2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-02 02:34:05 +08:00
linux-next/include/linux/flex_array.h

82 lines
2.4 KiB
C
Raw Normal View History

lib: flexible array implementation Once a structure goes over PAGE_SIZE*2, we see occasional allocation failures. Some people have chosen to switch over to things like vmalloc() that will let them keep array-like access to such a large structures. But, vmalloc() has plenty of downsides. Here's an alternative. I think it's what Andrew was suggesting here: http://lkml.org/lkml/2009/7/2/518 I call it a flexible array. It does all of its work in PAGE_SIZE bits, so never does an order>0 allocation. The base level has PAGE_SIZE-2*sizeof(int) bytes of storage for pointers to the second level. So, with a 32-bit arch, you get about 4MB (4183112 bytes) of total storage when the objects pack nicely into a page. It is half that on 64-bit because the pointers are twice the size. There's a table detailing this in the code. There are kerneldocs for the functions, but here's an overview: flex_array_alloc() - dynamically allocate a base structure flex_array_free() - free the array and all of the second-level pages flex_array_free_parts() - free the second-level pages, but not the base (for static bases) flex_array_put() - copy into the array at the given index flex_array_get() - copy out of the array at the given index flex_array_prealloc() - preallocate the second-level pages between the given indexes to guarantee no allocs will occur at put() time. We could also potentially just pass the "element_size" into each of the API functions instead of storing it internally. That would get us one more base pointer on 32-bit. I've been testing this by running it in userspace. The header and patch that I've been using are here, as well as the little script I'm using to generate the size table which goes in the kerneldocs. http://sr71.net/~dave/linux/flexarray/ [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-07-30 06:04:18 +08:00
#ifndef _FLEX_ARRAY_H
#define _FLEX_ARRAY_H
#include <linux/types.h>
reciprocal_divide: update/correction of the algorithm Jakub Zawadzki noticed that some divisions by reciprocal_divide() were not correct [1][2], which he could also show with BPF code after divisions are transformed into reciprocal_value() for runtime invariance which can be passed to reciprocal_divide() later on; reverse in BPF dump ended up with a different, off-by-one K in some situations. This has been fixed by Eric Dumazet in commit aee636c4809fa5 ("bpf: do not use reciprocal divide"). This follow-up patch improves reciprocal_value() and reciprocal_divide() to work in all cases by using Granlund and Montgomery method, so that also future use is safe and without any non-obvious side-effects. Known problems with the old implementation were that division by 1 always returned 0 and some off-by-ones when the dividend and divisor where very large. This seemed to not be problematic with its current users, as far as we can tell. Eric Dumazet checked for the slab usage, we cannot surely say so in the case of flex_array. Still, in order to fix that, we propose an extension from the original implementation from commit 6a2d7a955d8d resp. [3][4], by using the algorithm proposed in "Division by Invariant Integers Using Multiplication" [5], Torbjörn Granlund and Peter L. Montgomery, that is, pseudocode for q = n/d where q, n, d is in u32 universe: 1) Initialization: int l = ceil(log_2 d) uword m' = floor((1<<32)*((1<<l)-d)/d)+1 int sh_1 = min(l,1) int sh_2 = max(l-1,0) 2) For q = n/d, all uword: uword t = (n*m')>>32 q = (t+((n-t)>>sh_1))>>sh_2 The assembler implementation from Agner Fog [6] also helped a lot while implementing. We have tested the implementation on x86_64, ppc64, i686, s390x; on x86_64/haswell we're still half the latency compared to normal divide. Joint work with Daniel Borkmann. [1] http://www.wireshark.org/~darkjames/reciprocal-buggy.c [2] http://www.wireshark.org/~darkjames/set-and-dump-filter-k-bug.c [3] https://gmplib.org/~tege/division-paper.pdf [4] http://homepage.cs.uiowa.edu/~jones/bcd/divide.html [5] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.2556 [6] http://www.agner.org/optimize/asmlib.zip Reported-by: Jakub Zawadzki <darkjames-ws@darkjames.pl> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Austin S Hemmelgarn <ahferroin7@gmail.com> Cc: linux-kernel@vger.kernel.org Cc: Jesse Gross <jesse@nicira.com> Cc: Jamal Hadi Salim <jhs@mojatatu.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Matt Mackall <mpm@selenic.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andy Gospodarek <andy@greyhouse.net> Cc: Veaceslav Falico <vfalico@redhat.com> Cc: Jay Vosburgh <fubar@us.ibm.com> Cc: Jakub Zawadzki <darkjames-ws@darkjames.pl> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-22 09:29:41 +08:00
#include <linux/reciprocal_div.h>
lib: flexible array implementation Once a structure goes over PAGE_SIZE*2, we see occasional allocation failures. Some people have chosen to switch over to things like vmalloc() that will let them keep array-like access to such a large structures. But, vmalloc() has plenty of downsides. Here's an alternative. I think it's what Andrew was suggesting here: http://lkml.org/lkml/2009/7/2/518 I call it a flexible array. It does all of its work in PAGE_SIZE bits, so never does an order>0 allocation. The base level has PAGE_SIZE-2*sizeof(int) bytes of storage for pointers to the second level. So, with a 32-bit arch, you get about 4MB (4183112 bytes) of total storage when the objects pack nicely into a page. It is half that on 64-bit because the pointers are twice the size. There's a table detailing this in the code. There are kerneldocs for the functions, but here's an overview: flex_array_alloc() - dynamically allocate a base structure flex_array_free() - free the array and all of the second-level pages flex_array_free_parts() - free the second-level pages, but not the base (for static bases) flex_array_put() - copy into the array at the given index flex_array_get() - copy out of the array at the given index flex_array_prealloc() - preallocate the second-level pages between the given indexes to guarantee no allocs will occur at put() time. We could also potentially just pass the "element_size" into each of the API functions instead of storing it internally. That would get us one more base pointer on 32-bit. I've been testing this by running it in userspace. The header and patch that I've been using are here, as well as the little script I'm using to generate the size table which goes in the kerneldocs. http://sr71.net/~dave/linux/flexarray/ [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-07-30 06:04:18 +08:00
#include <asm/page.h>
#define FLEX_ARRAY_PART_SIZE PAGE_SIZE
#define FLEX_ARRAY_BASE_SIZE PAGE_SIZE
struct flex_array_part;
/*
* This is meant to replace cases where an array-like
* structure has gotten too big to fit into kmalloc()
* and the developer is getting tempted to use
* vmalloc().
*/
struct flex_array {
union {
struct {
int element_size;
int total_nr_elements;
int elems_per_part;
reciprocal_divide: update/correction of the algorithm Jakub Zawadzki noticed that some divisions by reciprocal_divide() were not correct [1][2], which he could also show with BPF code after divisions are transformed into reciprocal_value() for runtime invariance which can be passed to reciprocal_divide() later on; reverse in BPF dump ended up with a different, off-by-one K in some situations. This has been fixed by Eric Dumazet in commit aee636c4809fa5 ("bpf: do not use reciprocal divide"). This follow-up patch improves reciprocal_value() and reciprocal_divide() to work in all cases by using Granlund and Montgomery method, so that also future use is safe and without any non-obvious side-effects. Known problems with the old implementation were that division by 1 always returned 0 and some off-by-ones when the dividend and divisor where very large. This seemed to not be problematic with its current users, as far as we can tell. Eric Dumazet checked for the slab usage, we cannot surely say so in the case of flex_array. Still, in order to fix that, we propose an extension from the original implementation from commit 6a2d7a955d8d resp. [3][4], by using the algorithm proposed in "Division by Invariant Integers Using Multiplication" [5], Torbjörn Granlund and Peter L. Montgomery, that is, pseudocode for q = n/d where q, n, d is in u32 universe: 1) Initialization: int l = ceil(log_2 d) uword m' = floor((1<<32)*((1<<l)-d)/d)+1 int sh_1 = min(l,1) int sh_2 = max(l-1,0) 2) For q = n/d, all uword: uword t = (n*m')>>32 q = (t+((n-t)>>sh_1))>>sh_2 The assembler implementation from Agner Fog [6] also helped a lot while implementing. We have tested the implementation on x86_64, ppc64, i686, s390x; on x86_64/haswell we're still half the latency compared to normal divide. Joint work with Daniel Borkmann. [1] http://www.wireshark.org/~darkjames/reciprocal-buggy.c [2] http://www.wireshark.org/~darkjames/set-and-dump-filter-k-bug.c [3] https://gmplib.org/~tege/division-paper.pdf [4] http://homepage.cs.uiowa.edu/~jones/bcd/divide.html [5] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.2556 [6] http://www.agner.org/optimize/asmlib.zip Reported-by: Jakub Zawadzki <darkjames-ws@darkjames.pl> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Austin S Hemmelgarn <ahferroin7@gmail.com> Cc: linux-kernel@vger.kernel.org Cc: Jesse Gross <jesse@nicira.com> Cc: Jamal Hadi Salim <jhs@mojatatu.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Matt Mackall <mpm@selenic.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andy Gospodarek <andy@greyhouse.net> Cc: Veaceslav Falico <vfalico@redhat.com> Cc: Jay Vosburgh <fubar@us.ibm.com> Cc: Jakub Zawadzki <darkjames-ws@darkjames.pl> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-22 09:29:41 +08:00
struct reciprocal_value reciprocal_elems;
struct flex_array_part *parts[];
lib: flexible array implementation Once a structure goes over PAGE_SIZE*2, we see occasional allocation failures. Some people have chosen to switch over to things like vmalloc() that will let them keep array-like access to such a large structures. But, vmalloc() has plenty of downsides. Here's an alternative. I think it's what Andrew was suggesting here: http://lkml.org/lkml/2009/7/2/518 I call it a flexible array. It does all of its work in PAGE_SIZE bits, so never does an order>0 allocation. The base level has PAGE_SIZE-2*sizeof(int) bytes of storage for pointers to the second level. So, with a 32-bit arch, you get about 4MB (4183112 bytes) of total storage when the objects pack nicely into a page. It is half that on 64-bit because the pointers are twice the size. There's a table detailing this in the code. There are kerneldocs for the functions, but here's an overview: flex_array_alloc() - dynamically allocate a base structure flex_array_free() - free the array and all of the second-level pages flex_array_free_parts() - free the second-level pages, but not the base (for static bases) flex_array_put() - copy into the array at the given index flex_array_get() - copy out of the array at the given index flex_array_prealloc() - preallocate the second-level pages between the given indexes to guarantee no allocs will occur at put() time. We could also potentially just pass the "element_size" into each of the API functions instead of storing it internally. That would get us one more base pointer on 32-bit. I've been testing this by running it in userspace. The header and patch that I've been using are here, as well as the little script I'm using to generate the size table which goes in the kerneldocs. http://sr71.net/~dave/linux/flexarray/ [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-07-30 06:04:18 +08:00
};
/*
* This little trick makes sure that
* sizeof(flex_array) == PAGE_SIZE
*/
char padding[FLEX_ARRAY_BASE_SIZE];
};
};
/* Number of bytes left in base struct flex_array, excluding metadata */
#define FLEX_ARRAY_BASE_BYTES_LEFT \
(FLEX_ARRAY_BASE_SIZE - offsetof(struct flex_array, parts))
/* Number of pointers in base to struct flex_array_part pages */
#define FLEX_ARRAY_NR_BASE_PTRS \
(FLEX_ARRAY_BASE_BYTES_LEFT / sizeof(struct flex_array_part *))
/* Number of elements of size that fit in struct flex_array_part */
#define FLEX_ARRAY_ELEMENTS_PER_PART(size) \
(FLEX_ARRAY_PART_SIZE / size)
/*
* Defines a statically allocated flex array and ensures its parameters are
* valid.
*/
#define DEFINE_FLEX_ARRAY(__arrayname, __element_size, __total) \
struct flex_array __arrayname = { { { \
.element_size = (__element_size), \
.total_nr_elements = (__total), \
} } }; \
static inline void __arrayname##_invalid_parameter(void) \
{ \
BUILD_BUG_ON((__total) > FLEX_ARRAY_NR_BASE_PTRS * \
FLEX_ARRAY_ELEMENTS_PER_PART(__element_size)); \
}
lib: flexible array implementation Once a structure goes over PAGE_SIZE*2, we see occasional allocation failures. Some people have chosen to switch over to things like vmalloc() that will let them keep array-like access to such a large structures. But, vmalloc() has plenty of downsides. Here's an alternative. I think it's what Andrew was suggesting here: http://lkml.org/lkml/2009/7/2/518 I call it a flexible array. It does all of its work in PAGE_SIZE bits, so never does an order>0 allocation. The base level has PAGE_SIZE-2*sizeof(int) bytes of storage for pointers to the second level. So, with a 32-bit arch, you get about 4MB (4183112 bytes) of total storage when the objects pack nicely into a page. It is half that on 64-bit because the pointers are twice the size. There's a table detailing this in the code. There are kerneldocs for the functions, but here's an overview: flex_array_alloc() - dynamically allocate a base structure flex_array_free() - free the array and all of the second-level pages flex_array_free_parts() - free the second-level pages, but not the base (for static bases) flex_array_put() - copy into the array at the given index flex_array_get() - copy out of the array at the given index flex_array_prealloc() - preallocate the second-level pages between the given indexes to guarantee no allocs will occur at put() time. We could also potentially just pass the "element_size" into each of the API functions instead of storing it internally. That would get us one more base pointer on 32-bit. I've been testing this by running it in userspace. The header and patch that I've been using are here, as well as the little script I'm using to generate the size table which goes in the kerneldocs. http://sr71.net/~dave/linux/flexarray/ [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-07-30 06:04:18 +08:00
struct flex_array *flex_array_alloc(int element_size, unsigned int total,
gfp_t flags);
int flex_array_prealloc(struct flex_array *fa, unsigned int start,
unsigned int nr_elements, gfp_t flags);
lib: flexible array implementation Once a structure goes over PAGE_SIZE*2, we see occasional allocation failures. Some people have chosen to switch over to things like vmalloc() that will let them keep array-like access to such a large structures. But, vmalloc() has plenty of downsides. Here's an alternative. I think it's what Andrew was suggesting here: http://lkml.org/lkml/2009/7/2/518 I call it a flexible array. It does all of its work in PAGE_SIZE bits, so never does an order>0 allocation. The base level has PAGE_SIZE-2*sizeof(int) bytes of storage for pointers to the second level. So, with a 32-bit arch, you get about 4MB (4183112 bytes) of total storage when the objects pack nicely into a page. It is half that on 64-bit because the pointers are twice the size. There's a table detailing this in the code. There are kerneldocs for the functions, but here's an overview: flex_array_alloc() - dynamically allocate a base structure flex_array_free() - free the array and all of the second-level pages flex_array_free_parts() - free the second-level pages, but not the base (for static bases) flex_array_put() - copy into the array at the given index flex_array_get() - copy out of the array at the given index flex_array_prealloc() - preallocate the second-level pages between the given indexes to guarantee no allocs will occur at put() time. We could also potentially just pass the "element_size" into each of the API functions instead of storing it internally. That would get us one more base pointer on 32-bit. I've been testing this by running it in userspace. The header and patch that I've been using are here, as well as the little script I'm using to generate the size table which goes in the kerneldocs. http://sr71.net/~dave/linux/flexarray/ [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-07-30 06:04:18 +08:00
void flex_array_free(struct flex_array *fa);
void flex_array_free_parts(struct flex_array *fa);
int flex_array_put(struct flex_array *fa, unsigned int element_nr, void *src,
lib: flexible array implementation Once a structure goes over PAGE_SIZE*2, we see occasional allocation failures. Some people have chosen to switch over to things like vmalloc() that will let them keep array-like access to such a large structures. But, vmalloc() has plenty of downsides. Here's an alternative. I think it's what Andrew was suggesting here: http://lkml.org/lkml/2009/7/2/518 I call it a flexible array. It does all of its work in PAGE_SIZE bits, so never does an order>0 allocation. The base level has PAGE_SIZE-2*sizeof(int) bytes of storage for pointers to the second level. So, with a 32-bit arch, you get about 4MB (4183112 bytes) of total storage when the objects pack nicely into a page. It is half that on 64-bit because the pointers are twice the size. There's a table detailing this in the code. There are kerneldocs for the functions, but here's an overview: flex_array_alloc() - dynamically allocate a base structure flex_array_free() - free the array and all of the second-level pages flex_array_free_parts() - free the second-level pages, but not the base (for static bases) flex_array_put() - copy into the array at the given index flex_array_get() - copy out of the array at the given index flex_array_prealloc() - preallocate the second-level pages between the given indexes to guarantee no allocs will occur at put() time. We could also potentially just pass the "element_size" into each of the API functions instead of storing it internally. That would get us one more base pointer on 32-bit. I've been testing this by running it in userspace. The header and patch that I've been using are here, as well as the little script I'm using to generate the size table which goes in the kerneldocs. http://sr71.net/~dave/linux/flexarray/ [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-07-30 06:04:18 +08:00
gfp_t flags);
int flex_array_clear(struct flex_array *fa, unsigned int element_nr);
void *flex_array_get(struct flex_array *fa, unsigned int element_nr);
int flex_array_shrink(struct flex_array *fa);
lib: flexible array implementation Once a structure goes over PAGE_SIZE*2, we see occasional allocation failures. Some people have chosen to switch over to things like vmalloc() that will let them keep array-like access to such a large structures. But, vmalloc() has plenty of downsides. Here's an alternative. I think it's what Andrew was suggesting here: http://lkml.org/lkml/2009/7/2/518 I call it a flexible array. It does all of its work in PAGE_SIZE bits, so never does an order>0 allocation. The base level has PAGE_SIZE-2*sizeof(int) bytes of storage for pointers to the second level. So, with a 32-bit arch, you get about 4MB (4183112 bytes) of total storage when the objects pack nicely into a page. It is half that on 64-bit because the pointers are twice the size. There's a table detailing this in the code. There are kerneldocs for the functions, but here's an overview: flex_array_alloc() - dynamically allocate a base structure flex_array_free() - free the array and all of the second-level pages flex_array_free_parts() - free the second-level pages, but not the base (for static bases) flex_array_put() - copy into the array at the given index flex_array_get() - copy out of the array at the given index flex_array_prealloc() - preallocate the second-level pages between the given indexes to guarantee no allocs will occur at put() time. We could also potentially just pass the "element_size" into each of the API functions instead of storing it internally. That would get us one more base pointer on 32-bit. I've been testing this by running it in userspace. The header and patch that I've been using are here, as well as the little script I'm using to generate the size table which goes in the kerneldocs. http://sr71.net/~dave/linux/flexarray/ [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-07-30 06:04:18 +08:00
#define flex_array_put_ptr(fa, nr, src, gfp) \
flex_array_put(fa, nr, (void *)&(src), gfp)
void *flex_array_get_ptr(struct flex_array *fa, unsigned int element_nr);
lib: flexible array implementation Once a structure goes over PAGE_SIZE*2, we see occasional allocation failures. Some people have chosen to switch over to things like vmalloc() that will let them keep array-like access to such a large structures. But, vmalloc() has plenty of downsides. Here's an alternative. I think it's what Andrew was suggesting here: http://lkml.org/lkml/2009/7/2/518 I call it a flexible array. It does all of its work in PAGE_SIZE bits, so never does an order>0 allocation. The base level has PAGE_SIZE-2*sizeof(int) bytes of storage for pointers to the second level. So, with a 32-bit arch, you get about 4MB (4183112 bytes) of total storage when the objects pack nicely into a page. It is half that on 64-bit because the pointers are twice the size. There's a table detailing this in the code. There are kerneldocs for the functions, but here's an overview: flex_array_alloc() - dynamically allocate a base structure flex_array_free() - free the array and all of the second-level pages flex_array_free_parts() - free the second-level pages, but not the base (for static bases) flex_array_put() - copy into the array at the given index flex_array_get() - copy out of the array at the given index flex_array_prealloc() - preallocate the second-level pages between the given indexes to guarantee no allocs will occur at put() time. We could also potentially just pass the "element_size" into each of the API functions instead of storing it internally. That would get us one more base pointer on 32-bit. I've been testing this by running it in userspace. The header and patch that I've been using are here, as well as the little script I'm using to generate the size table which goes in the kerneldocs. http://sr71.net/~dave/linux/flexarray/ [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-07-30 06:04:18 +08:00
#endif /* _FLEX_ARRAY_H */