2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-24 22:55:35 +08:00
linux-next/arch/powerpc/lib/qspinlock.c

356 lines
8.0 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
#include <linux/bug.h>
#include <linux/compiler.h>
#include <linux/export.h>
#include <linux/percpu.h>
#include <linux/smp.h>
#include <asm/qspinlock.h>
#define MAX_NODES 4
struct qnode {
struct qnode *next;
struct qspinlock *lock;
u8 locked; /* 1 if lock acquired */
};
struct qnodes {
int count;
struct qnode nodes[MAX_NODES];
};
/* Tuning parameters */
static int steal_spins __read_mostly = (1 << 5);
static bool maybe_stealers __read_mostly = true;
static int head_spins __read_mostly = (1 << 8);
static DEFINE_PER_CPU_ALIGNED(struct qnodes, qnodes);
static __always_inline int get_steal_spins(void)
{
return steal_spins;
}
static __always_inline int get_head_spins(void)
{
return head_spins;
}
static inline u32 encode_tail_cpu(int cpu)
{
return (cpu + 1) << _Q_TAIL_CPU_OFFSET;
}
static inline int decode_tail_cpu(u32 val)
{
return (val >> _Q_TAIL_CPU_OFFSET) - 1;
}
/*
* Try to acquire the lock if it was not already locked. If the tail matches
* mytail then clear it, otherwise leave it unchnaged. Return previous value.
*
* This is used by the head of the queue to acquire the lock and clean up
* its tail if it was the last one queued.
*/
static __always_inline u32 trylock_clean_tail(struct qspinlock *lock, u32 tail)
{
u32 newval = queued_spin_encode_locked_val();
u32 prev, tmp;
asm volatile(
"1: lwarx %0,0,%2,%7 # trylock_clean_tail \n"
/* This test is necessary if there could be stealers */
" andi. %1,%0,%5 \n"
" bne 3f \n"
/* Test whether the lock tail == mytail */
" and %1,%0,%6 \n"
" cmpw 0,%1,%3 \n"
/* Merge the new locked value */
" or %1,%1,%4 \n"
" bne 2f \n"
/* If the lock tail matched, then clear it, otherwise leave it. */
" andc %1,%1,%6 \n"
"2: stwcx. %1,0,%2 \n"
" bne- 1b \n"
"\t" PPC_ACQUIRE_BARRIER " \n"
"3: \n"
: "=&r" (prev), "=&r" (tmp)
: "r" (&lock->val), "r"(tail), "r" (newval),
"i" (_Q_LOCKED_VAL),
"r" (_Q_TAIL_CPU_MASK),
"i" (IS_ENABLED(CONFIG_PPC64))
: "cr0", "memory");
return prev;
}
/*
* Publish our tail, replacing previous tail. Return previous value.
*
* This provides a release barrier for publishing node, this pairs with the
* acquire barrier in get_tail_qnode() when the next CPU finds this tail
* value.
*/
static __always_inline u32 publish_tail_cpu(struct qspinlock *lock, u32 tail)
{
u32 prev, tmp;
asm volatile(
"\t" PPC_RELEASE_BARRIER " \n"
"1: lwarx %0,0,%2 # publish_tail_cpu \n"
" andc %1,%0,%4 \n"
" or %1,%1,%3 \n"
" stwcx. %1,0,%2 \n"
" bne- 1b \n"
: "=&r" (prev), "=&r"(tmp)
: "r" (&lock->val), "r" (tail), "r"(_Q_TAIL_CPU_MASK)
: "cr0", "memory");
return prev;
}
static __always_inline u32 set_mustq(struct qspinlock *lock)
{
u32 prev;
asm volatile(
"1: lwarx %0,0,%1 # set_mustq \n"
" or %0,%0,%2 \n"
" stwcx. %0,0,%1 \n"
" bne- 1b \n"
: "=&r" (prev)
: "r" (&lock->val), "r" (_Q_MUST_Q_VAL)
: "cr0", "memory");
return prev;
}
static struct qnode *get_tail_qnode(struct qspinlock *lock, u32 val)
{
int cpu = decode_tail_cpu(val);
struct qnodes *qnodesp = per_cpu_ptr(&qnodes, cpu);
int idx;
/*
* After publishing the new tail and finding a previous tail in the
* previous val (which is the control dependency), this barrier
* orders the release barrier in publish_tail_cpu performed by the
* last CPU, with subsequently looking at its qnode structures
* after the barrier.
*/
smp_acquire__after_ctrl_dep();
for (idx = 0; idx < MAX_NODES; idx++) {
struct qnode *qnode = &qnodesp->nodes[idx];
if (qnode->lock == lock)
return qnode;
}
BUG();
}
static inline bool try_to_steal_lock(struct qspinlock *lock)
{
int iters = 0;
if (!steal_spins)
return false;
/* Attempt to steal the lock */
do {
u32 val = READ_ONCE(lock->val);
if (val & _Q_MUST_Q_VAL)
break;
if (unlikely(!(val & _Q_LOCKED_VAL))) {
if (__queued_spin_trylock_steal(lock))
return true;
} else {
cpu_relax();
}
iters++;
} while (iters < get_steal_spins());
return false;
}
static inline void queued_spin_lock_mcs_queue(struct qspinlock *lock)
{
struct qnodes *qnodesp;
struct qnode *next, *node;
u32 val, old, tail;
bool mustq = false;
int idx;
int iters = 0;
BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
qnodesp = this_cpu_ptr(&qnodes);
if (unlikely(qnodesp->count >= MAX_NODES)) {
while (!queued_spin_trylock(lock))
cpu_relax();
return;
}
idx = qnodesp->count++;
/*
* Ensure that we increment the head node->count before initialising
* the actual node. If the compiler is kind enough to reorder these
* stores, then an IRQ could overwrite our assignments.
*/
barrier();
node = &qnodesp->nodes[idx];
node->next = NULL;
node->lock = lock;
node->locked = 0;
tail = encode_tail_cpu(smp_processor_id());
old = publish_tail_cpu(lock, tail);
/*
* If there was a previous node; link it and wait until reaching the
* head of the waitqueue.
*/
if (old & _Q_TAIL_CPU_MASK) {
struct qnode *prev = get_tail_qnode(lock, old);
/* Link @node into the waitqueue. */
WRITE_ONCE(prev->next, node);
/* Wait for mcs node lock to be released */
while (!node->locked)
cpu_relax();
smp_rmb(); /* acquire barrier for the mcs lock */
}
again:
/* We're at the head of the waitqueue, wait for the lock. */
for (;;) {
val = READ_ONCE(lock->val);
if (!(val & _Q_LOCKED_VAL))
break;
cpu_relax();
if (!maybe_stealers)
continue;
iters++;
if (!mustq && iters >= get_head_spins()) {
mustq = true;
set_mustq(lock);
val |= _Q_MUST_Q_VAL;
}
}
/* If we're the last queued, must clean up the tail. */
old = trylock_clean_tail(lock, tail);
if (unlikely(old & _Q_LOCKED_VAL)) {
BUG_ON(!maybe_stealers);
goto again; /* Can only be true if maybe_stealers. */
}
if ((old & _Q_TAIL_CPU_MASK) == tail)
goto release; /* We were the tail, no next. */
/* There is a next, must wait for node->next != NULL (MCS protocol) */
while (!(next = READ_ONCE(node->next)))
cpu_relax();
/*
* Unlock the next mcs waiter node. Release barrier is not required
* here because the acquirer is only accessing the lock word, and
* the acquire barrier we took the lock with orders that update vs
* this store to locked. The corresponding barrier is the smp_rmb()
* acquire barrier for mcs lock, above.
*/
WRITE_ONCE(next->locked, 1);
release:
qnodesp->count--; /* release the node */
}
void queued_spin_lock_slowpath(struct qspinlock *lock)
{
if (try_to_steal_lock(lock))
return;
queued_spin_lock_mcs_queue(lock);
}
EXPORT_SYMBOL(queued_spin_lock_slowpath);
#ifdef CONFIG_PARAVIRT_SPINLOCKS
void pv_spinlocks_init(void)
{
}
#endif
#include <linux/debugfs.h>
static int steal_spins_set(void *data, u64 val)
{
static DEFINE_MUTEX(lock);
/*
* The lock slow path has a !maybe_stealers case that can assume
* the head of queue will not see concurrent waiters. That waiter
* is unsafe in the presence of stealers, so must keep them away
* from one another.
*/
mutex_lock(&lock);
if (val && !steal_spins) {
maybe_stealers = true;
/* wait for queue head waiter to go away */
synchronize_rcu();
steal_spins = val;
} else if (!val && steal_spins) {
steal_spins = val;
/* wait for all possible stealers to go away */
synchronize_rcu();
maybe_stealers = false;
} else {
steal_spins = val;
}
mutex_unlock(&lock);
return 0;
}
static int steal_spins_get(void *data, u64 *val)
{
*val = steal_spins;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_steal_spins, steal_spins_get, steal_spins_set, "%llu\n");
static int head_spins_set(void *data, u64 val)
{
head_spins = val;
return 0;
}
static int head_spins_get(void *data, u64 *val)
{
*val = head_spins;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_head_spins, head_spins_get, head_spins_set, "%llu\n");
static __init int spinlock_debugfs_init(void)
{
debugfs_create_file("qspl_steal_spins", 0600, arch_debugfs_dir, NULL, &fops_steal_spins);
debugfs_create_file("qspl_head_spins", 0600, arch_debugfs_dir, NULL, &fops_head_spins);
return 0;
}
device_initcall(spinlock_debugfs_init);