2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-08 05:34:29 +08:00
linux-next/net/openvswitch/flow.h

287 lines
8.1 KiB
C
Raw Normal View History

/*
openvswitch: Add original direction conntrack tuple to sw_flow_key. Add the fields of the conntrack original direction 5-tuple to struct sw_flow_key. The new fields are initially marked as non-existent, and are populated whenever a conntrack action is executed and either finds or generates a conntrack entry. This means that these fields exist for all packets that were not rejected by conntrack as untrackable. The original tuple fields in the sw_flow_key are filled from the original direction tuple of the conntrack entry relating to the current packet, or from the original direction tuple of the master conntrack entry, if the current conntrack entry has a master. Generally, expected connections of connections having an assigned helper (e.g., FTP), have a master conntrack entry. The main purpose of the new conntrack original tuple fields is to allow matching on them for policy decision purposes, with the premise that the admissibility of tracked connections reply packets (as well as original direction packets), and both direction packets of any related connections may be based on ACL rules applying to the master connection's original direction 5-tuple. This also makes it easier to make policy decisions when the actual packet headers might have been transformed by NAT, as the original direction 5-tuple represents the packet headers before any such transformation. When using the original direction 5-tuple the admissibility of return and/or related packets need not be based on the mere existence of a conntrack entry, allowing separation of admission policy from the established conntrack state. While existence of a conntrack entry is required for admission of the return or related packets, policy changes can render connections that were initially admitted to be rejected or dropped afterwards. If the admission of the return and related packets was based on mere conntrack state (e.g., connection being in an established state), a policy change that would make the connection rejected or dropped would need to find and delete all conntrack entries affected by such a change. When using the original direction 5-tuple matching the affected conntrack entries can be allowed to time out instead, as the established state of the connection would not need to be the basis for packet admission any more. It should be noted that the directionality of related connections may be the same or different than that of the master connection, and neither the original direction 5-tuple nor the conntrack state bits carry this information. If needed, the directionality of the master connection can be stored in master's conntrack mark or labels, which are automatically inherited by the expected related connections. The fact that neither ARP nor ND packets are trackable by conntrack allows mutual exclusion between ARP/ND and the new conntrack original tuple fields. Hence, the IP addresses are overlaid in union with ARP and ND fields. This allows the sw_flow_key to not grow much due to this patch, but it also means that we must be careful to never use the new key fields with ARP or ND packets. ARP is easy to distinguish and keep mutually exclusive based on the ethernet type, but ND being an ICMPv6 protocol requires a bit more attention. Signed-off-by: Jarno Rajahalme <jarno@ovn.org> Acked-by: Joe Stringer <joe@ovn.org> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-10 03:21:59 +08:00
* Copyright (c) 2007-2017 Nicira, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA
*/
#ifndef FLOW_H
#define FLOW_H 1
#include <linux/cache.h>
#include <linux/kernel.h>
#include <linux/netlink.h>
#include <linux/openvswitch.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <linux/rcupdate.h>
#include <linux/if_ether.h>
#include <linux/in6.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/flex_array.h>
#include <net/inet_ecn.h>
#include <net/ip_tunnels.h>
#include <net/dst_metadata.h>
struct sk_buff;
enum sw_flow_mac_proto {
MAC_PROTO_NONE = 0,
MAC_PROTO_ETHERNET,
};
#define SW_FLOW_KEY_INVALID 0x80
/* Store options at the end of the array if they are less than the
* maximum size. This allows us to get the benefits of variable length
* matching for small options.
*/
#define TUN_METADATA_OFFSET(opt_len) \
(FIELD_SIZEOF(struct sw_flow_key, tun_opts) - opt_len)
#define TUN_METADATA_OPTS(flow_key, opt_len) \
((void *)((flow_key)->tun_opts + TUN_METADATA_OFFSET(opt_len)))
struct ovs_tunnel_info {
struct metadata_dst *tun_dst;
};
struct vlan_head {
__be16 tpid; /* Vlan type. Generally 802.1q or 802.1ad.*/
__be16 tci; /* 0 if no VLAN, VLAN_TAG_PRESENT set otherwise. */
};
#define OVS_SW_FLOW_KEY_METADATA_SIZE \
(offsetof(struct sw_flow_key, recirc_id) + \
FIELD_SIZEOF(struct sw_flow_key, recirc_id))
struct sw_flow_key {
u8 tun_opts[IP_TUNNEL_OPTS_MAX];
u8 tun_opts_len;
struct ip_tunnel_key tun_key; /* Encapsulating tunnel key. */
struct {
u32 priority; /* Packet QoS priority. */
u32 skb_mark; /* SKB mark. */
u16 in_port; /* Input switch port (or DP_MAX_PORTS). */
} __packed phy; /* Safe when right after 'tun_key'. */
u8 mac_proto; /* MAC layer protocol (e.g. Ethernet). */
u8 tun_proto; /* Protocol of encapsulating tunnel. */
u32 ovs_flow_hash; /* Datapath computed hash value. */
u32 recirc_id; /* Recirculation ID. */
struct {
u8 src[ETH_ALEN]; /* Ethernet source address. */
u8 dst[ETH_ALEN]; /* Ethernet destination address. */
struct vlan_head vlan;
struct vlan_head cvlan;
__be16 type; /* Ethernet frame type. */
} eth;
/* Filling a hole of two bytes. */
u8 ct_state;
u8 ct_orig_proto; /* CT original direction tuple IP
* protocol.
*/
union {
struct {
__be32 top_lse; /* top label stack entry */
} mpls;
struct {
u8 proto; /* IP protocol or lower 8 bits of ARP opcode. */
u8 tos; /* IP ToS. */
u8 ttl; /* IP TTL/hop limit. */
u8 frag; /* One of OVS_FRAG_TYPE_*. */
} ip;
};
u16 ct_zone; /* Conntrack zone. */
struct {
__be16 src; /* TCP/UDP/SCTP source port. */
__be16 dst; /* TCP/UDP/SCTP destination port. */
__be16 flags; /* TCP flags. */
} tp;
union {
struct {
struct {
__be32 src; /* IP source address. */
__be32 dst; /* IP destination address. */
} addr;
openvswitch: Add original direction conntrack tuple to sw_flow_key. Add the fields of the conntrack original direction 5-tuple to struct sw_flow_key. The new fields are initially marked as non-existent, and are populated whenever a conntrack action is executed and either finds or generates a conntrack entry. This means that these fields exist for all packets that were not rejected by conntrack as untrackable. The original tuple fields in the sw_flow_key are filled from the original direction tuple of the conntrack entry relating to the current packet, or from the original direction tuple of the master conntrack entry, if the current conntrack entry has a master. Generally, expected connections of connections having an assigned helper (e.g., FTP), have a master conntrack entry. The main purpose of the new conntrack original tuple fields is to allow matching on them for policy decision purposes, with the premise that the admissibility of tracked connections reply packets (as well as original direction packets), and both direction packets of any related connections may be based on ACL rules applying to the master connection's original direction 5-tuple. This also makes it easier to make policy decisions when the actual packet headers might have been transformed by NAT, as the original direction 5-tuple represents the packet headers before any such transformation. When using the original direction 5-tuple the admissibility of return and/or related packets need not be based on the mere existence of a conntrack entry, allowing separation of admission policy from the established conntrack state. While existence of a conntrack entry is required for admission of the return or related packets, policy changes can render connections that were initially admitted to be rejected or dropped afterwards. If the admission of the return and related packets was based on mere conntrack state (e.g., connection being in an established state), a policy change that would make the connection rejected or dropped would need to find and delete all conntrack entries affected by such a change. When using the original direction 5-tuple matching the affected conntrack entries can be allowed to time out instead, as the established state of the connection would not need to be the basis for packet admission any more. It should be noted that the directionality of related connections may be the same or different than that of the master connection, and neither the original direction 5-tuple nor the conntrack state bits carry this information. If needed, the directionality of the master connection can be stored in master's conntrack mark or labels, which are automatically inherited by the expected related connections. The fact that neither ARP nor ND packets are trackable by conntrack allows mutual exclusion between ARP/ND and the new conntrack original tuple fields. Hence, the IP addresses are overlaid in union with ARP and ND fields. This allows the sw_flow_key to not grow much due to this patch, but it also means that we must be careful to never use the new key fields with ARP or ND packets. ARP is easy to distinguish and keep mutually exclusive based on the ethernet type, but ND being an ICMPv6 protocol requires a bit more attention. Signed-off-by: Jarno Rajahalme <jarno@ovn.org> Acked-by: Joe Stringer <joe@ovn.org> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-10 03:21:59 +08:00
union {
struct {
__be32 src;
__be32 dst;
} ct_orig; /* Conntrack original direction fields. */
struct {
u8 sha[ETH_ALEN]; /* ARP source hardware address. */
u8 tha[ETH_ALEN]; /* ARP target hardware address. */
} arp;
};
} ipv4;
struct {
struct {
struct in6_addr src; /* IPv6 source address. */
struct in6_addr dst; /* IPv6 destination address. */
} addr;
__be32 label; /* IPv6 flow label. */
openvswitch: Add original direction conntrack tuple to sw_flow_key. Add the fields of the conntrack original direction 5-tuple to struct sw_flow_key. The new fields are initially marked as non-existent, and are populated whenever a conntrack action is executed and either finds or generates a conntrack entry. This means that these fields exist for all packets that were not rejected by conntrack as untrackable. The original tuple fields in the sw_flow_key are filled from the original direction tuple of the conntrack entry relating to the current packet, or from the original direction tuple of the master conntrack entry, if the current conntrack entry has a master. Generally, expected connections of connections having an assigned helper (e.g., FTP), have a master conntrack entry. The main purpose of the new conntrack original tuple fields is to allow matching on them for policy decision purposes, with the premise that the admissibility of tracked connections reply packets (as well as original direction packets), and both direction packets of any related connections may be based on ACL rules applying to the master connection's original direction 5-tuple. This also makes it easier to make policy decisions when the actual packet headers might have been transformed by NAT, as the original direction 5-tuple represents the packet headers before any such transformation. When using the original direction 5-tuple the admissibility of return and/or related packets need not be based on the mere existence of a conntrack entry, allowing separation of admission policy from the established conntrack state. While existence of a conntrack entry is required for admission of the return or related packets, policy changes can render connections that were initially admitted to be rejected or dropped afterwards. If the admission of the return and related packets was based on mere conntrack state (e.g., connection being in an established state), a policy change that would make the connection rejected or dropped would need to find and delete all conntrack entries affected by such a change. When using the original direction 5-tuple matching the affected conntrack entries can be allowed to time out instead, as the established state of the connection would not need to be the basis for packet admission any more. It should be noted that the directionality of related connections may be the same or different than that of the master connection, and neither the original direction 5-tuple nor the conntrack state bits carry this information. If needed, the directionality of the master connection can be stored in master's conntrack mark or labels, which are automatically inherited by the expected related connections. The fact that neither ARP nor ND packets are trackable by conntrack allows mutual exclusion between ARP/ND and the new conntrack original tuple fields. Hence, the IP addresses are overlaid in union with ARP and ND fields. This allows the sw_flow_key to not grow much due to this patch, but it also means that we must be careful to never use the new key fields with ARP or ND packets. ARP is easy to distinguish and keep mutually exclusive based on the ethernet type, but ND being an ICMPv6 protocol requires a bit more attention. Signed-off-by: Jarno Rajahalme <jarno@ovn.org> Acked-by: Joe Stringer <joe@ovn.org> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-10 03:21:59 +08:00
union {
struct {
struct in6_addr src;
struct in6_addr dst;
} ct_orig; /* Conntrack original direction fields. */
struct {
struct in6_addr target; /* ND target address. */
u8 sll[ETH_ALEN]; /* ND source link layer address. */
u8 tll[ETH_ALEN]; /* ND target link layer address. */
} nd;
};
} ipv6;
};
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-27 02:31:48 +08:00
struct {
/* Connection tracking fields not packed above. */
openvswitch: Add original direction conntrack tuple to sw_flow_key. Add the fields of the conntrack original direction 5-tuple to struct sw_flow_key. The new fields are initially marked as non-existent, and are populated whenever a conntrack action is executed and either finds or generates a conntrack entry. This means that these fields exist for all packets that were not rejected by conntrack as untrackable. The original tuple fields in the sw_flow_key are filled from the original direction tuple of the conntrack entry relating to the current packet, or from the original direction tuple of the master conntrack entry, if the current conntrack entry has a master. Generally, expected connections of connections having an assigned helper (e.g., FTP), have a master conntrack entry. The main purpose of the new conntrack original tuple fields is to allow matching on them for policy decision purposes, with the premise that the admissibility of tracked connections reply packets (as well as original direction packets), and both direction packets of any related connections may be based on ACL rules applying to the master connection's original direction 5-tuple. This also makes it easier to make policy decisions when the actual packet headers might have been transformed by NAT, as the original direction 5-tuple represents the packet headers before any such transformation. When using the original direction 5-tuple the admissibility of return and/or related packets need not be based on the mere existence of a conntrack entry, allowing separation of admission policy from the established conntrack state. While existence of a conntrack entry is required for admission of the return or related packets, policy changes can render connections that were initially admitted to be rejected or dropped afterwards. If the admission of the return and related packets was based on mere conntrack state (e.g., connection being in an established state), a policy change that would make the connection rejected or dropped would need to find and delete all conntrack entries affected by such a change. When using the original direction 5-tuple matching the affected conntrack entries can be allowed to time out instead, as the established state of the connection would not need to be the basis for packet admission any more. It should be noted that the directionality of related connections may be the same or different than that of the master connection, and neither the original direction 5-tuple nor the conntrack state bits carry this information. If needed, the directionality of the master connection can be stored in master's conntrack mark or labels, which are automatically inherited by the expected related connections. The fact that neither ARP nor ND packets are trackable by conntrack allows mutual exclusion between ARP/ND and the new conntrack original tuple fields. Hence, the IP addresses are overlaid in union with ARP and ND fields. This allows the sw_flow_key to not grow much due to this patch, but it also means that we must be careful to never use the new key fields with ARP or ND packets. ARP is easy to distinguish and keep mutually exclusive based on the ethernet type, but ND being an ICMPv6 protocol requires a bit more attention. Signed-off-by: Jarno Rajahalme <jarno@ovn.org> Acked-by: Joe Stringer <joe@ovn.org> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-10 03:21:59 +08:00
struct {
__be16 src; /* CT orig tuple tp src port. */
__be16 dst; /* CT orig tuple tp dst port. */
} orig_tp;
u32 mark;
struct ovs_key_ct_labels labels;
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-27 02:31:48 +08:00
} ct;
} __aligned(BITS_PER_LONG/8); /* Ensure that we can do comparisons as longs. */
openvswitch: Add original direction conntrack tuple to sw_flow_key. Add the fields of the conntrack original direction 5-tuple to struct sw_flow_key. The new fields are initially marked as non-existent, and are populated whenever a conntrack action is executed and either finds or generates a conntrack entry. This means that these fields exist for all packets that were not rejected by conntrack as untrackable. The original tuple fields in the sw_flow_key are filled from the original direction tuple of the conntrack entry relating to the current packet, or from the original direction tuple of the master conntrack entry, if the current conntrack entry has a master. Generally, expected connections of connections having an assigned helper (e.g., FTP), have a master conntrack entry. The main purpose of the new conntrack original tuple fields is to allow matching on them for policy decision purposes, with the premise that the admissibility of tracked connections reply packets (as well as original direction packets), and both direction packets of any related connections may be based on ACL rules applying to the master connection's original direction 5-tuple. This also makes it easier to make policy decisions when the actual packet headers might have been transformed by NAT, as the original direction 5-tuple represents the packet headers before any such transformation. When using the original direction 5-tuple the admissibility of return and/or related packets need not be based on the mere existence of a conntrack entry, allowing separation of admission policy from the established conntrack state. While existence of a conntrack entry is required for admission of the return or related packets, policy changes can render connections that were initially admitted to be rejected or dropped afterwards. If the admission of the return and related packets was based on mere conntrack state (e.g., connection being in an established state), a policy change that would make the connection rejected or dropped would need to find and delete all conntrack entries affected by such a change. When using the original direction 5-tuple matching the affected conntrack entries can be allowed to time out instead, as the established state of the connection would not need to be the basis for packet admission any more. It should be noted that the directionality of related connections may be the same or different than that of the master connection, and neither the original direction 5-tuple nor the conntrack state bits carry this information. If needed, the directionality of the master connection can be stored in master's conntrack mark or labels, which are automatically inherited by the expected related connections. The fact that neither ARP nor ND packets are trackable by conntrack allows mutual exclusion between ARP/ND and the new conntrack original tuple fields. Hence, the IP addresses are overlaid in union with ARP and ND fields. This allows the sw_flow_key to not grow much due to this patch, but it also means that we must be careful to never use the new key fields with ARP or ND packets. ARP is easy to distinguish and keep mutually exclusive based on the ethernet type, but ND being an ICMPv6 protocol requires a bit more attention. Signed-off-by: Jarno Rajahalme <jarno@ovn.org> Acked-by: Joe Stringer <joe@ovn.org> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-10 03:21:59 +08:00
static inline bool sw_flow_key_is_nd(const struct sw_flow_key *key)
{
return key->eth.type == htons(ETH_P_IPV6) &&
key->ip.proto == NEXTHDR_ICMP &&
key->tp.dst == 0 &&
(key->tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT));
}
struct sw_flow_key_range {
unsigned short int start;
unsigned short int end;
};
struct sw_flow_mask {
int ref_count;
struct rcu_head rcu;
struct list_head list;
struct sw_flow_key_range range;
struct sw_flow_key key;
};
struct sw_flow_match {
struct sw_flow_key *key;
struct sw_flow_key_range range;
struct sw_flow_mask *mask;
};
#define MAX_UFID_LENGTH 16 /* 128 bits */
struct sw_flow_id {
u32 ufid_len;
union {
u32 ufid[MAX_UFID_LENGTH / 4];
struct sw_flow_key *unmasked_key;
};
};
struct sw_flow_actions {
struct rcu_head rcu;
size_t orig_len; /* From flow_cmd_new netlink actions size */
u32 actions_len;
struct nlattr actions[];
};
struct flow_stats {
u64 packet_count; /* Number of packets matched. */
u64 byte_count; /* Number of bytes matched. */
unsigned long used; /* Last used time (in jiffies). */
spinlock_t lock; /* Lock for atomic stats update. */
__be16 tcp_flags; /* Union of seen TCP flags. */
};
struct sw_flow {
struct rcu_head rcu;
struct {
struct hlist_node node[2];
u32 hash;
} flow_table, ufid_table;
int stats_last_writer; /* CPU id of the last writer on
openvswitch: Per NUMA node flow stats. Keep kernel flow stats for each NUMA node rather than each (logical) CPU. This avoids using the per-CPU allocator and removes most of the kernel-side OVS locking overhead otherwise on the top of perf reports and allows OVS to scale better with higher number of threads. With 9 handlers and 4 revalidators netperf TCP_CRR test flow setup rate doubles on a server with two hyper-threaded physical CPUs (16 logical cores each) compared to the current OVS master. Tested with non-trivial flow table with a TCP port match rule forcing all new connections with unique port numbers to OVS userspace. The IP addresses are still wildcarded, so the kernel flows are not considered as exact match 5-tuple flows. This type of flows can be expected to appear in large numbers as the result of more effective wildcarding made possible by improvements in OVS userspace flow classifier. Perf results for this test (master): Events: 305K cycles + 8.43% ovs-vswitchd [kernel.kallsyms] [k] mutex_spin_on_owner + 5.64% ovs-vswitchd [kernel.kallsyms] [k] __ticket_spin_lock + 4.75% ovs-vswitchd ovs-vswitchd [.] find_match_wc + 3.32% ovs-vswitchd libpthread-2.15.so [.] pthread_mutex_lock + 2.61% ovs-vswitchd [kernel.kallsyms] [k] pcpu_alloc_area + 2.19% ovs-vswitchd ovs-vswitchd [.] flow_hash_in_minimask_range + 2.03% swapper [kernel.kallsyms] [k] intel_idle + 1.84% ovs-vswitchd libpthread-2.15.so [.] pthread_mutex_unlock + 1.64% ovs-vswitchd ovs-vswitchd [.] classifier_lookup + 1.58% ovs-vswitchd libc-2.15.so [.] 0x7f4e6 + 1.07% ovs-vswitchd [kernel.kallsyms] [k] memset + 1.03% netperf [kernel.kallsyms] [k] __ticket_spin_lock + 0.92% swapper [kernel.kallsyms] [k] __ticket_spin_lock ... And after this patch: Events: 356K cycles + 6.85% ovs-vswitchd ovs-vswitchd [.] find_match_wc + 4.63% ovs-vswitchd libpthread-2.15.so [.] pthread_mutex_lock + 3.06% ovs-vswitchd [kernel.kallsyms] [k] __ticket_spin_lock + 2.81% ovs-vswitchd ovs-vswitchd [.] flow_hash_in_minimask_range + 2.51% ovs-vswitchd libpthread-2.15.so [.] pthread_mutex_unlock + 2.27% ovs-vswitchd ovs-vswitchd [.] classifier_lookup + 1.84% ovs-vswitchd libc-2.15.so [.] 0x15d30f + 1.74% ovs-vswitchd [kernel.kallsyms] [k] mutex_spin_on_owner + 1.47% swapper [kernel.kallsyms] [k] intel_idle + 1.34% ovs-vswitchd ovs-vswitchd [.] flow_hash_in_minimask + 1.33% ovs-vswitchd ovs-vswitchd [.] rule_actions_unref + 1.16% ovs-vswitchd ovs-vswitchd [.] hindex_node_with_hash + 1.16% ovs-vswitchd ovs-vswitchd [.] do_xlate_actions + 1.09% ovs-vswitchd ovs-vswitchd [.] ofproto_rule_ref + 1.01% netperf [kernel.kallsyms] [k] __ticket_spin_lock ... There is a small increase in kernel spinlock overhead due to the same spinlock being shared between multiple cores of the same physical CPU, but that is barely visible in the netperf TCP_CRR test performance (maybe ~1% performance drop, hard to tell exactly due to variance in the test results), when testing for kernel module throughput (with no userspace activity, handful of kernel flows). On flow setup, a single stats instance is allocated (for the NUMA node 0). As CPUs from multiple NUMA nodes start updating stats, new NUMA-node specific stats instances are allocated. This allocation on the packet processing code path is made to never block or look for emergency memory pools, minimizing the allocation latency. If the allocation fails, the existing preallocated stats instance is used. Also, if only CPUs from one NUMA-node are updating the preallocated stats instance, no additional stats instances are allocated. This eliminates the need to pre-allocate stats instances that will not be used, also relieving the stats reader from the burden of reading stats that are never used. Signed-off-by: Jarno Rajahalme <jrajahalme@nicira.com> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: Jesse Gross <jesse@nicira.com>
2014-03-28 03:42:54 +08:00
* 'stats[0]'.
*/
struct sw_flow_key key;
struct sw_flow_id id;
struct sw_flow_mask *mask;
struct sw_flow_actions __rcu *sf_acts;
struct flow_stats __rcu *stats[]; /* One for each CPU. First one
openvswitch: Per NUMA node flow stats. Keep kernel flow stats for each NUMA node rather than each (logical) CPU. This avoids using the per-CPU allocator and removes most of the kernel-side OVS locking overhead otherwise on the top of perf reports and allows OVS to scale better with higher number of threads. With 9 handlers and 4 revalidators netperf TCP_CRR test flow setup rate doubles on a server with two hyper-threaded physical CPUs (16 logical cores each) compared to the current OVS master. Tested with non-trivial flow table with a TCP port match rule forcing all new connections with unique port numbers to OVS userspace. The IP addresses are still wildcarded, so the kernel flows are not considered as exact match 5-tuple flows. This type of flows can be expected to appear in large numbers as the result of more effective wildcarding made possible by improvements in OVS userspace flow classifier. Perf results for this test (master): Events: 305K cycles + 8.43% ovs-vswitchd [kernel.kallsyms] [k] mutex_spin_on_owner + 5.64% ovs-vswitchd [kernel.kallsyms] [k] __ticket_spin_lock + 4.75% ovs-vswitchd ovs-vswitchd [.] find_match_wc + 3.32% ovs-vswitchd libpthread-2.15.so [.] pthread_mutex_lock + 2.61% ovs-vswitchd [kernel.kallsyms] [k] pcpu_alloc_area + 2.19% ovs-vswitchd ovs-vswitchd [.] flow_hash_in_minimask_range + 2.03% swapper [kernel.kallsyms] [k] intel_idle + 1.84% ovs-vswitchd libpthread-2.15.so [.] pthread_mutex_unlock + 1.64% ovs-vswitchd ovs-vswitchd [.] classifier_lookup + 1.58% ovs-vswitchd libc-2.15.so [.] 0x7f4e6 + 1.07% ovs-vswitchd [kernel.kallsyms] [k] memset + 1.03% netperf [kernel.kallsyms] [k] __ticket_spin_lock + 0.92% swapper [kernel.kallsyms] [k] __ticket_spin_lock ... And after this patch: Events: 356K cycles + 6.85% ovs-vswitchd ovs-vswitchd [.] find_match_wc + 4.63% ovs-vswitchd libpthread-2.15.so [.] pthread_mutex_lock + 3.06% ovs-vswitchd [kernel.kallsyms] [k] __ticket_spin_lock + 2.81% ovs-vswitchd ovs-vswitchd [.] flow_hash_in_minimask_range + 2.51% ovs-vswitchd libpthread-2.15.so [.] pthread_mutex_unlock + 2.27% ovs-vswitchd ovs-vswitchd [.] classifier_lookup + 1.84% ovs-vswitchd libc-2.15.so [.] 0x15d30f + 1.74% ovs-vswitchd [kernel.kallsyms] [k] mutex_spin_on_owner + 1.47% swapper [kernel.kallsyms] [k] intel_idle + 1.34% ovs-vswitchd ovs-vswitchd [.] flow_hash_in_minimask + 1.33% ovs-vswitchd ovs-vswitchd [.] rule_actions_unref + 1.16% ovs-vswitchd ovs-vswitchd [.] hindex_node_with_hash + 1.16% ovs-vswitchd ovs-vswitchd [.] do_xlate_actions + 1.09% ovs-vswitchd ovs-vswitchd [.] ofproto_rule_ref + 1.01% netperf [kernel.kallsyms] [k] __ticket_spin_lock ... There is a small increase in kernel spinlock overhead due to the same spinlock being shared between multiple cores of the same physical CPU, but that is barely visible in the netperf TCP_CRR test performance (maybe ~1% performance drop, hard to tell exactly due to variance in the test results), when testing for kernel module throughput (with no userspace activity, handful of kernel flows). On flow setup, a single stats instance is allocated (for the NUMA node 0). As CPUs from multiple NUMA nodes start updating stats, new NUMA-node specific stats instances are allocated. This allocation on the packet processing code path is made to never block or look for emergency memory pools, minimizing the allocation latency. If the allocation fails, the existing preallocated stats instance is used. Also, if only CPUs from one NUMA-node are updating the preallocated stats instance, no additional stats instances are allocated. This eliminates the need to pre-allocate stats instances that will not be used, also relieving the stats reader from the burden of reading stats that are never used. Signed-off-by: Jarno Rajahalme <jrajahalme@nicira.com> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: Jesse Gross <jesse@nicira.com>
2014-03-28 03:42:54 +08:00
* is allocated at flow creation time,
* the rest are allocated on demand
* while holding the 'stats[0].lock'.
*/
};
struct arp_eth_header {
__be16 ar_hrd; /* format of hardware address */
__be16 ar_pro; /* format of protocol address */
unsigned char ar_hln; /* length of hardware address */
unsigned char ar_pln; /* length of protocol address */
__be16 ar_op; /* ARP opcode (command) */
/* Ethernet+IPv4 specific members. */
unsigned char ar_sha[ETH_ALEN]; /* sender hardware address */
unsigned char ar_sip[4]; /* sender IP address */
unsigned char ar_tha[ETH_ALEN]; /* target hardware address */
unsigned char ar_tip[4]; /* target IP address */
} __packed;
static inline u8 ovs_key_mac_proto(const struct sw_flow_key *key)
{
return key->mac_proto & ~SW_FLOW_KEY_INVALID;
}
static inline u16 __ovs_mac_header_len(u8 mac_proto)
{
return mac_proto == MAC_PROTO_ETHERNET ? ETH_HLEN : 0;
}
static inline u16 ovs_mac_header_len(const struct sw_flow_key *key)
{
return __ovs_mac_header_len(ovs_key_mac_proto(key));
}
static inline bool ovs_identifier_is_ufid(const struct sw_flow_id *sfid)
{
return sfid->ufid_len;
}
static inline bool ovs_identifier_is_key(const struct sw_flow_id *sfid)
{
return !ovs_identifier_is_ufid(sfid);
}
void ovs_flow_stats_update(struct sw_flow *, __be16 tcp_flags,
const struct sk_buff *);
void ovs_flow_stats_get(const struct sw_flow *, struct ovs_flow_stats *,
unsigned long *used, __be16 *tcp_flags);
void ovs_flow_stats_clear(struct sw_flow *);
u64 ovs_flow_used_time(unsigned long flow_jiffies);
int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key);
int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
struct sk_buff *skb,
struct sw_flow_key *key);
/* Extract key from packet coming from userspace. */
int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
struct sk_buff *skb,
struct sw_flow_key *key, bool log);
#endif /* flow.h */