2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-25 05:34:00 +08:00
linux-next/drivers/dma-buf/dma-fence-chain.c

243 lines
6.4 KiB
C
Raw Normal View History

/*
* fence-chain: chain fences together in a timeline
*
* Copyright (C) 2018 Advanced Micro Devices, Inc.
* Authors:
* Christian König <christian.koenig@amd.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/dma-fence-chain.h>
static bool dma_fence_chain_enable_signaling(struct dma_fence *fence);
/**
* dma_fence_chain_get_prev - use RCU to get a reference to the previous fence
* @chain: chain node to get the previous node from
*
* Use dma_fence_get_rcu_safe to get a reference to the previous fence of the
* chain node.
*/
static struct dma_fence *dma_fence_chain_get_prev(struct dma_fence_chain *chain)
{
struct dma_fence *prev;
rcu_read_lock();
prev = dma_fence_get_rcu_safe(&chain->prev);
rcu_read_unlock();
return prev;
}
/**
* dma_fence_chain_walk - chain walking function
* @fence: current chain node
*
* Walk the chain to the next node. Returns the next fence or NULL if we are at
* the end of the chain. Garbage collects chain nodes which are already
* signaled.
*/
struct dma_fence *dma_fence_chain_walk(struct dma_fence *fence)
{
struct dma_fence_chain *chain, *prev_chain;
struct dma_fence *prev, *replacement, *tmp;
chain = to_dma_fence_chain(fence);
if (!chain) {
dma_fence_put(fence);
return NULL;
}
while ((prev = dma_fence_chain_get_prev(chain))) {
prev_chain = to_dma_fence_chain(prev);
if (prev_chain) {
if (!dma_fence_is_signaled(prev_chain->fence))
break;
replacement = dma_fence_chain_get_prev(prev_chain);
} else {
if (!dma_fence_is_signaled(prev))
break;
replacement = NULL;
}
tmp = cmpxchg((void **)&chain->prev, (void *)prev, (void *)replacement);
if (tmp == prev)
dma_fence_put(tmp);
else
dma_fence_put(replacement);
dma_fence_put(prev);
}
dma_fence_put(fence);
return prev;
}
EXPORT_SYMBOL(dma_fence_chain_walk);
/**
* dma_fence_chain_find_seqno - find fence chain node by seqno
* @pfence: pointer to the chain node where to start
* @seqno: the sequence number to search for
*
* Advance the fence pointer to the chain node which will signal this sequence
* number. If no sequence number is provided then this is a no-op.
*
* Returns EINVAL if the fence is not a chain node or the sequence number has
* not yet advanced far enough.
*/
int dma_fence_chain_find_seqno(struct dma_fence **pfence, uint64_t seqno)
{
struct dma_fence_chain *chain;
if (!seqno)
return 0;
chain = to_dma_fence_chain(*pfence);
if (!chain || chain->base.seqno < seqno)
return -EINVAL;
dma_fence_chain_for_each(*pfence, &chain->base) {
if ((*pfence)->context != chain->base.context ||
to_dma_fence_chain(*pfence)->prev_seqno < seqno)
break;
}
dma_fence_put(&chain->base);
return 0;
}
EXPORT_SYMBOL(dma_fence_chain_find_seqno);
static const char *dma_fence_chain_get_driver_name(struct dma_fence *fence)
{
return "dma_fence_chain";
}
static const char *dma_fence_chain_get_timeline_name(struct dma_fence *fence)
{
return "unbound";
}
static void dma_fence_chain_irq_work(struct irq_work *work)
{
struct dma_fence_chain *chain;
chain = container_of(work, typeof(*chain), work);
/* Try to rearm the callback */
if (!dma_fence_chain_enable_signaling(&chain->base))
/* Ok, we are done. No more unsignaled fences left */
dma_fence_signal(&chain->base);
dma_fence_put(&chain->base);
}
static void dma_fence_chain_cb(struct dma_fence *f, struct dma_fence_cb *cb)
{
struct dma_fence_chain *chain;
chain = container_of(cb, typeof(*chain), cb);
irq_work_queue(&chain->work);
dma_fence_put(f);
}
static bool dma_fence_chain_enable_signaling(struct dma_fence *fence)
{
struct dma_fence_chain *head = to_dma_fence_chain(fence);
dma_fence_get(&head->base);
dma_fence_chain_for_each(fence, &head->base) {
struct dma_fence_chain *chain = to_dma_fence_chain(fence);
struct dma_fence *f = chain ? chain->fence : fence;
dma_fence_get(f);
if (!dma_fence_add_callback(f, &head->cb, dma_fence_chain_cb)) {
dma_fence_put(fence);
return true;
}
dma_fence_put(f);
}
dma_fence_put(&head->base);
return false;
}
static bool dma_fence_chain_signaled(struct dma_fence *fence)
{
dma_fence_chain_for_each(fence, fence) {
struct dma_fence_chain *chain = to_dma_fence_chain(fence);
struct dma_fence *f = chain ? chain->fence : fence;
if (!dma_fence_is_signaled(f)) {
dma_fence_put(fence);
return false;
}
}
return true;
}
static void dma_fence_chain_release(struct dma_fence *fence)
{
struct dma_fence_chain *chain = to_dma_fence_chain(fence);
dma_fence_put(rcu_dereference_protected(chain->prev, true));
dma_fence_put(chain->fence);
dma_fence_free(fence);
}
const struct dma_fence_ops dma_fence_chain_ops = {
.use_64bit_seqno = true,
.get_driver_name = dma_fence_chain_get_driver_name,
.get_timeline_name = dma_fence_chain_get_timeline_name,
.enable_signaling = dma_fence_chain_enable_signaling,
.signaled = dma_fence_chain_signaled,
.release = dma_fence_chain_release,
};
EXPORT_SYMBOL(dma_fence_chain_ops);
/**
* dma_fence_chain_init - initialize a fence chain
* @chain: the chain node to initialize
* @prev: the previous fence
* @fence: the current fence
*
* Initialize a new chain node and either start a new chain or add the node to
* the existing chain of the previous fence.
*/
void dma_fence_chain_init(struct dma_fence_chain *chain,
struct dma_fence *prev,
struct dma_fence *fence,
uint64_t seqno)
{
struct dma_fence_chain *prev_chain = to_dma_fence_chain(prev);
uint64_t context;
spin_lock_init(&chain->lock);
rcu_assign_pointer(chain->prev, prev);
chain->fence = fence;
chain->prev_seqno = 0;
init_irq_work(&chain->work, dma_fence_chain_irq_work);
/* Try to reuse the context of the previous chain node. */
if (prev_chain && __dma_fence_is_later(seqno, prev->seqno, prev->ops)) {
context = prev->context;
chain->prev_seqno = prev->seqno;
} else {
context = dma_fence_context_alloc(1);
/* Make sure that we always have a valid sequence number. */
if (prev_chain)
seqno = max(prev->seqno, seqno);
}
dma_fence_init(&chain->base, &dma_fence_chain_ops,
&chain->lock, context, seqno);
}
EXPORT_SYMBOL(dma_fence_chain_init);