenning@linux.vnet.ibm.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Dan Magenheimer <dan.magenheimer@oracle.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 08:34:38 +08:00
|
|
|
#define vm_swap_full() 0
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
#define si_swapinfo(val) \
|
|
|
|
do { (val)->freeswap = (val)->totalswap = 0; } while (0)
|
2005-08-08 00:42:24 +08:00
|
|
|
/* only sparc can not include linux/pagemap.h in this file
|
|
|
|
* so leave page_cache_release and release_pages undeclared... */
|
2005-04-17 06:20:36 +08:00
|
|
|
#define free_page_and_swap_cache(page) \
|
|
|
|
page_cache_release(page)
|
|
|
|
#define free_pages_and_swap_cache(pages, nr) \
|
|
|
|
release_pages((pages), (nr), 0);
|
|
|
|
|
2006-06-23 17:03:42 +08:00
|
|
|
static inline void show_swap_cache_info(void)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2009-01-07 06:40:10 +08:00
|
|
|
#define free_swap_and_cache(swp) is_migration_entry(swp)
|
2009-06-17 06:32:52 +08:00
|
|
|
#define swapcache_prepare(swp) is_migration_entry(swp)
|
2006-06-23 17:03:42 +08:00
|
|
|
|
swap_info: swap count continuations
Swap is duplicated (reference count incremented by one) whenever the same
swap page is inserted into another mm (when forking finds a swap entry in
place of a pte, or when reclaim unmaps a pte to insert the swap entry).
swap_info_struct's vmalloc'ed swap_map is the array of these reference
counts: but what happens when the unsigned short (or unsigned char since
the preceding patch) is full? (and its high bit is kept for a cache flag)
We then lose track of it, never freeing, leaving it in use until swapoff:
at which point we _hope_ that a single pass will have found all instances,
assume there are no more, and will lose user data if we're wrong.
Swapping of KSM pages has not yet been enabled; but it is implemented,
and makes it very easy for a user to overflow the maximum swap count:
possible with ordinary process pages, but unlikely, even when pid_max
has been raised from PID_MAX_DEFAULT.
This patch implements swap count continuations: when the count overflows,
a continuation page is allocated and linked to the original vmalloc'ed
map page, and this used to hold the continuation counts for that entry
and its neighbours. These continuation pages are seldom referenced:
the common paths all work on the original swap_map, only referring to
a continuation page when the low "digit" of a count is incremented or
decremented through SWAP_MAP_MAX.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:58:46 +08:00
|
|
|
static inline int add_swap_count_continuation(swp_entry_t swp, gfp_t gfp_mask)
|
2009-06-17 06:32:53 +08:00
|
|
|
{
|
swap_info: swap count continuations
Swap is duplicated (reference count incremented by one) whenever the same
swap page is inserted into another mm (when forking finds a swap entry in
place of a pte, or when reclaim unmaps a pte to insert the swap entry).
swap_info_struct's vmalloc'ed swap_map is the array of these reference
counts: but what happens when the unsigned short (or unsigned char since
the preceding patch) is full? (and its high bit is kept for a cache flag)
We then lose track of it, never freeing, leaving it in use until swapoff:
at which point we _hope_ that a single pass will have found all instances,
assume there are no more, and will lose user data if we're wrong.
Swapping of KSM pages has not yet been enabled; but it is implemented,
and makes it very easy for a user to overflow the maximum swap count:
possible with ordinary process pages, but unlikely, even when pid_max
has been raised from PID_MAX_DEFAULT.
This patch implements swap count continuations: when the count overflows,
a continuation page is allocated and linked to the original vmalloc'ed
map page, and this used to hold the continuation counts for that entry
and its neighbours. These continuation pages are seldom referenced:
the common paths all work on the original swap_map, only referring to
a continuation page when the low "digit" of a count is incremented or
decremented through SWAP_MAP_MAX.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:58:46 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2009-12-15 09:58:47 +08:00
|
|
|
static inline void swap_shmem_alloc(swp_entry_t swp)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
swap_info: swap count continuations
Swap is duplicated (reference count incremented by one) whenever the same
swap page is inserted into another mm (when forking finds a swap entry in
place of a pte, or when reclaim unmaps a pte to insert the swap entry).
swap_info_struct's vmalloc'ed swap_map is the array of these reference
counts: but what happens when the unsigned short (or unsigned char since
the preceding patch) is full? (and its high bit is kept for a cache flag)
We then lose track of it, never freeing, leaving it in use until swapoff:
at which point we _hope_ that a single pass will have found all instances,
assume there are no more, and will lose user data if we're wrong.
Swapping of KSM pages has not yet been enabled; but it is implemented,
and makes it very easy for a user to overflow the maximum swap count:
possible with ordinary process pages, but unlikely, even when pid_max
has been raised from PID_MAX_DEFAULT.
This patch implements swap count continuations: when the count overflows,
a continuation page is allocated and linked to the original vmalloc'ed
map page, and this used to hold the continuation counts for that entry
and its neighbours. These continuation pages are seldom referenced:
the common paths all work on the original swap_map, only referring to
a continuation page when the low "digit" of a count is incremented or
decremented through SWAP_MAP_MAX.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 09:58:46 +08:00
|
|
|
static inline int swap_duplicate(swp_entry_t swp)
|
|
|
|
{
|
|
|
|
return 0;
|
2009-06-17 06:32:53 +08:00
|
|
|
}
|
|
|
|
|
2006-06-23 17:03:42 +08:00
|
|
|
static inline void swap_free(swp_entry_t swp)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2009-06-17 06:32:52 +08:00
|
|
|
static inline void swapcache_free(swp_entry_t swp, struct page *page)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
swapin needs gfp_mask for loop on tmpfs
Building in a filesystem on a loop device on a tmpfs file can hang when
swapping, the loop thread caught in that infamous throttle_vm_writeout.
In theory this is a long standing problem, which I've either never seen in
practice, or long ago suppressed the recollection, after discounting my load
and my tmpfs size as unrealistically high. But now, with the new aops, it has
become easy to hang on one machine.
Loop used to grab_cache_page before the old prepare_write to tmpfs, which
seems to have been enough to free up some memory for any swapin needed; but
the new write_begin lets tmpfs find or allocate the page (much nicer, since
grab_cache_page missed tmpfs pages in swapcache).
When allocating a fresh page, tmpfs respects loop's mapping_gfp_mask, which
has __GFP_IO|__GFP_FS stripped off, and throttle_vm_writeout is designed to
break out when __GFP_IO or GFP_FS is unset; but when tmfps swaps in,
read_swap_cache_async allocates with GFP_HIGHUSER_MOVABLE regardless of the
mapping_gfp_mask - hence the hang.
So, pass gfp_mask down the line from shmem_getpage to shmem_swapin to
swapin_readahead to read_swap_cache_async to add_to_swap_cache.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 14:28:42 +08:00
|
|
|
static inline struct page *swapin_readahead(swp_entry_t swp, gfp_t gfp_mask,
|
2006-06-23 17:03:42 +08:00
|
|
|
struct vm_area_struct *vma, unsigned long addr)
|
|
|
|
{
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
shmem: writepage directly to swap
Synopsis: if shmem_writepage calls swap_writepage directly, most shmem
swap loads benefit, and a catastrophic interaction between SLUB and some
flash storage is avoided.
shmem_writepage() has always been peculiar in making no attempt to write:
it has just transferred a shmem page from file cache to swap cache, then
let that page make its way around the LRU again before being written and
freed.
The idea was that people use tmpfs because they want those pages to stay
in RAM; so although we give it an overflow to swap, we should resist
writing too soon, giving those pages a second chance before they can be
reclaimed.
That was always questionable, and I've toyed with this patch for years;
but never had a clear justification to depart from the original design.
It became more questionable in 2.6.28, when the split LRU patches classed
shmem and tmpfs pages as SwapBacked rather than as file_cache: that in
itself gives them more resistance to reclaim than normal file pages. I
prepared this patch for 2.6.29, but the merge window arrived before I'd
completed gathering statistics to justify sending it in.
Then while comparing SLQB against SLUB, running SLUB on a laptop I'd
habitually used with SLAB, I found SLUB to run my tmpfs kbuild swapping
tests five times slower than SLAB or SLQB - other machines slower too, but
nowhere near so bad. Simpler "cp -a" swapping tests showed the same.
slub_max_order=0 brings sanity to all, but heavy swapping is too far from
normal to justify such a tuning. The crucial factor on that laptop turns
out to be that I'm using an SD card for swap. What happens is this:
By default, SLUB uses order-2 pages for shmem_inode_cache (and many other
fs inodes), so creating tmpfs files under memory pressure brings lumpy
reclaim into play. One subpage of the order is chosen from the bottom of
the LRU as usual, then the other three picked out from their random
positions on the LRUs.
In a tmpfs load, many of these pages will be ones which already passed
through shmem_writepage, so already have swap allocated. And though their
offsets on swap were probably allocated sequentially, now that the pages
are picked off at random, their swap offsets are scattered.
But the flash storage on the SD card is very sensitive to having its
writes merged: once swap is written at scattered offsets, performance
falls apart. Rotating disk seeks increase too, but less disastrously.
So: stop giving shmem/tmpfs pages a second pass around the LRU, write them
out to swap as soon as their swap has been allocated.
It's surely possible to devise an artificial load which runs faster the
old way, one whose sizing is such that the tmpfs pages on their second
pass are the ones that are wanted again, and other pages not.
But I've not yet found such a load: on all machines, under the loads I've
tried, immediate swap_writepage speeds up shmem swapping: especially when
using the SLUB allocator (and more effectively than slub_max_order=0), but
also with the others; and it also reduces the variance between runs. How
much faster varies widely: a factor of five is rare, 5% is common.
One load which might have suffered: imagine a swapping shmem load in a
limited mem_cgroup on a machine with plenty of memory. Before 2.6.29 the
swapcache was not charged, and such a load would have run quickest with
the shmem swapcache never written to swap. But now swapcache is charged,
so even this load benefits from shmem_writepage directly to swap.
Apologies for the #ifndef CONFIG_SWAP swap_writepage() stub in swap.h:
it's silly because that will never get called; but refactoring shmem.c
sensibly according to CONFIG_SWAP will be a separate task.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-01 06:23:33 +08:00
|
|
|
static inline int swap_writepage(struct page *p, struct writeback_control *wbc)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2006-06-23 17:03:42 +08:00
|
|
|
static inline struct page *lookup_swap_cache(swp_entry_t swp)
|
|
|
|
{
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2013-04-30 06:08:36 +08:00
|
|
|
static inline int add_to_swap(struct page *page, struct list_head *list)
|
2009-01-07 06:39:40 +08:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-02-05 14:28:50 +08:00
|
|
|
static inline int add_to_swap_cache(struct page *page, swp_entry_t entry,
|
|
|
|
gfp_t gfp_mask)
|
2006-06-23 17:03:42 +08:00
|
|
|
{
|
2008-02-05 14:28:50 +08:00
|
|
|
return -1;
|
2006-06-23 17:03:42 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline void __delete_from_swap_cache(struct page *page)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void delete_from_swap_cache(struct page *page)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
shmem: replace page if mapping excludes its zone
The GMA500 GPU driver uses GEM shmem objects, but with a new twist: the
backing RAM has to be below 4GB. Not a problem while the boards
supported only 4GB: but now Intel's D2700MUD boards support 8GB, and
their GMA3600 is managed by the GMA500 driver.
shmem/tmpfs has never pretended to support hardware restrictions on the
backing memory, but it might have appeared to do so before v3.1, and
even now it works fine until a page is swapped out then back in. When
read_cache_page_gfp() supplied a freshly allocated page for copy, that
compensated for whatever choice might have been made by earlier swapin
readahead; but swapoff was likely to destroy the illusion.
We'd like to continue to support GMA500, so now add a new
shmem_should_replace_page() check on the zone when about to move a page
from swapcache to filecache (in swapin and swapoff cases), with
shmem_replace_page() to allocate and substitute a suitable page (given
gma500/gem.c's mapping_set_gfp_mask GFP_KERNEL | __GFP_DMA32).
This does involve a minor extension to mem_cgroup_replace_page_cache()
(the page may or may not have already been charged); and I've removed a
comment and call to mem_cgroup_uncharge_cache_page(), which in fact is
always a no-op while PageSwapCache.
Also removed optimization of an unlikely path in shmem_getpage_gfp(),
now that we need to check PageSwapCache more carefully (a racing caller
might already have made the copy). And at one point shmem_unuse_inode()
needs to use the hitherto private page_swapcount(), to guard against
racing with inode eviction.
It would make sense to extend shmem_should_replace_page(), to cover
cpuset and NUMA mempolicy restrictions too, but set that aside for now:
needs a cleanup of shmem mempolicy handling, and more testing, and ought
to handle swap faults in do_swap_page() as well as shmem.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Hellwig <hch@infradead.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: Stephane Marchesin <marcheu@chromium.org>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Rob Clark <rob.clark@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-30 06:06:38 +08:00
|
|
|
static inline int page_swapcount(struct page *page)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2009-01-07 06:39:34 +08:00
|
|
|
#define reuse_swap_page(page) (page_mapcount(page) == 1)
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2009-01-07 06:39:36 +08:00
|
|
|
static inline int try_to_free_swap(struct page *page)
|
2008-10-19 11:26:23 +08:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
static inline swp_entry_t get_swap_page(void)
|
|
|
|
{
|
|
|
|
swp_entry_t entry;
|
|
|
|
entry.val = 0;
|
|
|
|
return entry;
|
|
|
|
}
|
|
|
|
|
2009-05-29 05:34:28 +08:00
|
|
|
static inline void
|
|
|
|
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
#endif /* CONFIG_SWAP */
|
|
|
|
#endif /* __KERNEL__*/
|
|
|
|
#endif /* _LINUX_SWAP_H */
|