2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-15 08:44:14 +08:00
linux-next/net/dsa/dsa.c

313 lines
6.6 KiB
C
Raw Normal View History

net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 21:44:02 +08:00
/*
* net/dsa/dsa.c - Hardware switch handling
dsa: add switch chip cascading support The initial version of the DSA driver only supported a single switch chip per network interface, while DSA-capable switch chips can be interconnected to form a tree of switch chips. This patch adds support for multiple switch chips on a network interface. An example topology for a 16-port device with an embedded CPU is as follows: +-----+ +--------+ +--------+ | |eth0 10| switch |9 10| switch | | CPU +----------+ +-------+ | | | | chip 0 | | chip 1 | +-----+ +---++---+ +---++---+ || || || || ||1000baseT ||1000baseT ||ports 1-8 ||ports 9-16 This requires a couple of interdependent changes in the DSA layer: - The dsa platform driver data needs to be extended: there is still only one netdevice per DSA driver instance (eth0 in the example above), but each of the switch chips in the tree needs its own mii_bus device pointer, MII management bus address, and port name array. (include/net/dsa.h) The existing in-tree dsa users need some small changes to deal with this. (arch/arm) - The DSA and Ethertype DSA tagging modules need to be extended to use the DSA device ID field on receive and demultiplex the packet accordingly, and fill in the DSA device ID field on transmit according to which switch chip the packet is heading to. (net/dsa/tag_{dsa,edsa}.c) - The concept of "CPU port", which is the switch chip port that the CPU is connected to (port 10 on switch chip 0 in the example), needs to be extended with the concept of "upstream port", which is the port on the switch chip that will bring us one hop closer to the CPU (port 10 for both switch chips in the example above). - The dsa platform data needs to specify which ports on which switch chips are links to other switch chips, so that we can enable DSA tagging mode on them. (For inter-switch links, we always use non-EtherType DSA tagging, since it has lower overhead. The CPU link uses dsa or edsa tagging depending on what the 'root' switch chip supports.) This is done by specifying "dsa" for the given port in the port array. - The dsa platform data needs to be extended with information on via which port to reach any given switch chip from any given switch chip. This info is specified via the per-switch chip data struct ->rtable[] array, which gives the nexthop ports for each of the other switches in the tree. For the example topology above, the dsa platform data would look something like this: static struct dsa_chip_data sw[2] = { { .mii_bus = &foo, .sw_addr = 1, .port_names[0] = "p1", .port_names[1] = "p2", .port_names[2] = "p3", .port_names[3] = "p4", .port_names[4] = "p5", .port_names[5] = "p6", .port_names[6] = "p7", .port_names[7] = "p8", .port_names[9] = "dsa", .port_names[10] = "cpu", .rtable = (s8 []){ -1, 9, }, }, { .mii_bus = &foo, .sw_addr = 2, .port_names[0] = "p9", .port_names[1] = "p10", .port_names[2] = "p11", .port_names[3] = "p12", .port_names[4] = "p13", .port_names[5] = "p14", .port_names[6] = "p15", .port_names[7] = "p16", .port_names[10] = "dsa", .rtable = (s8 []){ 10, -1, }, }, }, static struct dsa_platform_data pd = { .netdev = &foo, .nr_switches = 2, .sw = sw, }; Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Gary Thomas <gary@mlbassoc.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 17:52:09 +08:00
* Copyright (c) 2008-2009 Marvell Semiconductor
* Copyright (c) 2013 Florian Fainelli <florian@openwrt.org>
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 21:44:02 +08:00
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/device.h>
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 21:44:02 +08:00
#include <linux/list.h>
#include <linux/platform_device.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_mdio.h>
#include <linux/of_platform.h>
#include <linux/of_net.h>
#include <linux/of_gpio.h>
#include <linux/netdevice.h>
#include <linux/sysfs.h>
#include <linux/phy_fixed.h>
#include <linux/gpio/consumer.h>
#include <linux/etherdevice.h>
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 21:44:02 +08:00
#include "dsa_priv.h"
static struct sk_buff *dsa_slave_notag_xmit(struct sk_buff *skb,
struct net_device *dev)
{
/* Just return the original SKB */
return skb;
}
static const struct dsa_device_ops none_ops = {
.xmit = dsa_slave_notag_xmit,
.rcv = NULL,
};
const struct dsa_device_ops *dsa_device_ops[DSA_TAG_LAST] = {
#ifdef CONFIG_NET_DSA_TAG_BRCM
[DSA_TAG_PROTO_BRCM] = &brcm_netdev_ops,
#endif
#ifdef CONFIG_NET_DSA_TAG_DSA
[DSA_TAG_PROTO_DSA] = &dsa_netdev_ops,
#endif
#ifdef CONFIG_NET_DSA_TAG_EDSA
[DSA_TAG_PROTO_EDSA] = &edsa_netdev_ops,
#endif
#ifdef CONFIG_NET_DSA_TAG_KSZ
[DSA_TAG_PROTO_KSZ] = &ksz_netdev_ops,
#endif
#ifdef CONFIG_NET_DSA_TAG_LAN9303
[DSA_TAG_PROTO_LAN9303] = &lan9303_netdev_ops,
#endif
#ifdef CONFIG_NET_DSA_TAG_MTK
[DSA_TAG_PROTO_MTK] = &mtk_netdev_ops,
#endif
#ifdef CONFIG_NET_DSA_TAG_QCA
[DSA_TAG_PROTO_QCA] = &qca_netdev_ops,
#endif
#ifdef CONFIG_NET_DSA_TAG_TRAILER
[DSA_TAG_PROTO_TRAILER] = &trailer_netdev_ops,
#endif
[DSA_TAG_PROTO_NONE] = &none_ops,
};
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 21:44:02 +08:00
int dsa_cpu_dsa_setup(struct dsa_switch *ds, struct device *dev,
struct dsa_port *dport, int port)
{
struct device_node *port_dn = dport->dn;
struct phy_device *phydev;
int ret, mode;
if (of_phy_is_fixed_link(port_dn)) {
ret = of_phy_register_fixed_link(port_dn);
if (ret) {
dev_err(dev, "failed to register fixed PHY\n");
return ret;
}
phydev = of_phy_find_device(port_dn);
mode = of_get_phy_mode(port_dn);
if (mode < 0)
mode = PHY_INTERFACE_MODE_NA;
phydev->interface = mode;
genphy_config_init(phydev);
genphy_read_status(phydev);
if (ds->ops->adjust_link)
ds->ops->adjust_link(ds, port, phydev);
put_device(&phydev->mdio.dev);
}
return 0;
}
const struct dsa_device_ops *dsa_resolve_tag_protocol(int tag_protocol)
{
const struct dsa_device_ops *ops;
if (tag_protocol >= DSA_TAG_LAST)
return ERR_PTR(-EINVAL);
ops = dsa_device_ops[tag_protocol];
if (!ops)
return ERR_PTR(-ENOPROTOOPT);
return ops;
}
int dsa_cpu_port_ethtool_setup(struct dsa_port *cpu_dp)
{
struct dsa_switch *ds = cpu_dp->ds;
struct net_device *master;
struct ethtool_ops *cpu_ops;
master = cpu_dp->netdev;
cpu_ops = devm_kzalloc(ds->dev, sizeof(*cpu_ops), GFP_KERNEL);
if (!cpu_ops)
return -ENOMEM;
memcpy(&cpu_dp->ethtool_ops, master->ethtool_ops,
sizeof(struct ethtool_ops));
cpu_dp->orig_ethtool_ops = master->ethtool_ops;
memcpy(cpu_ops, &cpu_dp->ethtool_ops,
sizeof(struct ethtool_ops));
dsa_cpu_port_ethtool_init(cpu_ops);
master->ethtool_ops = cpu_ops;
return 0;
}
void dsa_cpu_port_ethtool_restore(struct dsa_port *cpu_dp)
{
cpu_dp->netdev->ethtool_ops = cpu_dp->orig_ethtool_ops;
}
void dsa_cpu_dsa_destroy(struct dsa_port *port)
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 21:44:02 +08:00
{
struct device_node *port_dn = port->dn;
if (of_phy_is_fixed_link(port_dn))
of_phy_deregister_fixed_link(port_dn);
}
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 21:44:02 +08:00
static int dev_is_class(struct device *dev, void *class)
{
if (dev->class != NULL && !strcmp(dev->class->name, class))
return 1;
return 0;
}
static struct device *dev_find_class(struct device *parent, char *class)
{
if (dev_is_class(parent, class)) {
get_device(parent);
return parent;
}
return device_find_child(parent, class, dev_is_class);
}
struct net_device *dsa_dev_to_net_device(struct device *dev)
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 21:44:02 +08:00
{
struct device *d;
d = dev_find_class(dev, "net");
if (d != NULL) {
struct net_device *nd;
nd = to_net_dev(d);
dev_hold(nd);
put_device(d);
return nd;
}
return NULL;
}
EXPORT_SYMBOL_GPL(dsa_dev_to_net_device);
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 21:44:02 +08:00
static int dsa_switch_rcv(struct sk_buff *skb, struct net_device *dev,
struct packet_type *pt, struct net_device *orig_dev)
{
struct dsa_switch_tree *dst = dev->dsa_ptr;
struct sk_buff *nskb = NULL;
struct dsa_slave_priv *p;
if (unlikely(dst == NULL)) {
kfree_skb(skb);
return 0;
}
skb = skb_unshare(skb, GFP_ATOMIC);
if (!skb)
return 0;
nskb = dst->rcv(skb, dev, pt, orig_dev);
if (!nskb) {
kfree_skb(skb);
return 0;
}
skb = nskb;
p = netdev_priv(skb->dev);
skb_push(skb, ETH_HLEN);
skb->pkt_type = PACKET_HOST;
skb->protocol = eth_type_trans(skb, skb->dev);
u64_stats_update_begin(&p->stats64.syncp);
p->stats64.rx_packets++;
p->stats64.rx_bytes += skb->len;
u64_stats_update_end(&p->stats64.syncp);
netif_receive_skb(skb);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static bool dsa_is_port_initialized(struct dsa_switch *ds, int p)
{
return ds->enabled_port_mask & (1 << p) && ds->ports[p].netdev;
}
int dsa_switch_suspend(struct dsa_switch *ds)
{
int i, ret = 0;
/* Suspend slave network devices */
for (i = 0; i < ds->num_ports; i++) {
if (!dsa_is_port_initialized(ds, i))
continue;
ret = dsa_slave_suspend(ds->ports[i].netdev);
if (ret)
return ret;
}
if (ds->ops->suspend)
ret = ds->ops->suspend(ds);
return ret;
}
EXPORT_SYMBOL_GPL(dsa_switch_suspend);
int dsa_switch_resume(struct dsa_switch *ds)
{
int i, ret = 0;
if (ds->ops->resume)
ret = ds->ops->resume(ds);
if (ret)
return ret;
/* Resume slave network devices */
for (i = 0; i < ds->num_ports; i++) {
if (!dsa_is_port_initialized(ds, i))
continue;
ret = dsa_slave_resume(ds->ports[i].netdev);
if (ret)
return ret;
}
return 0;
}
EXPORT_SYMBOL_GPL(dsa_switch_resume);
#endif
static struct packet_type dsa_pack_type __read_mostly = {
.type = cpu_to_be16(ETH_P_XDSA),
.func = dsa_switch_rcv,
};
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 21:44:02 +08:00
static int __init dsa_init_module(void)
{
int rc;
rc = dsa_slave_register_notifier();
if (rc)
return rc;
rc = dsa_legacy_register();
if (rc)
return rc;
dev_add_pack(&dsa_pack_type);
return 0;
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 21:44:02 +08:00
}
module_init(dsa_init_module);
static void __exit dsa_cleanup_module(void)
{
dsa_slave_unregister_notifier();
dev_remove_pack(&dsa_pack_type);
dsa_legacy_unregister();
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 21:44:02 +08:00
}
module_exit(dsa_cleanup_module);
MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 21:44:02 +08:00
MODULE_DESCRIPTION("Driver for Distributed Switch Architecture switch chips");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:dsa");