2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-08 21:53:54 +08:00
linux-next/include/linux/keyboard.h

21 lines
626 B
C
Raw Normal View History

#ifndef __LINUX_KEYBOARD_H
#define __LINUX_KEYBOARD_H
#include <uapi/linux/keyboard.h>
Console keyboard events and accessibility Some blind people use a kernel engine called Speakup which uses hardware synthesis to speak what gets displayed on the screen. They use the PC keyboard to control this engine (start/stop, accelerate, ...) and also need to get keyboard feedback (to make sure to know what they are typing, the caps lock status, etc.) Up to now, the way it was done was very ugly. Below is a patch to add a notifier list for permitting a far better implementation, see ChangeLog above for details. You may wonder why this can't be done at the input layer. The problem is that what people want to monitor is the console keyboard, i.e. all input keyboards that got attached to the console, and with the currently active keymap (i.e. keysyms, not only keycodes). This adds a keyboard notifier that such modules can use to get the keyboard events and possibly eat them, at several stages: - keycodes: even before translation into keysym. - unbound keycodes: when no keysym is bound. - unicode: when the keycode would get translated into a unicode character. - keysym: when the keycode would get translated into a keysym. - post_keysym: after the keysym got interpreted, so as to see the result (caps lock, etc.) This also provides access to k_handler so as to permit simulation of keypresses. [akpm@linux-foundation.org: various fixes] Signed-off-by: Samuel Thibault <samuel.thibault@ens-lyon.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Dmitry Torokhov <dtor@mail.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:12 +08:00
struct notifier_block;
extern unsigned short *key_maps[MAX_NR_KEYMAPS];
extern unsigned short plain_map[NR_KEYS];
Console keyboard events and accessibility Some blind people use a kernel engine called Speakup which uses hardware synthesis to speak what gets displayed on the screen. They use the PC keyboard to control this engine (start/stop, accelerate, ...) and also need to get keyboard feedback (to make sure to know what they are typing, the caps lock status, etc.) Up to now, the way it was done was very ugly. Below is a patch to add a notifier list for permitting a far better implementation, see ChangeLog above for details. You may wonder why this can't be done at the input layer. The problem is that what people want to monitor is the console keyboard, i.e. all input keyboards that got attached to the console, and with the currently active keymap (i.e. keysyms, not only keycodes). This adds a keyboard notifier that such modules can use to get the keyboard events and possibly eat them, at several stages: - keycodes: even before translation into keysym. - unbound keycodes: when no keysym is bound. - unicode: when the keycode would get translated into a unicode character. - keysym: when the keycode would get translated into a keysym. - post_keysym: after the keysym got interpreted, so as to see the result (caps lock, etc.) This also provides access to k_handler so as to permit simulation of keypresses. [akpm@linux-foundation.org: various fixes] Signed-off-by: Samuel Thibault <samuel.thibault@ens-lyon.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Dmitry Torokhov <dtor@mail.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:12 +08:00
struct keyboard_notifier_param {
struct vc_data *vc; /* VC on which the keyboard press was done */
int down; /* Pressure of the key? */
int shift; /* Current shift mask */
int ledstate; /* Current led state */
Console keyboard events and accessibility Some blind people use a kernel engine called Speakup which uses hardware synthesis to speak what gets displayed on the screen. They use the PC keyboard to control this engine (start/stop, accelerate, ...) and also need to get keyboard feedback (to make sure to know what they are typing, the caps lock status, etc.) Up to now, the way it was done was very ugly. Below is a patch to add a notifier list for permitting a far better implementation, see ChangeLog above for details. You may wonder why this can't be done at the input layer. The problem is that what people want to monitor is the console keyboard, i.e. all input keyboards that got attached to the console, and with the currently active keymap (i.e. keysyms, not only keycodes). This adds a keyboard notifier that such modules can use to get the keyboard events and possibly eat them, at several stages: - keycodes: even before translation into keysym. - unbound keycodes: when no keysym is bound. - unicode: when the keycode would get translated into a unicode character. - keysym: when the keycode would get translated into a keysym. - post_keysym: after the keysym got interpreted, so as to see the result (caps lock, etc.) This also provides access to k_handler so as to permit simulation of keypresses. [akpm@linux-foundation.org: various fixes] Signed-off-by: Samuel Thibault <samuel.thibault@ens-lyon.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Dmitry Torokhov <dtor@mail.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:12 +08:00
unsigned int value; /* keycode, unicode value or keysym */
};
extern int register_keyboard_notifier(struct notifier_block *nb);
extern int unregister_keyboard_notifier(struct notifier_block *nb);
#endif