2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-07 05:04:04 +08:00
linux-next/kernel/watchdog_hld.c

264 lines
7.3 KiB
C
Raw Normal View History

/*
* Detect hard lockups on a system
*
* started by Don Zickus, Copyright (C) 2010 Red Hat, Inc.
*
* Note: Most of this code is borrowed heavily from the original softlockup
* detector, so thanks to Ingo for the initial implementation.
* Some chunks also taken from the old x86-specific nmi watchdog code, thanks
* to those contributors as well.
*/
#define pr_fmt(fmt) "NMI watchdog: " fmt
#include <linux/nmi.h>
#include <linux/module.h>
#include <linux/sched/debug.h>
#include <asm/irq_regs.h>
#include <linux/perf_event.h>
static DEFINE_PER_CPU(bool, hard_watchdog_warn);
static DEFINE_PER_CPU(bool, watchdog_nmi_touch);
static DEFINE_PER_CPU(struct perf_event *, watchdog_ev);
static unsigned long hardlockup_allcpu_dumped;
void arch_touch_nmi_watchdog(void)
{
/*
* Using __raw here because some code paths have
* preemption enabled. If preemption is enabled
* then interrupts should be enabled too, in which
* case we shouldn't have to worry about the watchdog
* going off.
*/
raw_cpu_write(watchdog_nmi_touch, true);
}
EXPORT_SYMBOL(arch_touch_nmi_watchdog);
kernel/watchdog: Prevent false positives with turbo modes The hardlockup detector on x86 uses a performance counter based on unhalted CPU cycles and a periodic hrtimer. The hrtimer period is about 2/5 of the performance counter period, so the hrtimer should fire 2-3 times before the performance counter NMI fires. The NMI code checks whether the hrtimer fired since the last invocation. If not, it assumess a hard lockup. The calculation of those periods is based on the nominal CPU frequency. Turbo modes increase the CPU clock frequency and therefore shorten the period of the perf/NMI watchdog. With extreme Turbo-modes (3x nominal frequency) the perf/NMI period is shorter than the hrtimer period which leads to false positives. A simple fix would be to shorten the hrtimer period, but that comes with the side effect of more frequent hrtimer and softlockup thread wakeups, which is not desired. Implement a low pass filter, which checks the perf/NMI period against kernel time. If the perf/NMI fires before 4/5 of the watchdog period has elapsed then the event is ignored and postponed to the next perf/NMI. That solves the problem and avoids the overhead of shorter hrtimer periods and more frequent softlockup thread wakeups. Fixes: 58687acba592 ("lockup_detector: Combine nmi_watchdog and softlockup detector") Reported-and-tested-by: Kan Liang <Kan.liang@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: dzickus@redhat.com Cc: prarit@redhat.com Cc: ak@linux.intel.com Cc: babu.moger@oracle.com Cc: peterz@infradead.org Cc: eranian@google.com Cc: acme@redhat.com Cc: stable@vger.kernel.org Cc: atomlin@redhat.com Cc: akpm@linux-foundation.org Cc: torvalds@linux-foundation.org Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1708150931310.1886@nanos
2017-08-15 15:50:13 +08:00
#ifdef CONFIG_HARDLOCKUP_CHECK_TIMESTAMP
static DEFINE_PER_CPU(ktime_t, last_timestamp);
static DEFINE_PER_CPU(unsigned int, nmi_rearmed);
static ktime_t watchdog_hrtimer_sample_threshold __read_mostly;
void watchdog_update_hrtimer_threshold(u64 period)
{
/*
* The hrtimer runs with a period of (watchdog_threshold * 2) / 5
*
* So it runs effectively with 2.5 times the rate of the NMI
* watchdog. That means the hrtimer should fire 2-3 times before
* the NMI watchdog expires. The NMI watchdog on x86 is based on
* unhalted CPU cycles, so if Turbo-Mode is enabled the CPU cycles
* might run way faster than expected and the NMI fires in a
* smaller period than the one deduced from the nominal CPU
* frequency. Depending on the Turbo-Mode factor this might be fast
* enough to get the NMI period smaller than the hrtimer watchdog
* period and trigger false positives.
*
* The sample threshold is used to check in the NMI handler whether
* the minimum time between two NMI samples has elapsed. That
* prevents false positives.
*
* Set this to 4/5 of the actual watchdog threshold period so the
* hrtimer is guaranteed to fire at least once within the real
* watchdog threshold.
*/
watchdog_hrtimer_sample_threshold = period * 2;
}
static bool watchdog_check_timestamp(void)
{
ktime_t delta, now = ktime_get_mono_fast_ns();
delta = now - __this_cpu_read(last_timestamp);
if (delta < watchdog_hrtimer_sample_threshold) {
/*
* If ktime is jiffies based, a stalled timer would prevent
* jiffies from being incremented and the filter would look
* at a stale timestamp and never trigger.
*/
if (__this_cpu_inc_return(nmi_rearmed) < 10)
return false;
}
__this_cpu_write(nmi_rearmed, 0);
__this_cpu_write(last_timestamp, now);
return true;
}
#else
static inline bool watchdog_check_timestamp(void)
{
return true;
}
#endif
static struct perf_event_attr wd_hw_attr = {
.type = PERF_TYPE_HARDWARE,
.config = PERF_COUNT_HW_CPU_CYCLES,
.size = sizeof(struct perf_event_attr),
.pinned = 1,
.disabled = 1,
};
/* Callback function for perf event subsystem */
static void watchdog_overflow_callback(struct perf_event *event,
struct perf_sample_data *data,
struct pt_regs *regs)
{
/* Ensure the watchdog never gets throttled */
event->hw.interrupts = 0;
if (atomic_read(&watchdog_park_in_progress) != 0)
return;
if (__this_cpu_read(watchdog_nmi_touch) == true) {
__this_cpu_write(watchdog_nmi_touch, false);
return;
}
kernel/watchdog: Prevent false positives with turbo modes The hardlockup detector on x86 uses a performance counter based on unhalted CPU cycles and a periodic hrtimer. The hrtimer period is about 2/5 of the performance counter period, so the hrtimer should fire 2-3 times before the performance counter NMI fires. The NMI code checks whether the hrtimer fired since the last invocation. If not, it assumess a hard lockup. The calculation of those periods is based on the nominal CPU frequency. Turbo modes increase the CPU clock frequency and therefore shorten the period of the perf/NMI watchdog. With extreme Turbo-modes (3x nominal frequency) the perf/NMI period is shorter than the hrtimer period which leads to false positives. A simple fix would be to shorten the hrtimer period, but that comes with the side effect of more frequent hrtimer and softlockup thread wakeups, which is not desired. Implement a low pass filter, which checks the perf/NMI period against kernel time. If the perf/NMI fires before 4/5 of the watchdog period has elapsed then the event is ignored and postponed to the next perf/NMI. That solves the problem and avoids the overhead of shorter hrtimer periods and more frequent softlockup thread wakeups. Fixes: 58687acba592 ("lockup_detector: Combine nmi_watchdog and softlockup detector") Reported-and-tested-by: Kan Liang <Kan.liang@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: dzickus@redhat.com Cc: prarit@redhat.com Cc: ak@linux.intel.com Cc: babu.moger@oracle.com Cc: peterz@infradead.org Cc: eranian@google.com Cc: acme@redhat.com Cc: stable@vger.kernel.org Cc: atomlin@redhat.com Cc: akpm@linux-foundation.org Cc: torvalds@linux-foundation.org Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1708150931310.1886@nanos
2017-08-15 15:50:13 +08:00
if (!watchdog_check_timestamp())
return;
/* check for a hardlockup
* This is done by making sure our timer interrupt
* is incrementing. The timer interrupt should have
* fired multiple times before we overflow'd. If it hasn't
* then this is a good indication the cpu is stuck
*/
if (is_hardlockup()) {
int this_cpu = smp_processor_id();
/* only print hardlockups once */
if (__this_cpu_read(hard_watchdog_warn) == true)
return;
pr_emerg("Watchdog detected hard LOCKUP on cpu %d", this_cpu);
print_modules();
print_irqtrace_events(current);
if (regs)
show_regs(regs);
else
dump_stack();
/*
* Perform all-CPU dump only once to avoid multiple hardlockups
* generating interleaving traces
*/
if (sysctl_hardlockup_all_cpu_backtrace &&
!test_and_set_bit(0, &hardlockup_allcpu_dumped))
trigger_allbutself_cpu_backtrace();
if (hardlockup_panic)
nmi_panic(regs, "Hard LOCKUP");
__this_cpu_write(hard_watchdog_warn, true);
return;
}
__this_cpu_write(hard_watchdog_warn, false);
return;
}
/*
* People like the simple clean cpu node info on boot.
* Reduce the watchdog noise by only printing messages
* that are different from what cpu0 displayed.
*/
kernel/watchdog.c: do not hardcode CPU 0 as the initial thread When CONFIG_BOOTPARAM_HOTPLUG_CPU0 is enabled, the socket containing the boot cpu can be replaced. During the hot add event, the message NMI watchdog: enabled on all CPUs, permanently consumes one hw-PMU counter. is output implying that the NMI watchdog was disabled at some point. This is not the case and the message has caused confusion for users of systems that support the removal of the boot cpu socket. The watchdog code is coded to assume that cpu 0 is always the first cpu to initialize the watchdog, and the last to stop its watchdog thread. That is not the case for initializing if cpu 0 has been removed and added. The removal case has never been correct because the smpboot code will remove the watchdog threads starting with the lowest cpu number. This patch adds watchdog_cpus to track the number of cpus with active NMI watchdog threads so that the first and last thread can be used to set and clear the value of firstcpu_err. firstcpu_err is set when the first watchdog thread is enabled, and cleared when the last watchdog thread is disabled. Link: http://lkml.kernel.org/r/1480425321-32296-1-git-send-email-prarit@redhat.com Signed-off-by: Prarit Bhargava <prarit@redhat.com> Acked-by: Don Zickus <dzickus@redhat.com> Cc: Borislav Petkov <bp@suse.de> Cc: Tejun Heo <tj@kernel.org> Cc: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Andi Kleen <ak@linux.intel.com> Cc: Joshua Hunt <johunt@akamai.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Babu Moger <babu.moger@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:40:56 +08:00
static unsigned long firstcpu_err;
static atomic_t watchdog_cpus;
int watchdog_nmi_enable(unsigned int cpu)
{
struct perf_event_attr *wd_attr;
struct perf_event *event = per_cpu(watchdog_ev, cpu);
kernel/watchdog.c: do not hardcode CPU 0 as the initial thread When CONFIG_BOOTPARAM_HOTPLUG_CPU0 is enabled, the socket containing the boot cpu can be replaced. During the hot add event, the message NMI watchdog: enabled on all CPUs, permanently consumes one hw-PMU counter. is output implying that the NMI watchdog was disabled at some point. This is not the case and the message has caused confusion for users of systems that support the removal of the boot cpu socket. The watchdog code is coded to assume that cpu 0 is always the first cpu to initialize the watchdog, and the last to stop its watchdog thread. That is not the case for initializing if cpu 0 has been removed and added. The removal case has never been correct because the smpboot code will remove the watchdog threads starting with the lowest cpu number. This patch adds watchdog_cpus to track the number of cpus with active NMI watchdog threads so that the first and last thread can be used to set and clear the value of firstcpu_err. firstcpu_err is set when the first watchdog thread is enabled, and cleared when the last watchdog thread is disabled. Link: http://lkml.kernel.org/r/1480425321-32296-1-git-send-email-prarit@redhat.com Signed-off-by: Prarit Bhargava <prarit@redhat.com> Acked-by: Don Zickus <dzickus@redhat.com> Cc: Borislav Petkov <bp@suse.de> Cc: Tejun Heo <tj@kernel.org> Cc: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Andi Kleen <ak@linux.intel.com> Cc: Joshua Hunt <johunt@akamai.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Babu Moger <babu.moger@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:40:56 +08:00
int firstcpu = 0;
/* nothing to do if the hard lockup detector is disabled */
if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
goto out;
/* is it already setup and enabled? */
if (event && event->state > PERF_EVENT_STATE_OFF)
goto out;
/* it is setup but not enabled */
if (event != NULL)
goto out_enable;
kernel/watchdog.c: do not hardcode CPU 0 as the initial thread When CONFIG_BOOTPARAM_HOTPLUG_CPU0 is enabled, the socket containing the boot cpu can be replaced. During the hot add event, the message NMI watchdog: enabled on all CPUs, permanently consumes one hw-PMU counter. is output implying that the NMI watchdog was disabled at some point. This is not the case and the message has caused confusion for users of systems that support the removal of the boot cpu socket. The watchdog code is coded to assume that cpu 0 is always the first cpu to initialize the watchdog, and the last to stop its watchdog thread. That is not the case for initializing if cpu 0 has been removed and added. The removal case has never been correct because the smpboot code will remove the watchdog threads starting with the lowest cpu number. This patch adds watchdog_cpus to track the number of cpus with active NMI watchdog threads so that the first and last thread can be used to set and clear the value of firstcpu_err. firstcpu_err is set when the first watchdog thread is enabled, and cleared when the last watchdog thread is disabled. Link: http://lkml.kernel.org/r/1480425321-32296-1-git-send-email-prarit@redhat.com Signed-off-by: Prarit Bhargava <prarit@redhat.com> Acked-by: Don Zickus <dzickus@redhat.com> Cc: Borislav Petkov <bp@suse.de> Cc: Tejun Heo <tj@kernel.org> Cc: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Andi Kleen <ak@linux.intel.com> Cc: Joshua Hunt <johunt@akamai.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Babu Moger <babu.moger@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:40:56 +08:00
if (atomic_inc_return(&watchdog_cpus) == 1)
firstcpu = 1;
wd_attr = &wd_hw_attr;
wd_attr->sample_period = hw_nmi_get_sample_period(watchdog_thresh);
/* Try to register using hardware perf events */
event = perf_event_create_kernel_counter(wd_attr, cpu, NULL, watchdog_overflow_callback, NULL);
kernel/watchdog.c: do not hardcode CPU 0 as the initial thread When CONFIG_BOOTPARAM_HOTPLUG_CPU0 is enabled, the socket containing the boot cpu can be replaced. During the hot add event, the message NMI watchdog: enabled on all CPUs, permanently consumes one hw-PMU counter. is output implying that the NMI watchdog was disabled at some point. This is not the case and the message has caused confusion for users of systems that support the removal of the boot cpu socket. The watchdog code is coded to assume that cpu 0 is always the first cpu to initialize the watchdog, and the last to stop its watchdog thread. That is not the case for initializing if cpu 0 has been removed and added. The removal case has never been correct because the smpboot code will remove the watchdog threads starting with the lowest cpu number. This patch adds watchdog_cpus to track the number of cpus with active NMI watchdog threads so that the first and last thread can be used to set and clear the value of firstcpu_err. firstcpu_err is set when the first watchdog thread is enabled, and cleared when the last watchdog thread is disabled. Link: http://lkml.kernel.org/r/1480425321-32296-1-git-send-email-prarit@redhat.com Signed-off-by: Prarit Bhargava <prarit@redhat.com> Acked-by: Don Zickus <dzickus@redhat.com> Cc: Borislav Petkov <bp@suse.de> Cc: Tejun Heo <tj@kernel.org> Cc: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Andi Kleen <ak@linux.intel.com> Cc: Joshua Hunt <johunt@akamai.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Babu Moger <babu.moger@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:40:56 +08:00
/* save the first cpu's error for future comparision */
if (firstcpu && IS_ERR(event))
firstcpu_err = PTR_ERR(event);
if (!IS_ERR(event)) {
kernel/watchdog.c: do not hardcode CPU 0 as the initial thread When CONFIG_BOOTPARAM_HOTPLUG_CPU0 is enabled, the socket containing the boot cpu can be replaced. During the hot add event, the message NMI watchdog: enabled on all CPUs, permanently consumes one hw-PMU counter. is output implying that the NMI watchdog was disabled at some point. This is not the case and the message has caused confusion for users of systems that support the removal of the boot cpu socket. The watchdog code is coded to assume that cpu 0 is always the first cpu to initialize the watchdog, and the last to stop its watchdog thread. That is not the case for initializing if cpu 0 has been removed and added. The removal case has never been correct because the smpboot code will remove the watchdog threads starting with the lowest cpu number. This patch adds watchdog_cpus to track the number of cpus with active NMI watchdog threads so that the first and last thread can be used to set and clear the value of firstcpu_err. firstcpu_err is set when the first watchdog thread is enabled, and cleared when the last watchdog thread is disabled. Link: http://lkml.kernel.org/r/1480425321-32296-1-git-send-email-prarit@redhat.com Signed-off-by: Prarit Bhargava <prarit@redhat.com> Acked-by: Don Zickus <dzickus@redhat.com> Cc: Borislav Petkov <bp@suse.de> Cc: Tejun Heo <tj@kernel.org> Cc: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Andi Kleen <ak@linux.intel.com> Cc: Joshua Hunt <johunt@akamai.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Babu Moger <babu.moger@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:40:56 +08:00
/* only print for the first cpu initialized */
if (firstcpu || firstcpu_err)
pr_info("enabled on all CPUs, permanently consumes one hw-PMU counter.\n");
goto out_save;
}
/*
* Disable the hard lockup detector if _any_ CPU fails to set up
* set up the hardware perf event. The watchdog() function checks
* the NMI_WATCHDOG_ENABLED bit periodically.
*
* The barriers are for syncing up watchdog_enabled across all the
* cpus, as clear_bit() does not use barriers.
*/
smp_mb__before_atomic();
clear_bit(NMI_WATCHDOG_ENABLED_BIT, &watchdog_enabled);
smp_mb__after_atomic();
/* skip displaying the same error again */
kernel/watchdog.c: do not hardcode CPU 0 as the initial thread When CONFIG_BOOTPARAM_HOTPLUG_CPU0 is enabled, the socket containing the boot cpu can be replaced. During the hot add event, the message NMI watchdog: enabled on all CPUs, permanently consumes one hw-PMU counter. is output implying that the NMI watchdog was disabled at some point. This is not the case and the message has caused confusion for users of systems that support the removal of the boot cpu socket. The watchdog code is coded to assume that cpu 0 is always the first cpu to initialize the watchdog, and the last to stop its watchdog thread. That is not the case for initializing if cpu 0 has been removed and added. The removal case has never been correct because the smpboot code will remove the watchdog threads starting with the lowest cpu number. This patch adds watchdog_cpus to track the number of cpus with active NMI watchdog threads so that the first and last thread can be used to set and clear the value of firstcpu_err. firstcpu_err is set when the first watchdog thread is enabled, and cleared when the last watchdog thread is disabled. Link: http://lkml.kernel.org/r/1480425321-32296-1-git-send-email-prarit@redhat.com Signed-off-by: Prarit Bhargava <prarit@redhat.com> Acked-by: Don Zickus <dzickus@redhat.com> Cc: Borislav Petkov <bp@suse.de> Cc: Tejun Heo <tj@kernel.org> Cc: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Andi Kleen <ak@linux.intel.com> Cc: Joshua Hunt <johunt@akamai.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Babu Moger <babu.moger@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:40:56 +08:00
if (!firstcpu && (PTR_ERR(event) == firstcpu_err))
return PTR_ERR(event);
/* vary the KERN level based on the returned errno */
if (PTR_ERR(event) == -EOPNOTSUPP)
pr_info("disabled (cpu%i): not supported (no LAPIC?)\n", cpu);
else if (PTR_ERR(event) == -ENOENT)
pr_warn("disabled (cpu%i): hardware events not enabled\n",
cpu);
else
pr_err("disabled (cpu%i): unable to create perf event: %ld\n",
cpu, PTR_ERR(event));
pr_info("Shutting down hard lockup detector on all cpus\n");
return PTR_ERR(event);
/* success path */
out_save:
per_cpu(watchdog_ev, cpu) = event;
out_enable:
perf_event_enable(per_cpu(watchdog_ev, cpu));
out:
return 0;
}
void watchdog_nmi_disable(unsigned int cpu)
{
struct perf_event *event = per_cpu(watchdog_ev, cpu);
if (event) {
perf_event_disable(event);
per_cpu(watchdog_ev, cpu) = NULL;
/* should be in cleanup, but blocks oprofile */
perf_event_release_kernel(event);
kernel/watchdog.c: do not hardcode CPU 0 as the initial thread When CONFIG_BOOTPARAM_HOTPLUG_CPU0 is enabled, the socket containing the boot cpu can be replaced. During the hot add event, the message NMI watchdog: enabled on all CPUs, permanently consumes one hw-PMU counter. is output implying that the NMI watchdog was disabled at some point. This is not the case and the message has caused confusion for users of systems that support the removal of the boot cpu socket. The watchdog code is coded to assume that cpu 0 is always the first cpu to initialize the watchdog, and the last to stop its watchdog thread. That is not the case for initializing if cpu 0 has been removed and added. The removal case has never been correct because the smpboot code will remove the watchdog threads starting with the lowest cpu number. This patch adds watchdog_cpus to track the number of cpus with active NMI watchdog threads so that the first and last thread can be used to set and clear the value of firstcpu_err. firstcpu_err is set when the first watchdog thread is enabled, and cleared when the last watchdog thread is disabled. Link: http://lkml.kernel.org/r/1480425321-32296-1-git-send-email-prarit@redhat.com Signed-off-by: Prarit Bhargava <prarit@redhat.com> Acked-by: Don Zickus <dzickus@redhat.com> Cc: Borislav Petkov <bp@suse.de> Cc: Tejun Heo <tj@kernel.org> Cc: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Andi Kleen <ak@linux.intel.com> Cc: Joshua Hunt <johunt@akamai.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Babu Moger <babu.moger@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:40:56 +08:00
/* watchdog_nmi_enable() expects this to be zero initially. */
kernel/watchdog.c: do not hardcode CPU 0 as the initial thread When CONFIG_BOOTPARAM_HOTPLUG_CPU0 is enabled, the socket containing the boot cpu can be replaced. During the hot add event, the message NMI watchdog: enabled on all CPUs, permanently consumes one hw-PMU counter. is output implying that the NMI watchdog was disabled at some point. This is not the case and the message has caused confusion for users of systems that support the removal of the boot cpu socket. The watchdog code is coded to assume that cpu 0 is always the first cpu to initialize the watchdog, and the last to stop its watchdog thread. That is not the case for initializing if cpu 0 has been removed and added. The removal case has never been correct because the smpboot code will remove the watchdog threads starting with the lowest cpu number. This patch adds watchdog_cpus to track the number of cpus with active NMI watchdog threads so that the first and last thread can be used to set and clear the value of firstcpu_err. firstcpu_err is set when the first watchdog thread is enabled, and cleared when the last watchdog thread is disabled. Link: http://lkml.kernel.org/r/1480425321-32296-1-git-send-email-prarit@redhat.com Signed-off-by: Prarit Bhargava <prarit@redhat.com> Acked-by: Don Zickus <dzickus@redhat.com> Cc: Borislav Petkov <bp@suse.de> Cc: Tejun Heo <tj@kernel.org> Cc: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Andi Kleen <ak@linux.intel.com> Cc: Joshua Hunt <johunt@akamai.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Babu Moger <babu.moger@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:40:56 +08:00
if (atomic_dec_and_test(&watchdog_cpus))
firstcpu_err = 0;
}
}