2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 23:54:19 +08:00
linux-next/arch/x86/include/asm/compat.h

238 lines
5.3 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_X86_COMPAT_H
#define _ASM_X86_COMPAT_H
/*
* Architecture specific compatibility types
*/
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/sched/task_stack.h>
#include <asm/processor.h>
#include <asm/user32.h>
#include <asm/unistd.h>
#include <asm-generic/compat.h>
#define COMPAT_USER_HZ 100
#define COMPAT_UTS_MACHINE "i686\0\0"
typedef u16 __compat_uid_t;
typedef u16 __compat_gid_t;
typedef u32 __compat_uid32_t;
typedef u32 __compat_gid32_t;
typedef u16 compat_mode_t;
typedef u16 compat_dev_t;
typedef u16 compat_nlink_t;
typedef u16 compat_ipc_pid_t;
typedef u32 compat_caddr_t;
typedef __kernel_fsid_t compat_fsid_t;
typedef s64 __attribute__((aligned(4))) compat_s64;
typedef u64 __attribute__((aligned(4))) compat_u64;
struct compat_stat {
compat_dev_t st_dev;
u16 __pad1;
compat_ino_t st_ino;
compat_mode_t st_mode;
compat_nlink_t st_nlink;
__compat_uid_t st_uid;
__compat_gid_t st_gid;
compat_dev_t st_rdev;
u16 __pad2;
u32 st_size;
u32 st_blksize;
u32 st_blocks;
u32 st_atime;
u32 st_atime_nsec;
u32 st_mtime;
u32 st_mtime_nsec;
u32 st_ctime;
u32 st_ctime_nsec;
u32 __unused4;
u32 __unused5;
};
struct compat_flock {
short l_type;
short l_whence;
compat_off_t l_start;
compat_off_t l_len;
compat_pid_t l_pid;
};
#define F_GETLK64 12 /* using 'struct flock64' */
#define F_SETLK64 13
#define F_SETLKW64 14
/*
* IA32 uses 4 byte alignment for 64 bit quantities,
* so we need to pack this structure.
*/
struct compat_flock64 {
short l_type;
short l_whence;
compat_loff_t l_start;
compat_loff_t l_len;
compat_pid_t l_pid;
} __attribute__((packed));
struct compat_statfs {
int f_type;
int f_bsize;
int f_blocks;
int f_bfree;
int f_bavail;
int f_files;
int f_ffree;
compat_fsid_t f_fsid;
int f_namelen; /* SunOS ignores this field. */
int f_frsize;
int f_flags;
int f_spare[4];
};
#define COMPAT_RLIM_INFINITY 0xffffffff
typedef u32 compat_old_sigset_t; /* at least 32 bits */
#define _COMPAT_NSIG 64
#define _COMPAT_NSIG_BPW 32
typedef u32 compat_sigset_word;
#define COMPAT_OFF_T_MAX 0x7fffffff
struct compat_ipc64_perm {
compat_key_t key;
__compat_uid32_t uid;
__compat_gid32_t gid;
__compat_uid32_t cuid;
__compat_gid32_t cgid;
unsigned short mode;
unsigned short __pad1;
unsigned short seq;
unsigned short __pad2;
compat_ulong_t unused1;
compat_ulong_t unused2;
};
struct compat_semid64_ds {
struct compat_ipc64_perm sem_perm;
compat_ulong_t sem_otime;
compat_ulong_t sem_otime_high;
compat_ulong_t sem_ctime;
compat_ulong_t sem_ctime_high;
compat_ulong_t sem_nsems;
compat_ulong_t __unused3;
compat_ulong_t __unused4;
};
struct compat_msqid64_ds {
struct compat_ipc64_perm msg_perm;
compat_ulong_t msg_stime;
compat_ulong_t msg_stime_high;
compat_ulong_t msg_rtime;
compat_ulong_t msg_rtime_high;
compat_ulong_t msg_ctime;
compat_ulong_t msg_ctime_high;
compat_ulong_t msg_cbytes;
compat_ulong_t msg_qnum;
compat_ulong_t msg_qbytes;
compat_pid_t msg_lspid;
compat_pid_t msg_lrpid;
compat_ulong_t __unused4;
compat_ulong_t __unused5;
};
struct compat_shmid64_ds {
struct compat_ipc64_perm shm_perm;
compat_size_t shm_segsz;
compat_ulong_t shm_atime;
compat_ulong_t shm_atime_high;
compat_ulong_t shm_dtime;
compat_ulong_t shm_dtime_high;
compat_ulong_t shm_ctime;
compat_ulong_t shm_ctime_high;
compat_pid_t shm_cpid;
compat_pid_t shm_lpid;
compat_ulong_t shm_nattch;
compat_ulong_t __unused4;
compat_ulong_t __unused5;
};
/*
* The type of struct elf_prstatus.pr_reg in compatible core dumps.
*/
typedef struct user_regs_struct compat_elf_gregset_t;
/* Full regset -- prstatus on x32, otherwise on ia32 */
#define PRSTATUS_SIZE(S, R) (R != sizeof(S.pr_reg) ? 144 : 296)
#define SET_PR_FPVALID(S, V, R) \
do { *(int *) (((void *) &((S)->pr_reg)) + R) = (V); } \
while (0)
x86/coredump: Always use user_regs_struct for compat_elf_gregset_t Commit: 90954e7b9407 ("x86/coredump: Use pr_reg size, rather that TIF_IA32 flag") changed the coredumping code to construct the elf coredump file according to register set size - and that's good: if binary crashes with 32-bit code selector, generate 32-bit ELF core, otherwise - 64-bit core. That was made for restoring 32-bit applications on x86_64: we want 32-bit application after restore to generate 32-bit ELF dump on crash. All was quite good and recently I started reworking 32-bit applications dumping part of CRIU: now it has two parasites (32 and 64) for seizing compat/native tasks, after rework it'll have one parasite, working in 64-bit mode, to which 32-bit prologue long-jumps during infection. And while it has worked for my work machine, in VM with !CONFIG_X86_X32_ABI during reworking I faced that segfault in 32-bit binary, that has long-jumped to 64-bit mode results in dereference of garbage: 32-victim[19266]: segfault at f775ef65 ip 00000000f775ef65 sp 00000000f776aa50 error 14 BUG: unable to handle kernel paging request at ffffffffffffffff IP: [<ffffffff81332ce0>] strlen+0x0/0x20 [...] Call Trace: [] elf_core_dump+0x11a9/0x1480 [] do_coredump+0xa6b/0xe60 [] get_signal+0x1a8/0x5c0 [] do_signal+0x23/0x660 [] exit_to_usermode_loop+0x34/0x65 [] prepare_exit_to_usermode+0x2f/0x40 [] retint_user+0x8/0x10 That's because we have 64-bit registers set (with according total size) and we're writing it to elf_thread_core_info which has smaller size on !CONFIG_X86_X32_ABI. That lead to overwriting ELF notes part. Tested on 32-, 64-bit ELF crashes and on 32-bit binaries that have jumped with 64-bit code selector - all is readable with gdb. Signed-off-by: Dmitry Safonov <dsafonov@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Fixes: 90954e7b9407 ("x86/coredump: Use pr_reg size, rather that TIF_IA32 flag") Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-11-24 02:13:30 +08:00
#ifdef CONFIG_X86_X32_ABI
#define COMPAT_USE_64BIT_TIME \
(!!(task_pt_regs(current)->orig_ax & __X32_SYSCALL_BIT))
#endif
/*
* A pointer passed in from user mode. This should not
* be used for syscall parameters, just declare them
* as pointers because the syscall entry code will have
* appropriately converted them already.
*/
static inline void __user *compat_ptr(compat_uptr_t uptr)
{
return (void __user *)(unsigned long)uptr;
}
static inline compat_uptr_t ptr_to_compat(void __user *uptr)
{
return (u32)(unsigned long)uptr;
}
compat: Make compat_alloc_user_space() incorporate the access_ok() compat_alloc_user_space() expects the caller to independently call access_ok() to verify the returned area. A missing call could introduce problems on some architectures. This patch incorporates the access_ok() check into compat_alloc_user_space() and also adds a sanity check on the length. The existing compat_alloc_user_space() implementations are renamed arch_compat_alloc_user_space() and are used as part of the implementation of the new global function. This patch assumes NULL will cause __get_user()/__put_user() to either fail or access userspace on all architectures. This should be followed by checking the return value of compat_access_user_space() for NULL in the callers, at which time the access_ok() in the callers can also be removed. Reported-by: Ben Hawkes <hawkes@sota.gen.nz> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Acked-by: Chris Metcalf <cmetcalf@tilera.com> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: Ingo Molnar <mingo@elte.hu> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Tony Luck <tony.luck@intel.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Helge Deller <deller@gmx.de> Cc: James Bottomley <jejb@parisc-linux.org> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: <stable@kernel.org>
2010-09-08 07:16:18 +08:00
static inline void __user *arch_compat_alloc_user_space(long len)
{
compat_uptr_t sp;
if (test_thread_flag(TIF_IA32)) {
sp = task_pt_regs(current)->sp;
} else {
/* -128 for the x32 ABI redzone */
sp = task_pt_regs(current)->sp - 128;
}
return (void __user *)round_down(sp - len, 16);
}
static inline bool in_x32_syscall(void)
{
#ifdef CONFIG_X86_X32_ABI
if (task_pt_regs(current)->orig_ax & __X32_SYSCALL_BIT)
return true;
#endif
return false;
}
x86/compat: Adjust in_compat_syscall() to generic code under !COMPAT The result of in_compat_syscall() can be pictured as: x86 platform: --------------------------------------------------- | Arch\syscall | 64-bit | ia32 | x32 | |-------------------------------------------------| | x86_64 | false | true | true | |-------------------------------------------------| | i686 | | <true> | | --------------------------------------------------- Other platforms: ------------------------------------------- | Arch\syscall | 64-bit | compat | |-----------------------------------------| | 64-bit | false | true | |-----------------------------------------| | 32-bit(?) | | <false> | ------------------------------------------- As seen, the result of in_compat_syscall() on generic 32-bit platform differs from i686. There is no reason for in_compat_syscall() == true on native i686. It also easy to misread code if the result on native 32-bit platform differs between arches. Because of that non arch-specific code has many places with: if (IS_ENABLED(CONFIG_COMPAT) && in_compat_syscall()) in different variations. It looks-like the only non-x86 code which uses in_compat_syscall() not under CONFIG_COMPAT guard is in amd/amdkfd. But according to the commit a18069c132cb ("amdkfd: Disable support for 32-bit user processes"), it actually should be disabled on native i686. Rename in_compat_syscall() to in_32bit_syscall() for x86-specific code and make in_compat_syscall() false under !CONFIG_COMPAT. A follow on patch will clean up generic users which were forced to check IS_ENABLED(CONFIG_COMPAT) with in_compat_syscall(). Signed-off-by: Dmitry Safonov <dima@arista.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Andy Lutomirski <luto@kernel.org> Cc: Dmitry Safonov <0x7f454c46@gmail.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: John Stultz <john.stultz@linaro.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: Stephen Boyd <sboyd@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: linux-efi@vger.kernel.org Cc: netdev@vger.kernel.org Link: https://lkml.kernel.org/r/20181012134253.23266-2-dima@arista.com
2018-10-12 21:42:52 +08:00
static inline bool in_32bit_syscall(void)
{
return in_ia32_syscall() || in_x32_syscall();
}
x86/compat: Adjust in_compat_syscall() to generic code under !COMPAT The result of in_compat_syscall() can be pictured as: x86 platform: --------------------------------------------------- | Arch\syscall | 64-bit | ia32 | x32 | |-------------------------------------------------| | x86_64 | false | true | true | |-------------------------------------------------| | i686 | | <true> | | --------------------------------------------------- Other platforms: ------------------------------------------- | Arch\syscall | 64-bit | compat | |-----------------------------------------| | 64-bit | false | true | |-----------------------------------------| | 32-bit(?) | | <false> | ------------------------------------------- As seen, the result of in_compat_syscall() on generic 32-bit platform differs from i686. There is no reason for in_compat_syscall() == true on native i686. It also easy to misread code if the result on native 32-bit platform differs between arches. Because of that non arch-specific code has many places with: if (IS_ENABLED(CONFIG_COMPAT) && in_compat_syscall()) in different variations. It looks-like the only non-x86 code which uses in_compat_syscall() not under CONFIG_COMPAT guard is in amd/amdkfd. But according to the commit a18069c132cb ("amdkfd: Disable support for 32-bit user processes"), it actually should be disabled on native i686. Rename in_compat_syscall() to in_32bit_syscall() for x86-specific code and make in_compat_syscall() false under !CONFIG_COMPAT. A follow on patch will clean up generic users which were forced to check IS_ENABLED(CONFIG_COMPAT) with in_compat_syscall(). Signed-off-by: Dmitry Safonov <dima@arista.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Andy Lutomirski <luto@kernel.org> Cc: Dmitry Safonov <0x7f454c46@gmail.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: John Stultz <john.stultz@linaro.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: Stephen Boyd <sboyd@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: linux-efi@vger.kernel.org Cc: netdev@vger.kernel.org Link: https://lkml.kernel.org/r/20181012134253.23266-2-dima@arista.com
2018-10-12 21:42:52 +08:00
#ifdef CONFIG_COMPAT
static inline bool in_compat_syscall(void)
{
return in_32bit_syscall();
}
#define in_compat_syscall in_compat_syscall /* override the generic impl */
x86/compat: Adjust in_compat_syscall() to generic code under !COMPAT The result of in_compat_syscall() can be pictured as: x86 platform: --------------------------------------------------- | Arch\syscall | 64-bit | ia32 | x32 | |-------------------------------------------------| | x86_64 | false | true | true | |-------------------------------------------------| | i686 | | <true> | | --------------------------------------------------- Other platforms: ------------------------------------------- | Arch\syscall | 64-bit | compat | |-----------------------------------------| | 64-bit | false | true | |-----------------------------------------| | 32-bit(?) | | <false> | ------------------------------------------- As seen, the result of in_compat_syscall() on generic 32-bit platform differs from i686. There is no reason for in_compat_syscall() == true on native i686. It also easy to misread code if the result on native 32-bit platform differs between arches. Because of that non arch-specific code has many places with: if (IS_ENABLED(CONFIG_COMPAT) && in_compat_syscall()) in different variations. It looks-like the only non-x86 code which uses in_compat_syscall() not under CONFIG_COMPAT guard is in amd/amdkfd. But according to the commit a18069c132cb ("amdkfd: Disable support for 32-bit user processes"), it actually should be disabled on native i686. Rename in_compat_syscall() to in_32bit_syscall() for x86-specific code and make in_compat_syscall() false under !CONFIG_COMPAT. A follow on patch will clean up generic users which were forced to check IS_ENABLED(CONFIG_COMPAT) with in_compat_syscall(). Signed-off-by: Dmitry Safonov <dima@arista.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Andy Lutomirski <luto@kernel.org> Cc: Dmitry Safonov <0x7f454c46@gmail.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: John Stultz <john.stultz@linaro.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: Stephen Boyd <sboyd@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: linux-efi@vger.kernel.org Cc: netdev@vger.kernel.org Link: https://lkml.kernel.org/r/20181012134253.23266-2-dima@arista.com
2018-10-12 21:42:52 +08:00
#endif
struct compat_siginfo;
int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
const kernel_siginfo_t *from, bool x32_ABI);
#endif /* _ASM_X86_COMPAT_H */