2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 20:53:53 +08:00
linux-next/net/batman-adv/translation-table.c

1899 lines
51 KiB
C
Raw Normal View History

/*
* Copyright (C) 2007-2012 B.A.T.M.A.N. contributors:
*
* Marek Lindner, Simon Wunderlich
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA
*
*/
#include "main.h"
#include "translation-table.h"
#include "soft-interface.h"
#include "hard-interface.h"
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
#include "send.h"
#include "hash.h"
#include "originator.h"
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
#include "routing.h"
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
#include <linux/crc16.h>
static void _tt_global_del(struct bat_priv *bat_priv,
struct tt_global_entry *tt_global_entry,
const char *message);
static void tt_purge(struct work_struct *work);
/* returns 1 if they are the same mac addr */
static int compare_tt(const struct hlist_node *node, const void *data2)
{
const void *data1 = container_of(node, struct tt_common_entry,
hash_entry);
return (memcmp(data1, data2, ETH_ALEN) == 0 ? 1 : 0);
}
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
static void tt_start_timer(struct bat_priv *bat_priv)
{
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
INIT_DELAYED_WORK(&bat_priv->tt_work, tt_purge);
queue_delayed_work(bat_event_workqueue, &bat_priv->tt_work,
msecs_to_jiffies(5000));
}
static struct tt_common_entry *tt_hash_find(struct hashtable_t *hash,
const void *data)
{
struct hlist_head *head;
struct hlist_node *node;
struct tt_common_entry *tt_common_entry, *tt_common_entry_tmp = NULL;
uint32_t index;
if (!hash)
return NULL;
index = choose_orig(data, hash->size);
head = &hash->table[index];
rcu_read_lock();
hlist_for_each_entry_rcu(tt_common_entry, node, head, hash_entry) {
if (!compare_eth(tt_common_entry, data))
continue;
if (!atomic_inc_not_zero(&tt_common_entry->refcount))
continue;
tt_common_entry_tmp = tt_common_entry;
break;
}
rcu_read_unlock();
return tt_common_entry_tmp;
}
static struct tt_local_entry *tt_local_hash_find(struct bat_priv *bat_priv,
const void *data)
{
struct tt_common_entry *tt_common_entry;
struct tt_local_entry *tt_local_entry = NULL;
tt_common_entry = tt_hash_find(bat_priv->tt_local_hash, data);
if (tt_common_entry)
tt_local_entry = container_of(tt_common_entry,
struct tt_local_entry, common);
return tt_local_entry;
}
static struct tt_global_entry *tt_global_hash_find(struct bat_priv *bat_priv,
const void *data)
{
struct tt_common_entry *tt_common_entry;
struct tt_global_entry *tt_global_entry = NULL;
tt_common_entry = tt_hash_find(bat_priv->tt_global_hash, data);
if (tt_common_entry)
tt_global_entry = container_of(tt_common_entry,
struct tt_global_entry, common);
return tt_global_entry;
}
static void tt_local_entry_free_ref(struct tt_local_entry *tt_local_entry)
{
if (atomic_dec_and_test(&tt_local_entry->common.refcount))
kfree_rcu(tt_local_entry, common.rcu);
}
static void tt_global_entry_free_rcu(struct rcu_head *rcu)
{
struct tt_common_entry *tt_common_entry;
struct tt_global_entry *tt_global_entry;
tt_common_entry = container_of(rcu, struct tt_common_entry, rcu);
tt_global_entry = container_of(tt_common_entry, struct tt_global_entry,
common);
if (tt_global_entry->orig_node)
orig_node_free_ref(tt_global_entry->orig_node);
kfree(tt_global_entry);
}
static void tt_global_entry_free_ref(struct tt_global_entry *tt_global_entry)
{
if (atomic_dec_and_test(&tt_global_entry->common.refcount))
call_rcu(&tt_global_entry->common.rcu,
tt_global_entry_free_rcu);
}
static void tt_local_event(struct bat_priv *bat_priv, const uint8_t *addr,
uint8_t flags)
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
{
struct tt_change_node *tt_change_node;
tt_change_node = kmalloc(sizeof(*tt_change_node), GFP_ATOMIC);
if (!tt_change_node)
return;
tt_change_node->change.flags = flags;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
memcpy(tt_change_node->change.addr, addr, ETH_ALEN);
spin_lock_bh(&bat_priv->tt_changes_list_lock);
/* track the change in the OGMinterval list */
list_add_tail(&tt_change_node->list, &bat_priv->tt_changes_list);
atomic_inc(&bat_priv->tt_local_changes);
spin_unlock_bh(&bat_priv->tt_changes_list_lock);
atomic_set(&bat_priv->tt_ogm_append_cnt, 0);
}
int tt_len(int changes_num)
{
return changes_num * sizeof(struct tt_change);
}
static int tt_local_init(struct bat_priv *bat_priv)
{
if (bat_priv->tt_local_hash)
return 1;
bat_priv->tt_local_hash = hash_new(1024);
if (!bat_priv->tt_local_hash)
return 0;
return 1;
}
void tt_local_add(struct net_device *soft_iface, const uint8_t *addr,
int ifindex)
{
struct bat_priv *bat_priv = netdev_priv(soft_iface);
struct tt_local_entry *tt_local_entry = NULL;
struct tt_global_entry *tt_global_entry = NULL;
int hash_added;
tt_local_entry = tt_local_hash_find(bat_priv, addr);
if (tt_local_entry) {
tt_local_entry->last_seen = jiffies;
goto out;
}
tt_local_entry = kmalloc(sizeof(*tt_local_entry), GFP_ATOMIC);
if (!tt_local_entry)
goto out;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
bat_dbg(DBG_TT, bat_priv,
"Creating new local tt entry: %pM (ttvn: %d)\n", addr,
(uint8_t)atomic_read(&bat_priv->ttvn));
memcpy(tt_local_entry->common.addr, addr, ETH_ALEN);
tt_local_entry->common.flags = NO_FLAGS;
if (is_wifi_iface(ifindex))
tt_local_entry->common.flags |= TT_CLIENT_WIFI;
atomic_set(&tt_local_entry->common.refcount, 2);
tt_local_entry->last_seen = jiffies;
/* the batman interface mac address should never be purged */
if (compare_eth(addr, soft_iface->dev_addr))
tt_local_entry->common.flags |= TT_CLIENT_NOPURGE;
/* The local entry has to be marked as NEW to avoid to send it in
* a full table response going out before the next ttvn increment
* (consistency check) */
tt_local_entry->common.flags |= TT_CLIENT_NEW;
hash_added = hash_add(bat_priv->tt_local_hash, compare_tt, choose_orig,
&tt_local_entry->common,
&tt_local_entry->common.hash_entry);
if (unlikely(hash_added != 0)) {
/* remove the reference for the hash */
tt_local_entry_free_ref(tt_local_entry);
goto out;
}
tt_local_event(bat_priv, addr, tt_local_entry->common.flags);
/* remove address from global hash if present */
tt_global_entry = tt_global_hash_find(bat_priv, addr);
/* Check whether it is a roaming! */
if (tt_global_entry) {
/* This node is probably going to update its tt table */
tt_global_entry->orig_node->tt_poss_change = true;
/* The global entry has to be marked as ROAMING and has to be
* kept for consistency purpose */
tt_global_entry->common.flags |= TT_CLIENT_ROAM;
tt_global_entry->roam_at = jiffies;
send_roam_adv(bat_priv, tt_global_entry->common.addr,
tt_global_entry->orig_node);
}
out:
if (tt_local_entry)
tt_local_entry_free_ref(tt_local_entry);
if (tt_global_entry)
tt_global_entry_free_ref(tt_global_entry);
}
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
int tt_changes_fill_buffer(struct bat_priv *bat_priv,
unsigned char *buff, int buff_len)
{
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
int count = 0, tot_changes = 0;
struct tt_change_node *entry, *safe;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
if (buff_len > 0)
tot_changes = buff_len / tt_len(1);
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
spin_lock_bh(&bat_priv->tt_changes_list_lock);
atomic_set(&bat_priv->tt_local_changes, 0);
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
list_for_each_entry_safe(entry, safe, &bat_priv->tt_changes_list,
list) {
if (count < tot_changes) {
memcpy(buff + tt_len(count),
&entry->change, sizeof(struct tt_change));
count++;
}
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
list_del(&entry->list);
kfree(entry);
}
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
spin_unlock_bh(&bat_priv->tt_changes_list_lock);
/* Keep the buffer for possible tt_request */
spin_lock_bh(&bat_priv->tt_buff_lock);
kfree(bat_priv->tt_buff);
bat_priv->tt_buff_len = 0;
bat_priv->tt_buff = NULL;
/* We check whether this new OGM has no changes due to size
* problems */
if (buff_len > 0) {
/**
* if kmalloc() fails we will reply with the full table
* instead of providing the diff
*/
bat_priv->tt_buff = kmalloc(buff_len, GFP_ATOMIC);
if (bat_priv->tt_buff) {
memcpy(bat_priv->tt_buff, buff, buff_len);
bat_priv->tt_buff_len = buff_len;
}
}
spin_unlock_bh(&bat_priv->tt_buff_lock);
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
return tot_changes;
}
int tt_local_seq_print_text(struct seq_file *seq, void *offset)
{
struct net_device *net_dev = (struct net_device *)seq->private;
struct bat_priv *bat_priv = netdev_priv(net_dev);
struct hashtable_t *hash = bat_priv->tt_local_hash;
struct tt_common_entry *tt_common_entry;
struct hard_iface *primary_if;
struct hlist_node *node;
struct hlist_head *head;
uint32_t i;
int ret = 0;
primary_if = primary_if_get_selected(bat_priv);
if (!primary_if) {
ret = seq_printf(seq, "BATMAN mesh %s disabled - "
"please specify interfaces to enable it\n",
net_dev->name);
goto out;
}
if (primary_if->if_status != IF_ACTIVE) {
ret = seq_printf(seq, "BATMAN mesh %s disabled - "
"primary interface not active\n",
net_dev->name);
goto out;
}
seq_printf(seq, "Locally retrieved addresses (from %s) "
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
"announced via TT (TTVN: %u):\n",
net_dev->name, (uint8_t)atomic_read(&bat_priv->ttvn));
for (i = 0; i < hash->size; i++) {
head = &hash->table[i];
rcu_read_lock();
hlist_for_each_entry_rcu(tt_common_entry, node,
head, hash_entry) {
seq_printf(seq, " * %pM [%c%c%c%c%c]\n",
tt_common_entry->addr,
(tt_common_entry->flags &
TT_CLIENT_ROAM ? 'R' : '.'),
(tt_common_entry->flags &
TT_CLIENT_NOPURGE ? 'P' : '.'),
(tt_common_entry->flags &
TT_CLIENT_NEW ? 'N' : '.'),
(tt_common_entry->flags &
TT_CLIENT_PENDING ? 'X' : '.'),
(tt_common_entry->flags &
TT_CLIENT_WIFI ? 'W' : '.'));
}
rcu_read_unlock();
}
out:
if (primary_if)
hardif_free_ref(primary_if);
return ret;
}
static void tt_local_set_pending(struct bat_priv *bat_priv,
struct tt_local_entry *tt_local_entry,
uint16_t flags, const char *message)
{
tt_local_event(bat_priv, tt_local_entry->common.addr,
tt_local_entry->common.flags | flags);
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
/* The local client has to be marked as "pending to be removed" but has
* to be kept in the table in order to send it in a full table
* response issued before the net ttvn increment (consistency check) */
tt_local_entry->common.flags |= TT_CLIENT_PENDING;
bat_dbg(DBG_TT, bat_priv, "Local tt entry (%pM) pending to be removed: "
"%s\n", tt_local_entry->common.addr, message);
}
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
void tt_local_remove(struct bat_priv *bat_priv, const uint8_t *addr,
const char *message, bool roaming)
{
struct tt_local_entry *tt_local_entry = NULL;
tt_local_entry = tt_local_hash_find(bat_priv, addr);
if (!tt_local_entry)
goto out;
tt_local_set_pending(bat_priv, tt_local_entry, TT_CLIENT_DEL |
(roaming ? TT_CLIENT_ROAM : NO_FLAGS), message);
out:
if (tt_local_entry)
tt_local_entry_free_ref(tt_local_entry);
}
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
static void tt_local_purge(struct bat_priv *bat_priv)
{
struct hashtable_t *hash = bat_priv->tt_local_hash;
struct tt_local_entry *tt_local_entry;
struct tt_common_entry *tt_common_entry;
struct hlist_node *node, *node_tmp;
struct hlist_head *head;
spinlock_t *list_lock; /* protects write access to the hash lists */
uint32_t i;
for (i = 0; i < hash->size; i++) {
head = &hash->table[i];
list_lock = &hash->list_locks[i];
spin_lock_bh(list_lock);
hlist_for_each_entry_safe(tt_common_entry, node, node_tmp,
head, hash_entry) {
tt_local_entry = container_of(tt_common_entry,
struct tt_local_entry,
common);
if (tt_local_entry->common.flags & TT_CLIENT_NOPURGE)
continue;
/* entry already marked for deletion */
if (tt_local_entry->common.flags & TT_CLIENT_PENDING)
continue;
if (!has_timed_out(tt_local_entry->last_seen,
TT_LOCAL_TIMEOUT))
continue;
tt_local_set_pending(bat_priv, tt_local_entry,
TT_CLIENT_DEL, "timed out");
}
spin_unlock_bh(list_lock);
}
}
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
static void tt_local_table_free(struct bat_priv *bat_priv)
{
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
struct hashtable_t *hash;
spinlock_t *list_lock; /* protects write access to the hash lists */
struct tt_common_entry *tt_common_entry;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
struct tt_local_entry *tt_local_entry;
struct hlist_node *node, *node_tmp;
struct hlist_head *head;
uint32_t i;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
if (!bat_priv->tt_local_hash)
return;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
hash = bat_priv->tt_local_hash;
for (i = 0; i < hash->size; i++) {
head = &hash->table[i];
list_lock = &hash->list_locks[i];
spin_lock_bh(list_lock);
hlist_for_each_entry_safe(tt_common_entry, node, node_tmp,
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
head, hash_entry) {
hlist_del_rcu(node);
tt_local_entry = container_of(tt_common_entry,
struct tt_local_entry,
common);
tt_local_entry_free_ref(tt_local_entry);
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
}
spin_unlock_bh(list_lock);
}
hash_destroy(hash);
bat_priv->tt_local_hash = NULL;
}
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
static int tt_global_init(struct bat_priv *bat_priv)
{
if (bat_priv->tt_global_hash)
return 1;
bat_priv->tt_global_hash = hash_new(1024);
if (!bat_priv->tt_global_hash)
return 0;
return 1;
}
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
static void tt_changes_list_free(struct bat_priv *bat_priv)
{
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
struct tt_change_node *entry, *safe;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
spin_lock_bh(&bat_priv->tt_changes_list_lock);
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
list_for_each_entry_safe(entry, safe, &bat_priv->tt_changes_list,
list) {
list_del(&entry->list);
kfree(entry);
}
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
atomic_set(&bat_priv->tt_local_changes, 0);
spin_unlock_bh(&bat_priv->tt_changes_list_lock);
}
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
/* caller must hold orig_node refcount */
int tt_global_add(struct bat_priv *bat_priv, struct orig_node *orig_node,
const unsigned char *tt_addr, uint8_t ttvn, bool roaming,
bool wifi)
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
{
struct tt_global_entry *tt_global_entry;
struct orig_node *orig_node_tmp;
int ret = 0;
int hash_added;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
tt_global_entry = tt_global_hash_find(bat_priv, tt_addr);
if (!tt_global_entry) {
tt_global_entry =
kmalloc(sizeof(*tt_global_entry),
GFP_ATOMIC);
if (!tt_global_entry)
goto out;
memcpy(tt_global_entry->common.addr, tt_addr, ETH_ALEN);
tt_global_entry->common.flags = NO_FLAGS;
atomic_set(&tt_global_entry->common.refcount, 2);
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
/* Assign the new orig_node */
atomic_inc(&orig_node->refcount);
tt_global_entry->orig_node = orig_node;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
tt_global_entry->ttvn = ttvn;
tt_global_entry->roam_at = 0;
hash_added = hash_add(bat_priv->tt_global_hash, compare_tt,
choose_orig, &tt_global_entry->common,
&tt_global_entry->common.hash_entry);
if (unlikely(hash_added != 0)) {
/* remove the reference for the hash */
tt_global_entry_free_ref(tt_global_entry);
goto out_remove;
}
atomic_inc(&orig_node->tt_size);
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
} else {
if (tt_global_entry->orig_node != orig_node) {
atomic_dec(&tt_global_entry->orig_node->tt_size);
orig_node_tmp = tt_global_entry->orig_node;
atomic_inc(&orig_node->refcount);
tt_global_entry->orig_node = orig_node;
orig_node_free_ref(orig_node_tmp);
atomic_inc(&orig_node->tt_size);
}
tt_global_entry->common.flags = NO_FLAGS;
tt_global_entry->ttvn = ttvn;
tt_global_entry->roam_at = 0;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
}
if (wifi)
tt_global_entry->common.flags |= TT_CLIENT_WIFI;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
bat_dbg(DBG_TT, bat_priv,
"Creating new global tt entry: %pM (via %pM)\n",
tt_global_entry->common.addr, orig_node->orig);
out_remove:
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
/* remove address from local hash if present */
tt_local_remove(bat_priv, tt_global_entry->common.addr,
"global tt received", roaming);
ret = 1;
out:
if (tt_global_entry)
tt_global_entry_free_ref(tt_global_entry);
return ret;
}
int tt_global_seq_print_text(struct seq_file *seq, void *offset)
{
struct net_device *net_dev = (struct net_device *)seq->private;
struct bat_priv *bat_priv = netdev_priv(net_dev);
struct hashtable_t *hash = bat_priv->tt_global_hash;
struct tt_common_entry *tt_common_entry;
struct tt_global_entry *tt_global_entry;
struct hard_iface *primary_if;
struct hlist_node *node;
struct hlist_head *head;
uint32_t i;
int ret = 0;
primary_if = primary_if_get_selected(bat_priv);
if (!primary_if) {
ret = seq_printf(seq, "BATMAN mesh %s disabled - please "
"specify interfaces to enable it\n",
net_dev->name);
goto out;
}
if (primary_if->if_status != IF_ACTIVE) {
ret = seq_printf(seq, "BATMAN mesh %s disabled - "
"primary interface not active\n",
net_dev->name);
goto out;
}
seq_printf(seq,
"Globally announced TT entries received via the mesh %s\n",
net_dev->name);
seq_printf(seq, " %-13s %s %-15s %s %s\n",
"Client", "(TTVN)", "Originator", "(Curr TTVN)", "Flags");
for (i = 0; i < hash->size; i++) {
head = &hash->table[i];
rcu_read_lock();
hlist_for_each_entry_rcu(tt_common_entry, node,
head, hash_entry) {
tt_global_entry = container_of(tt_common_entry,
struct tt_global_entry,
common);
seq_printf(seq, " * %pM (%3u) via %pM (%3u) "
"[%c%c%c]\n",
tt_global_entry->common.addr,
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
tt_global_entry->ttvn,
tt_global_entry->orig_node->orig,
(uint8_t) atomic_read(
&tt_global_entry->orig_node->
last_ttvn),
(tt_global_entry->common.flags &
TT_CLIENT_ROAM ? 'R' : '.'),
(tt_global_entry->common.flags &
TT_CLIENT_PENDING ? 'X' : '.'),
(tt_global_entry->common.flags &
TT_CLIENT_WIFI ? 'W' : '.'));
}
rcu_read_unlock();
}
out:
if (primary_if)
hardif_free_ref(primary_if);
return ret;
}
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
static void _tt_global_del(struct bat_priv *bat_priv,
struct tt_global_entry *tt_global_entry,
const char *message)
{
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
if (!tt_global_entry)
goto out;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
bat_dbg(DBG_TT, bat_priv,
"Deleting global tt entry %pM (via %pM): %s\n",
tt_global_entry->common.addr, tt_global_entry->orig_node->orig,
message);
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
atomic_dec(&tt_global_entry->orig_node->tt_size);
hash_remove(bat_priv->tt_global_hash, compare_tt, choose_orig,
tt_global_entry->common.addr);
out:
if (tt_global_entry)
tt_global_entry_free_ref(tt_global_entry);
}
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
void tt_global_del(struct bat_priv *bat_priv,
struct orig_node *orig_node, const unsigned char *addr,
const char *message, bool roaming)
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
{
struct tt_global_entry *tt_global_entry = NULL;
struct tt_local_entry *tt_local_entry = NULL;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
tt_global_entry = tt_global_hash_find(bat_priv, addr);
if (!tt_global_entry || tt_global_entry->orig_node != orig_node)
goto out;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
if (!roaming)
goto out_del;
/* if we are deleting a global entry due to a roam
* event, there are two possibilities:
* 1) the client roamed from node A to node B => we mark
* it with TT_CLIENT_ROAM, we start a timer and we
* wait for node B to claim it. In case of timeout
* the entry is purged.
* 2) the client roamed to us => we can directly delete
* the global entry, since it is useless now. */
tt_local_entry = tt_local_hash_find(bat_priv,
tt_global_entry->common.addr);
if (!tt_local_entry) {
tt_global_entry->common.flags |= TT_CLIENT_ROAM;
tt_global_entry->roam_at = jiffies;
goto out;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
}
out_del:
_tt_global_del(bat_priv, tt_global_entry, message);
out:
if (tt_global_entry)
tt_global_entry_free_ref(tt_global_entry);
if (tt_local_entry)
tt_local_entry_free_ref(tt_local_entry);
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
}
void tt_global_del_orig(struct bat_priv *bat_priv,
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
struct orig_node *orig_node, const char *message)
{
struct tt_global_entry *tt_global_entry;
struct tt_common_entry *tt_common_entry;
uint32_t i;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
struct hashtable_t *hash = bat_priv->tt_global_hash;
struct hlist_node *node, *safe;
struct hlist_head *head;
spinlock_t *list_lock; /* protects write access to the hash lists */
if (!hash)
return;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
for (i = 0; i < hash->size; i++) {
head = &hash->table[i];
list_lock = &hash->list_locks[i];
spin_lock_bh(list_lock);
hlist_for_each_entry_safe(tt_common_entry, node, safe,
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
head, hash_entry) {
tt_global_entry = container_of(tt_common_entry,
struct tt_global_entry,
common);
if (tt_global_entry->orig_node == orig_node) {
bat_dbg(DBG_TT, bat_priv,
"Deleting global tt entry %pM "
"(via %pM): %s\n",
tt_global_entry->common.addr,
tt_global_entry->orig_node->orig,
message);
hlist_del_rcu(node);
tt_global_entry_free_ref(tt_global_entry);
}
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
}
spin_unlock_bh(list_lock);
}
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
atomic_set(&orig_node->tt_size, 0);
orig_node->tt_initialised = false;
}
static void tt_global_roam_purge(struct bat_priv *bat_priv)
{
struct hashtable_t *hash = bat_priv->tt_global_hash;
struct tt_common_entry *tt_common_entry;
struct tt_global_entry *tt_global_entry;
struct hlist_node *node, *node_tmp;
struct hlist_head *head;
spinlock_t *list_lock; /* protects write access to the hash lists */
uint32_t i;
for (i = 0; i < hash->size; i++) {
head = &hash->table[i];
list_lock = &hash->list_locks[i];
spin_lock_bh(list_lock);
hlist_for_each_entry_safe(tt_common_entry, node, node_tmp,
head, hash_entry) {
tt_global_entry = container_of(tt_common_entry,
struct tt_global_entry,
common);
if (!(tt_global_entry->common.flags & TT_CLIENT_ROAM))
continue;
if (!has_timed_out(tt_global_entry->roam_at,
TT_CLIENT_ROAM_TIMEOUT))
continue;
bat_dbg(DBG_TT, bat_priv, "Deleting global "
"tt entry (%pM): Roaming timeout\n",
tt_global_entry->common.addr);
atomic_dec(&tt_global_entry->orig_node->tt_size);
hlist_del_rcu(node);
tt_global_entry_free_ref(tt_global_entry);
}
spin_unlock_bh(list_lock);
}
}
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
static void tt_global_table_free(struct bat_priv *bat_priv)
{
struct hashtable_t *hash;
spinlock_t *list_lock; /* protects write access to the hash lists */
struct tt_common_entry *tt_common_entry;
struct tt_global_entry *tt_global_entry;
struct hlist_node *node, *node_tmp;
struct hlist_head *head;
uint32_t i;
if (!bat_priv->tt_global_hash)
return;
hash = bat_priv->tt_global_hash;
for (i = 0; i < hash->size; i++) {
head = &hash->table[i];
list_lock = &hash->list_locks[i];
spin_lock_bh(list_lock);
hlist_for_each_entry_safe(tt_common_entry, node, node_tmp,
head, hash_entry) {
hlist_del_rcu(node);
tt_global_entry = container_of(tt_common_entry,
struct tt_global_entry,
common);
tt_global_entry_free_ref(tt_global_entry);
}
spin_unlock_bh(list_lock);
}
hash_destroy(hash);
bat_priv->tt_global_hash = NULL;
}
static bool _is_ap_isolated(struct tt_local_entry *tt_local_entry,
struct tt_global_entry *tt_global_entry)
{
bool ret = false;
if (tt_local_entry->common.flags & TT_CLIENT_WIFI &&
tt_global_entry->common.flags & TT_CLIENT_WIFI)
ret = true;
return ret;
}
struct orig_node *transtable_search(struct bat_priv *bat_priv,
const uint8_t *src, const uint8_t *addr)
{
struct tt_local_entry *tt_local_entry = NULL;
struct tt_global_entry *tt_global_entry = NULL;
struct orig_node *orig_node = NULL;
if (src && atomic_read(&bat_priv->ap_isolation)) {
tt_local_entry = tt_local_hash_find(bat_priv, src);
if (!tt_local_entry)
goto out;
}
tt_global_entry = tt_global_hash_find(bat_priv, addr);
if (!tt_global_entry)
goto out;
/* check whether the clients should not communicate due to AP
* isolation */
if (tt_local_entry && _is_ap_isolated(tt_local_entry, tt_global_entry))
goto out;
if (!atomic_inc_not_zero(&tt_global_entry->orig_node->refcount))
goto out;
/* A global client marked as PENDING has already moved from that
* originator */
if (tt_global_entry->common.flags & TT_CLIENT_PENDING)
goto out;
orig_node = tt_global_entry->orig_node;
out:
if (tt_global_entry)
tt_global_entry_free_ref(tt_global_entry);
if (tt_local_entry)
tt_local_entry_free_ref(tt_local_entry);
return orig_node;
}
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
/* Calculates the checksum of the local table of a given orig_node */
uint16_t tt_global_crc(struct bat_priv *bat_priv, struct orig_node *orig_node)
{
uint16_t total = 0, total_one;
struct hashtable_t *hash = bat_priv->tt_global_hash;
struct tt_common_entry *tt_common_entry;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
struct tt_global_entry *tt_global_entry;
struct hlist_node *node;
struct hlist_head *head;
uint32_t i;
int j;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
for (i = 0; i < hash->size; i++) {
head = &hash->table[i];
rcu_read_lock();
hlist_for_each_entry_rcu(tt_common_entry, node,
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
head, hash_entry) {
tt_global_entry = container_of(tt_common_entry,
struct tt_global_entry,
common);
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
if (compare_eth(tt_global_entry->orig_node,
orig_node)) {
/* Roaming clients are in the global table for
* consistency only. They don't have to be
* taken into account while computing the
* global crc */
if (tt_common_entry->flags & TT_CLIENT_ROAM)
continue;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
total_one = 0;
for (j = 0; j < ETH_ALEN; j++)
total_one = crc16_byte(total_one,
tt_common_entry->addr[j]);
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
total ^= total_one;
}
}
rcu_read_unlock();
}
return total;
}
/* Calculates the checksum of the local table */
uint16_t tt_local_crc(struct bat_priv *bat_priv)
{
uint16_t total = 0, total_one;
struct hashtable_t *hash = bat_priv->tt_local_hash;
struct tt_common_entry *tt_common_entry;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
struct hlist_node *node;
struct hlist_head *head;
uint32_t i;
int j;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
for (i = 0; i < hash->size; i++) {
head = &hash->table[i];
rcu_read_lock();
hlist_for_each_entry_rcu(tt_common_entry, node,
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
head, hash_entry) {
/* not yet committed clients have not to be taken into
* account while computing the CRC */
if (tt_common_entry->flags & TT_CLIENT_NEW)
continue;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
total_one = 0;
for (j = 0; j < ETH_ALEN; j++)
total_one = crc16_byte(total_one,
tt_common_entry->addr[j]);
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
total ^= total_one;
}
rcu_read_unlock();
}
return total;
}
static void tt_req_list_free(struct bat_priv *bat_priv)
{
struct tt_req_node *node, *safe;
spin_lock_bh(&bat_priv->tt_req_list_lock);
list_for_each_entry_safe(node, safe, &bat_priv->tt_req_list, list) {
list_del(&node->list);
kfree(node);
}
spin_unlock_bh(&bat_priv->tt_req_list_lock);
}
void tt_save_orig_buffer(struct bat_priv *bat_priv, struct orig_node *orig_node,
const unsigned char *tt_buff, uint8_t tt_num_changes)
{
uint16_t tt_buff_len = tt_len(tt_num_changes);
/* Replace the old buffer only if I received something in the
* last OGM (the OGM could carry no changes) */
spin_lock_bh(&orig_node->tt_buff_lock);
if (tt_buff_len > 0) {
kfree(orig_node->tt_buff);
orig_node->tt_buff_len = 0;
orig_node->tt_buff = kmalloc(tt_buff_len, GFP_ATOMIC);
if (orig_node->tt_buff) {
memcpy(orig_node->tt_buff, tt_buff, tt_buff_len);
orig_node->tt_buff_len = tt_buff_len;
}
}
spin_unlock_bh(&orig_node->tt_buff_lock);
}
static void tt_req_purge(struct bat_priv *bat_priv)
{
struct tt_req_node *node, *safe;
spin_lock_bh(&bat_priv->tt_req_list_lock);
list_for_each_entry_safe(node, safe, &bat_priv->tt_req_list, list) {
if (has_timed_out(node->issued_at, TT_REQUEST_TIMEOUT)) {
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
list_del(&node->list);
kfree(node);
}
}
spin_unlock_bh(&bat_priv->tt_req_list_lock);
}
/* returns the pointer to the new tt_req_node struct if no request
* has already been issued for this orig_node, NULL otherwise */
static struct tt_req_node *new_tt_req_node(struct bat_priv *bat_priv,
struct orig_node *orig_node)
{
struct tt_req_node *tt_req_node_tmp, *tt_req_node = NULL;
spin_lock_bh(&bat_priv->tt_req_list_lock);
list_for_each_entry(tt_req_node_tmp, &bat_priv->tt_req_list, list) {
if (compare_eth(tt_req_node_tmp, orig_node) &&
!has_timed_out(tt_req_node_tmp->issued_at,
TT_REQUEST_TIMEOUT))
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
goto unlock;
}
tt_req_node = kmalloc(sizeof(*tt_req_node), GFP_ATOMIC);
if (!tt_req_node)
goto unlock;
memcpy(tt_req_node->addr, orig_node->orig, ETH_ALEN);
tt_req_node->issued_at = jiffies;
list_add(&tt_req_node->list, &bat_priv->tt_req_list);
unlock:
spin_unlock_bh(&bat_priv->tt_req_list_lock);
return tt_req_node;
}
/* data_ptr is useless here, but has to be kept to respect the prototype */
static int tt_local_valid_entry(const void *entry_ptr, const void *data_ptr)
{
const struct tt_common_entry *tt_common_entry = entry_ptr;
if (tt_common_entry->flags & TT_CLIENT_NEW)
return 0;
return 1;
}
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
static int tt_global_valid_entry(const void *entry_ptr, const void *data_ptr)
{
const struct tt_common_entry *tt_common_entry = entry_ptr;
const struct tt_global_entry *tt_global_entry;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
const struct orig_node *orig_node = data_ptr;
if (tt_common_entry->flags & TT_CLIENT_ROAM)
return 0;
tt_global_entry = container_of(tt_common_entry, struct tt_global_entry,
common);
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
return (tt_global_entry->orig_node == orig_node);
}
static struct sk_buff *tt_response_fill_table(uint16_t tt_len, uint8_t ttvn,
struct hashtable_t *hash,
struct hard_iface *primary_if,
int (*valid_cb)(const void *,
const void *),
void *cb_data)
{
struct tt_common_entry *tt_common_entry;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
struct tt_query_packet *tt_response;
struct tt_change *tt_change;
struct hlist_node *node;
struct hlist_head *head;
struct sk_buff *skb = NULL;
uint16_t tt_tot, tt_count;
ssize_t tt_query_size = sizeof(struct tt_query_packet);
uint32_t i;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
if (tt_query_size + tt_len > primary_if->soft_iface->mtu) {
tt_len = primary_if->soft_iface->mtu - tt_query_size;
tt_len -= tt_len % sizeof(struct tt_change);
}
tt_tot = tt_len / sizeof(struct tt_change);
skb = dev_alloc_skb(tt_query_size + tt_len + ETH_HLEN);
if (!skb)
goto out;
skb_reserve(skb, ETH_HLEN);
tt_response = (struct tt_query_packet *)skb_put(skb,
tt_query_size + tt_len);
tt_response->ttvn = ttvn;
tt_change = (struct tt_change *)(skb->data + tt_query_size);
tt_count = 0;
rcu_read_lock();
for (i = 0; i < hash->size; i++) {
head = &hash->table[i];
hlist_for_each_entry_rcu(tt_common_entry, node,
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
head, hash_entry) {
if (tt_count == tt_tot)
break;
if ((valid_cb) && (!valid_cb(tt_common_entry, cb_data)))
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
continue;
memcpy(tt_change->addr, tt_common_entry->addr,
ETH_ALEN);
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
tt_change->flags = NO_FLAGS;
tt_count++;
tt_change++;
}
}
rcu_read_unlock();
/* store in the message the number of entries we have successfully
* copied */
tt_response->tt_data = htons(tt_count);
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
out:
return skb;
}
static int send_tt_request(struct bat_priv *bat_priv,
struct orig_node *dst_orig_node,
uint8_t ttvn, uint16_t tt_crc, bool full_table)
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
{
struct sk_buff *skb = NULL;
struct tt_query_packet *tt_request;
struct neigh_node *neigh_node = NULL;
struct hard_iface *primary_if;
struct tt_req_node *tt_req_node = NULL;
int ret = 1;
primary_if = primary_if_get_selected(bat_priv);
if (!primary_if)
goto out;
/* The new tt_req will be issued only if I'm not waiting for a
* reply from the same orig_node yet */
tt_req_node = new_tt_req_node(bat_priv, dst_orig_node);
if (!tt_req_node)
goto out;
skb = dev_alloc_skb(sizeof(struct tt_query_packet) + ETH_HLEN);
if (!skb)
goto out;
skb_reserve(skb, ETH_HLEN);
tt_request = (struct tt_query_packet *)skb_put(skb,
sizeof(struct tt_query_packet));
tt_request->header.packet_type = BAT_TT_QUERY;
tt_request->header.version = COMPAT_VERSION;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
memcpy(tt_request->src, primary_if->net_dev->dev_addr, ETH_ALEN);
memcpy(tt_request->dst, dst_orig_node->orig, ETH_ALEN);
tt_request->header.ttl = TTL;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
tt_request->ttvn = ttvn;
tt_request->tt_data = tt_crc;
tt_request->flags = TT_REQUEST;
if (full_table)
tt_request->flags |= TT_FULL_TABLE;
neigh_node = orig_node_get_router(dst_orig_node);
if (!neigh_node)
goto out;
bat_dbg(DBG_TT, bat_priv, "Sending TT_REQUEST to %pM via %pM "
"[%c]\n", dst_orig_node->orig, neigh_node->addr,
(full_table ? 'F' : '.'));
send_skb_packet(skb, neigh_node->if_incoming, neigh_node->addr);
ret = 0;
out:
if (neigh_node)
neigh_node_free_ref(neigh_node);
if (primary_if)
hardif_free_ref(primary_if);
if (ret)
kfree_skb(skb);
if (ret && tt_req_node) {
spin_lock_bh(&bat_priv->tt_req_list_lock);
list_del(&tt_req_node->list);
spin_unlock_bh(&bat_priv->tt_req_list_lock);
kfree(tt_req_node);
}
return ret;
}
static bool send_other_tt_response(struct bat_priv *bat_priv,
struct tt_query_packet *tt_request)
{
struct orig_node *req_dst_orig_node = NULL, *res_dst_orig_node = NULL;
struct neigh_node *neigh_node = NULL;
struct hard_iface *primary_if = NULL;
uint8_t orig_ttvn, req_ttvn, ttvn;
int ret = false;
unsigned char *tt_buff;
bool full_table;
uint16_t tt_len, tt_tot;
struct sk_buff *skb = NULL;
struct tt_query_packet *tt_response;
bat_dbg(DBG_TT, bat_priv,
"Received TT_REQUEST from %pM for "
"ttvn: %u (%pM) [%c]\n", tt_request->src,
tt_request->ttvn, tt_request->dst,
(tt_request->flags & TT_FULL_TABLE ? 'F' : '.'));
/* Let's get the orig node of the REAL destination */
req_dst_orig_node = orig_hash_find(bat_priv, tt_request->dst);
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
if (!req_dst_orig_node)
goto out;
res_dst_orig_node = orig_hash_find(bat_priv, tt_request->src);
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
if (!res_dst_orig_node)
goto out;
neigh_node = orig_node_get_router(res_dst_orig_node);
if (!neigh_node)
goto out;
primary_if = primary_if_get_selected(bat_priv);
if (!primary_if)
goto out;
orig_ttvn = (uint8_t)atomic_read(&req_dst_orig_node->last_ttvn);
req_ttvn = tt_request->ttvn;
/* I don't have the requested data */
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
if (orig_ttvn != req_ttvn ||
tt_request->tt_data != req_dst_orig_node->tt_crc)
goto out;
/* If the full table has been explicitly requested */
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
if (tt_request->flags & TT_FULL_TABLE ||
!req_dst_orig_node->tt_buff)
full_table = true;
else
full_table = false;
/* In this version, fragmentation is not implemented, then
* I'll send only one packet with as much TT entries as I can */
if (!full_table) {
spin_lock_bh(&req_dst_orig_node->tt_buff_lock);
tt_len = req_dst_orig_node->tt_buff_len;
tt_tot = tt_len / sizeof(struct tt_change);
skb = dev_alloc_skb(sizeof(struct tt_query_packet) +
tt_len + ETH_HLEN);
if (!skb)
goto unlock;
skb_reserve(skb, ETH_HLEN);
tt_response = (struct tt_query_packet *)skb_put(skb,
sizeof(struct tt_query_packet) + tt_len);
tt_response->ttvn = req_ttvn;
tt_response->tt_data = htons(tt_tot);
tt_buff = skb->data + sizeof(struct tt_query_packet);
/* Copy the last orig_node's OGM buffer */
memcpy(tt_buff, req_dst_orig_node->tt_buff,
req_dst_orig_node->tt_buff_len);
spin_unlock_bh(&req_dst_orig_node->tt_buff_lock);
} else {
tt_len = (uint16_t)atomic_read(&req_dst_orig_node->tt_size) *
sizeof(struct tt_change);
ttvn = (uint8_t)atomic_read(&req_dst_orig_node->last_ttvn);
skb = tt_response_fill_table(tt_len, ttvn,
bat_priv->tt_global_hash,
primary_if, tt_global_valid_entry,
req_dst_orig_node);
if (!skb)
goto out;
tt_response = (struct tt_query_packet *)skb->data;
}
tt_response->header.packet_type = BAT_TT_QUERY;
tt_response->header.version = COMPAT_VERSION;
tt_response->header.ttl = TTL;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
memcpy(tt_response->src, req_dst_orig_node->orig, ETH_ALEN);
memcpy(tt_response->dst, tt_request->src, ETH_ALEN);
tt_response->flags = TT_RESPONSE;
if (full_table)
tt_response->flags |= TT_FULL_TABLE;
bat_dbg(DBG_TT, bat_priv,
"Sending TT_RESPONSE %pM via %pM for %pM (ttvn: %u)\n",
res_dst_orig_node->orig, neigh_node->addr,
req_dst_orig_node->orig, req_ttvn);
send_skb_packet(skb, neigh_node->if_incoming, neigh_node->addr);
ret = true;
goto out;
unlock:
spin_unlock_bh(&req_dst_orig_node->tt_buff_lock);
out:
if (res_dst_orig_node)
orig_node_free_ref(res_dst_orig_node);
if (req_dst_orig_node)
orig_node_free_ref(req_dst_orig_node);
if (neigh_node)
neigh_node_free_ref(neigh_node);
if (primary_if)
hardif_free_ref(primary_if);
if (!ret)
kfree_skb(skb);
return ret;
}
static bool send_my_tt_response(struct bat_priv *bat_priv,
struct tt_query_packet *tt_request)
{
struct orig_node *orig_node = NULL;
struct neigh_node *neigh_node = NULL;
struct hard_iface *primary_if = NULL;
uint8_t my_ttvn, req_ttvn, ttvn;
int ret = false;
unsigned char *tt_buff;
bool full_table;
uint16_t tt_len, tt_tot;
struct sk_buff *skb = NULL;
struct tt_query_packet *tt_response;
bat_dbg(DBG_TT, bat_priv,
"Received TT_REQUEST from %pM for "
"ttvn: %u (me) [%c]\n", tt_request->src,
tt_request->ttvn,
(tt_request->flags & TT_FULL_TABLE ? 'F' : '.'));
my_ttvn = (uint8_t)atomic_read(&bat_priv->ttvn);
req_ttvn = tt_request->ttvn;
orig_node = orig_hash_find(bat_priv, tt_request->src);
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
if (!orig_node)
goto out;
neigh_node = orig_node_get_router(orig_node);
if (!neigh_node)
goto out;
primary_if = primary_if_get_selected(bat_priv);
if (!primary_if)
goto out;
/* If the full table has been explicitly requested or the gap
* is too big send the whole local translation table */
if (tt_request->flags & TT_FULL_TABLE || my_ttvn != req_ttvn ||
!bat_priv->tt_buff)
full_table = true;
else
full_table = false;
/* In this version, fragmentation is not implemented, then
* I'll send only one packet with as much TT entries as I can */
if (!full_table) {
spin_lock_bh(&bat_priv->tt_buff_lock);
tt_len = bat_priv->tt_buff_len;
tt_tot = tt_len / sizeof(struct tt_change);
skb = dev_alloc_skb(sizeof(struct tt_query_packet) +
tt_len + ETH_HLEN);
if (!skb)
goto unlock;
skb_reserve(skb, ETH_HLEN);
tt_response = (struct tt_query_packet *)skb_put(skb,
sizeof(struct tt_query_packet) + tt_len);
tt_response->ttvn = req_ttvn;
tt_response->tt_data = htons(tt_tot);
tt_buff = skb->data + sizeof(struct tt_query_packet);
memcpy(tt_buff, bat_priv->tt_buff,
bat_priv->tt_buff_len);
spin_unlock_bh(&bat_priv->tt_buff_lock);
} else {
tt_len = (uint16_t)atomic_read(&bat_priv->num_local_tt) *
sizeof(struct tt_change);
ttvn = (uint8_t)atomic_read(&bat_priv->ttvn);
skb = tt_response_fill_table(tt_len, ttvn,
bat_priv->tt_local_hash,
primary_if, tt_local_valid_entry,
NULL);
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
if (!skb)
goto out;
tt_response = (struct tt_query_packet *)skb->data;
}
tt_response->header.packet_type = BAT_TT_QUERY;
tt_response->header.version = COMPAT_VERSION;
tt_response->header.ttl = TTL;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
memcpy(tt_response->src, primary_if->net_dev->dev_addr, ETH_ALEN);
memcpy(tt_response->dst, tt_request->src, ETH_ALEN);
tt_response->flags = TT_RESPONSE;
if (full_table)
tt_response->flags |= TT_FULL_TABLE;
bat_dbg(DBG_TT, bat_priv,
"Sending TT_RESPONSE to %pM via %pM [%c]\n",
orig_node->orig, neigh_node->addr,
(tt_response->flags & TT_FULL_TABLE ? 'F' : '.'));
send_skb_packet(skb, neigh_node->if_incoming, neigh_node->addr);
ret = true;
goto out;
unlock:
spin_unlock_bh(&bat_priv->tt_buff_lock);
out:
if (orig_node)
orig_node_free_ref(orig_node);
if (neigh_node)
neigh_node_free_ref(neigh_node);
if (primary_if)
hardif_free_ref(primary_if);
if (!ret)
kfree_skb(skb);
/* This packet was for me, so it doesn't need to be re-routed */
return true;
}
bool send_tt_response(struct bat_priv *bat_priv,
struct tt_query_packet *tt_request)
{
if (is_my_mac(tt_request->dst))
return send_my_tt_response(bat_priv, tt_request);
else
return send_other_tt_response(bat_priv, tt_request);
}
static void _tt_update_changes(struct bat_priv *bat_priv,
struct orig_node *orig_node,
struct tt_change *tt_change,
uint16_t tt_num_changes, uint8_t ttvn)
{
int i;
for (i = 0; i < tt_num_changes; i++) {
if ((tt_change + i)->flags & TT_CLIENT_DEL)
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
tt_global_del(bat_priv, orig_node,
(tt_change + i)->addr,
"tt removed by changes",
(tt_change + i)->flags & TT_CLIENT_ROAM);
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
else
if (!tt_global_add(bat_priv, orig_node,
(tt_change + i)->addr, ttvn, false,
(tt_change + i)->flags &
TT_CLIENT_WIFI))
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
/* In case of problem while storing a
* global_entry, we stop the updating
* procedure without committing the
* ttvn change. This will avoid to send
* corrupted data on tt_request
*/
return;
}
orig_node->tt_initialised = true;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
}
static void tt_fill_gtable(struct bat_priv *bat_priv,
struct tt_query_packet *tt_response)
{
struct orig_node *orig_node = NULL;
orig_node = orig_hash_find(bat_priv, tt_response->src);
if (!orig_node)
goto out;
/* Purge the old table first.. */
tt_global_del_orig(bat_priv, orig_node, "Received full table");
_tt_update_changes(bat_priv, orig_node,
(struct tt_change *)(tt_response + 1),
tt_response->tt_data, tt_response->ttvn);
spin_lock_bh(&orig_node->tt_buff_lock);
kfree(orig_node->tt_buff);
orig_node->tt_buff_len = 0;
orig_node->tt_buff = NULL;
spin_unlock_bh(&orig_node->tt_buff_lock);
atomic_set(&orig_node->last_ttvn, tt_response->ttvn);
out:
if (orig_node)
orig_node_free_ref(orig_node);
}
static void tt_update_changes(struct bat_priv *bat_priv,
struct orig_node *orig_node,
uint16_t tt_num_changes, uint8_t ttvn,
struct tt_change *tt_change)
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
{
_tt_update_changes(bat_priv, orig_node, tt_change, tt_num_changes,
ttvn);
tt_save_orig_buffer(bat_priv, orig_node, (unsigned char *)tt_change,
tt_num_changes);
atomic_set(&orig_node->last_ttvn, ttvn);
}
bool is_my_client(struct bat_priv *bat_priv, const uint8_t *addr)
{
struct tt_local_entry *tt_local_entry = NULL;
bool ret = false;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
tt_local_entry = tt_local_hash_find(bat_priv, addr);
if (!tt_local_entry)
goto out;
/* Check if the client has been logically deleted (but is kept for
* consistency purpose) */
if (tt_local_entry->common.flags & TT_CLIENT_PENDING)
goto out;
ret = true;
out:
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
if (tt_local_entry)
tt_local_entry_free_ref(tt_local_entry);
return ret;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
}
void handle_tt_response(struct bat_priv *bat_priv,
struct tt_query_packet *tt_response)
{
struct tt_req_node *node, *safe;
struct orig_node *orig_node = NULL;
bat_dbg(DBG_TT, bat_priv, "Received TT_RESPONSE from %pM for "
"ttvn %d t_size: %d [%c]\n",
tt_response->src, tt_response->ttvn,
tt_response->tt_data,
(tt_response->flags & TT_FULL_TABLE ? 'F' : '.'));
orig_node = orig_hash_find(bat_priv, tt_response->src);
if (!orig_node)
goto out;
if (tt_response->flags & TT_FULL_TABLE)
tt_fill_gtable(bat_priv, tt_response);
else
tt_update_changes(bat_priv, orig_node, tt_response->tt_data,
tt_response->ttvn,
(struct tt_change *)(tt_response + 1));
/* Delete the tt_req_node from pending tt_requests list */
spin_lock_bh(&bat_priv->tt_req_list_lock);
list_for_each_entry_safe(node, safe, &bat_priv->tt_req_list, list) {
if (!compare_eth(node->addr, tt_response->src))
continue;
list_del(&node->list);
kfree(node);
}
spin_unlock_bh(&bat_priv->tt_req_list_lock);
/* Recalculate the CRC for this orig_node and store it */
orig_node->tt_crc = tt_global_crc(bat_priv, orig_node);
/* Roaming phase is over: tables are in sync again. I can
* unset the flag */
orig_node->tt_poss_change = false;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
out:
if (orig_node)
orig_node_free_ref(orig_node);
}
int tt_init(struct bat_priv *bat_priv)
{
if (!tt_local_init(bat_priv))
return 0;
if (!tt_global_init(bat_priv))
return 0;
tt_start_timer(bat_priv);
return 1;
}
static void tt_roam_list_free(struct bat_priv *bat_priv)
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
{
struct tt_roam_node *node, *safe;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
spin_lock_bh(&bat_priv->tt_roam_list_lock);
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
list_for_each_entry_safe(node, safe, &bat_priv->tt_roam_list, list) {
list_del(&node->list);
kfree(node);
}
spin_unlock_bh(&bat_priv->tt_roam_list_lock);
}
static void tt_roam_purge(struct bat_priv *bat_priv)
{
struct tt_roam_node *node, *safe;
spin_lock_bh(&bat_priv->tt_roam_list_lock);
list_for_each_entry_safe(node, safe, &bat_priv->tt_roam_list, list) {
if (!has_timed_out(node->first_time, ROAMING_MAX_TIME))
continue;
list_del(&node->list);
kfree(node);
}
spin_unlock_bh(&bat_priv->tt_roam_list_lock);
}
/* This function checks whether the client already reached the
* maximum number of possible roaming phases. In this case the ROAMING_ADV
* will not be sent.
*
* returns true if the ROAMING_ADV can be sent, false otherwise */
static bool tt_check_roam_count(struct bat_priv *bat_priv,
uint8_t *client)
{
struct tt_roam_node *tt_roam_node;
bool ret = false;
spin_lock_bh(&bat_priv->tt_roam_list_lock);
/* The new tt_req will be issued only if I'm not waiting for a
* reply from the same orig_node yet */
list_for_each_entry(tt_roam_node, &bat_priv->tt_roam_list, list) {
if (!compare_eth(tt_roam_node->addr, client))
continue;
if (has_timed_out(tt_roam_node->first_time, ROAMING_MAX_TIME))
continue;
if (!atomic_dec_not_zero(&tt_roam_node->counter))
/* Sorry, you roamed too many times! */
goto unlock;
ret = true;
break;
}
if (!ret) {
tt_roam_node = kmalloc(sizeof(*tt_roam_node), GFP_ATOMIC);
if (!tt_roam_node)
goto unlock;
tt_roam_node->first_time = jiffies;
atomic_set(&tt_roam_node->counter, ROAMING_MAX_COUNT - 1);
memcpy(tt_roam_node->addr, client, ETH_ALEN);
list_add(&tt_roam_node->list, &bat_priv->tt_roam_list);
ret = true;
}
unlock:
spin_unlock_bh(&bat_priv->tt_roam_list_lock);
return ret;
}
void send_roam_adv(struct bat_priv *bat_priv, uint8_t *client,
struct orig_node *orig_node)
{
struct neigh_node *neigh_node = NULL;
struct sk_buff *skb = NULL;
struct roam_adv_packet *roam_adv_packet;
int ret = 1;
struct hard_iface *primary_if;
/* before going on we have to check whether the client has
* already roamed to us too many times */
if (!tt_check_roam_count(bat_priv, client))
goto out;
skb = dev_alloc_skb(sizeof(struct roam_adv_packet) + ETH_HLEN);
if (!skb)
goto out;
skb_reserve(skb, ETH_HLEN);
roam_adv_packet = (struct roam_adv_packet *)skb_put(skb,
sizeof(struct roam_adv_packet));
roam_adv_packet->header.packet_type = BAT_ROAM_ADV;
roam_adv_packet->header.version = COMPAT_VERSION;
roam_adv_packet->header.ttl = TTL;
primary_if = primary_if_get_selected(bat_priv);
if (!primary_if)
goto out;
memcpy(roam_adv_packet->src, primary_if->net_dev->dev_addr, ETH_ALEN);
hardif_free_ref(primary_if);
memcpy(roam_adv_packet->dst, orig_node->orig, ETH_ALEN);
memcpy(roam_adv_packet->client, client, ETH_ALEN);
neigh_node = orig_node_get_router(orig_node);
if (!neigh_node)
goto out;
bat_dbg(DBG_TT, bat_priv,
"Sending ROAMING_ADV to %pM (client %pM) via %pM\n",
orig_node->orig, client, neigh_node->addr);
send_skb_packet(skb, neigh_node->if_incoming, neigh_node->addr);
ret = 0;
out:
if (neigh_node)
neigh_node_free_ref(neigh_node);
if (ret)
kfree_skb(skb);
return;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
}
static void tt_purge(struct work_struct *work)
{
struct delayed_work *delayed_work =
container_of(work, struct delayed_work, work);
struct bat_priv *bat_priv =
container_of(delayed_work, struct bat_priv, tt_work);
tt_local_purge(bat_priv);
tt_global_roam_purge(bat_priv);
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
tt_req_purge(bat_priv);
tt_roam_purge(bat_priv);
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
tt_start_timer(bat_priv);
}
void tt_free(struct bat_priv *bat_priv)
{
cancel_delayed_work_sync(&bat_priv->tt_work);
tt_local_table_free(bat_priv);
tt_global_table_free(bat_priv);
tt_req_list_free(bat_priv);
tt_changes_list_free(bat_priv);
tt_roam_list_free(bat_priv);
kfree(bat_priv->tt_buff);
}
/* This function will enable or disable the specified flags for all the entries
* in the given hash table and returns the number of modified entries */
static uint16_t tt_set_flags(struct hashtable_t *hash, uint16_t flags,
bool enable)
{
uint32_t i;
uint16_t changed_num = 0;
struct hlist_head *head;
struct hlist_node *node;
struct tt_common_entry *tt_common_entry;
if (!hash)
goto out;
for (i = 0; i < hash->size; i++) {
head = &hash->table[i];
rcu_read_lock();
hlist_for_each_entry_rcu(tt_common_entry, node,
head, hash_entry) {
if (enable) {
if ((tt_common_entry->flags & flags) == flags)
continue;
tt_common_entry->flags |= flags;
} else {
if (!(tt_common_entry->flags & flags))
continue;
tt_common_entry->flags &= ~flags;
}
changed_num++;
}
rcu_read_unlock();
}
out:
return changed_num;
}
/* Purge out all the tt local entries marked with TT_CLIENT_PENDING */
static void tt_local_purge_pending_clients(struct bat_priv *bat_priv)
{
struct hashtable_t *hash = bat_priv->tt_local_hash;
struct tt_common_entry *tt_common_entry;
struct tt_local_entry *tt_local_entry;
struct hlist_node *node, *node_tmp;
struct hlist_head *head;
spinlock_t *list_lock; /* protects write access to the hash lists */
uint32_t i;
if (!hash)
return;
for (i = 0; i < hash->size; i++) {
head = &hash->table[i];
list_lock = &hash->list_locks[i];
spin_lock_bh(list_lock);
hlist_for_each_entry_safe(tt_common_entry, node, node_tmp,
head, hash_entry) {
if (!(tt_common_entry->flags & TT_CLIENT_PENDING))
continue;
bat_dbg(DBG_TT, bat_priv, "Deleting local tt entry "
"(%pM): pending\n", tt_common_entry->addr);
atomic_dec(&bat_priv->num_local_tt);
hlist_del_rcu(node);
tt_local_entry = container_of(tt_common_entry,
struct tt_local_entry,
common);
tt_local_entry_free_ref(tt_local_entry);
}
spin_unlock_bh(list_lock);
}
}
void tt_commit_changes(struct bat_priv *bat_priv)
{
uint16_t changed_num = tt_set_flags(bat_priv->tt_local_hash,
TT_CLIENT_NEW, false);
/* all the reset entries have now to be effectively counted as local
* entries */
atomic_add(changed_num, &bat_priv->num_local_tt);
tt_local_purge_pending_clients(bat_priv);
/* Increment the TTVN only once per OGM interval */
atomic_inc(&bat_priv->ttvn);
bat_priv->tt_poss_change = false;
}
bool is_ap_isolated(struct bat_priv *bat_priv, uint8_t *src, uint8_t *dst)
{
struct tt_local_entry *tt_local_entry = NULL;
struct tt_global_entry *tt_global_entry = NULL;
bool ret = true;
if (!atomic_read(&bat_priv->ap_isolation))
return false;
tt_local_entry = tt_local_hash_find(bat_priv, dst);
if (!tt_local_entry)
goto out;
tt_global_entry = tt_global_hash_find(bat_priv, src);
if (!tt_global_entry)
goto out;
if (_is_ap_isolated(tt_local_entry, tt_global_entry))
goto out;
ret = false;
out:
if (tt_global_entry)
tt_global_entry_free_ref(tt_global_entry);
if (tt_local_entry)
tt_local_entry_free_ref(tt_local_entry);
return ret;
}
void tt_update_orig(struct bat_priv *bat_priv, struct orig_node *orig_node,
const unsigned char *tt_buff, uint8_t tt_num_changes,
uint8_t ttvn, uint16_t tt_crc)
{
uint8_t orig_ttvn = (uint8_t)atomic_read(&orig_node->last_ttvn);
bool full_table = true;
/* orig table not initialised AND first diff is in the OGM OR the ttvn
* increased by one -> we can apply the attached changes */
if ((!orig_node->tt_initialised && ttvn == 1) ||
ttvn - orig_ttvn == 1) {
/* the OGM could not contain the changes due to their size or
* because they have already been sent TT_OGM_APPEND_MAX times.
* In this case send a tt request */
if (!tt_num_changes) {
full_table = false;
goto request_table;
}
tt_update_changes(bat_priv, orig_node, tt_num_changes, ttvn,
(struct tt_change *)tt_buff);
/* Even if we received the precomputed crc with the OGM, we
* prefer to recompute it to spot any possible inconsistency
* in the global table */
orig_node->tt_crc = tt_global_crc(bat_priv, orig_node);
/* The ttvn alone is not enough to guarantee consistency
* because a single value could represent different states
* (due to the wrap around). Thus a node has to check whether
* the resulting table (after applying the changes) is still
* consistent or not. E.g. a node could disconnect while its
* ttvn is X and reconnect on ttvn = X + TTVN_MAX: in this case
* checking the CRC value is mandatory to detect the
* inconsistency */
if (orig_node->tt_crc != tt_crc)
goto request_table;
/* Roaming phase is over: tables are in sync again. I can
* unset the flag */
orig_node->tt_poss_change = false;
} else {
/* if we missed more than one change or our tables are not
* in sync anymore -> request fresh tt data */
if (!orig_node->tt_initialised || ttvn != orig_ttvn ||
orig_node->tt_crc != tt_crc) {
request_table:
bat_dbg(DBG_TT, bat_priv, "TT inconsistency for %pM. "
"Need to retrieve the correct information "
"(ttvn: %u last_ttvn: %u crc: %u last_crc: "
"%u num_changes: %u)\n", orig_node->orig, ttvn,
orig_ttvn, tt_crc, orig_node->tt_crc,
tt_num_changes);
send_tt_request(bat_priv, orig_node, ttvn, tt_crc,
full_table);
return;
}
}
}