2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 07:34:08 +08:00
linux-next/drivers/net/wireless/zd1201.c

1922 lines
46 KiB
C
Raw Normal View History

/*
* Driver for ZyDAS zd1201 based wireless USB devices.
*
* Copyright (c) 2004, 2005 Jeroen Vreeken (pe1rxq@amsat.org)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* Parts of this driver have been derived from a wlan-ng version
* modified by ZyDAS. They also made documentation available, thanks!
* Copyright (C) 1999 AbsoluteValue Systems, Inc. All Rights Reserved.
*/
#include <linux/module.h>
#include <linux/usb.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/wireless.h>
#include <linux/ieee80211.h>
#include <net/iw_handler.h>
#include <linux/string.h>
#include <linux/if_arp.h>
#include <linux/firmware.h>
#include "zd1201.h"
static struct usb_device_id zd1201_table[] = {
{USB_DEVICE(0x0586, 0x3400)}, /* Peabird Wireless USB Adapter */
{USB_DEVICE(0x0ace, 0x1201)}, /* ZyDAS ZD1201 Wireless USB Adapter */
{USB_DEVICE(0x050d, 0x6051)}, /* Belkin F5D6051 usb adapter */
{USB_DEVICE(0x0db0, 0x6823)}, /* MSI UB11B usb adapter */
{USB_DEVICE(0x1044, 0x8004)}, /* Gigabyte GN-WLBZ101 */
{USB_DEVICE(0x1044, 0x8005)}, /* GIGABYTE GN-WLBZ201 usb adapter */
{}
};
static int ap; /* Are we an AP or a normal station? */
#define ZD1201_VERSION "0.15"
MODULE_AUTHOR("Jeroen Vreeken <pe1rxq@amsat.org>");
MODULE_DESCRIPTION("Driver for ZyDAS ZD1201 based USB Wireless adapters");
MODULE_VERSION(ZD1201_VERSION);
MODULE_LICENSE("GPL");
module_param(ap, int, 0);
MODULE_PARM_DESC(ap, "If non-zero Access Point firmware will be loaded");
MODULE_DEVICE_TABLE(usb, zd1201_table);
static int zd1201_fw_upload(struct usb_device *dev, int apfw)
{
const struct firmware *fw_entry;
const char *data;
unsigned long len;
int err;
unsigned char ret;
char *buf;
char *fwfile;
if (apfw)
fwfile = "zd1201-ap.fw";
else
fwfile = "zd1201.fw";
err = request_firmware(&fw_entry, fwfile, &dev->dev);
if (err) {
dev_err(&dev->dev, "Failed to load %s firmware file!\n", fwfile);
dev_err(&dev->dev, "Make sure the hotplug firmware loader is installed.\n");
dev_err(&dev->dev, "Goto http://linux-lc100020.sourceforge.net for more info.\n");
return err;
}
data = fw_entry->data;
len = fw_entry->size;
buf = kmalloc(1024, GFP_ATOMIC);
if (!buf)
goto exit;
while (len > 0) {
int translen = (len > 1024) ? 1024 : len;
memcpy(buf, data, translen);
err = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 0,
USB_DIR_OUT | 0x40, 0, 0, buf, translen,
ZD1201_FW_TIMEOUT);
if (err < 0)
goto exit;
len -= translen;
data += translen;
}
err = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 0x2,
USB_DIR_OUT | 0x40, 0, 0, NULL, 0, ZD1201_FW_TIMEOUT);
if (err < 0)
goto exit;
err = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 0x4,
USB_DIR_IN | 0x40, 0,0, &ret, sizeof(ret), ZD1201_FW_TIMEOUT);
if (err < 0)
goto exit;
if (ret & 0x80) {
err = -EIO;
goto exit;
}
err = 0;
exit:
kfree(buf);
release_firmware(fw_entry);
return err;
}
MODULE_FIRMWARE("zd1201-ap.fw");
MODULE_FIRMWARE("zd1201.fw");
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
static void zd1201_usbfree(struct urb *urb)
{
struct zd1201 *zd = urb->context;
switch(urb->status) {
case -EILSEQ:
case -ENODEV:
case -ETIME:
case -ENOENT:
case -EPIPE:
case -EOVERFLOW:
case -ESHUTDOWN:
dev_warn(&zd->usb->dev, "%s: urb failed: %d\n",
zd->dev->name, urb->status);
}
kfree(urb->transfer_buffer);
usb_free_urb(urb);
}
/* cmdreq message:
u32 type
u16 cmd
u16 parm0
u16 parm1
u16 parm2
u8 pad[4]
total: 4 + 2 + 2 + 2 + 2 + 4 = 16
*/
static int zd1201_docmd(struct zd1201 *zd, int cmd, int parm0,
int parm1, int parm2)
{
unsigned char *command;
int ret;
struct urb *urb;
command = kmalloc(16, GFP_ATOMIC);
if (!command)
return -ENOMEM;
*((__le32*)command) = cpu_to_le32(ZD1201_USB_CMDREQ);
*((__le16*)&command[4]) = cpu_to_le16(cmd);
*((__le16*)&command[6]) = cpu_to_le16(parm0);
*((__le16*)&command[8]) = cpu_to_le16(parm1);
*((__le16*)&command[10])= cpu_to_le16(parm2);
urb = usb_alloc_urb(0, GFP_ATOMIC);
if (!urb) {
kfree(command);
return -ENOMEM;
}
usb_fill_bulk_urb(urb, zd->usb, usb_sndbulkpipe(zd->usb, zd->endp_out2),
command, 16, zd1201_usbfree, zd);
ret = usb_submit_urb(urb, GFP_ATOMIC);
if (ret) {
kfree(command);
usb_free_urb(urb);
}
return ret;
}
/* Callback after sending out a packet */
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
static void zd1201_usbtx(struct urb *urb)
{
struct zd1201 *zd = urb->context;
netif_wake_queue(zd->dev);
}
/* Incoming data */
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
static void zd1201_usbrx(struct urb *urb)
{
struct zd1201 *zd = urb->context;
int free = 0;
unsigned char *data = urb->transfer_buffer;
struct sk_buff *skb;
unsigned char type;
if (!zd)
return;
switch(urb->status) {
case -EILSEQ:
case -ENODEV:
case -ETIME:
case -ENOENT:
case -EPIPE:
case -EOVERFLOW:
case -ESHUTDOWN:
dev_warn(&zd->usb->dev, "%s: rx urb failed: %d\n",
zd->dev->name, urb->status);
free = 1;
goto exit;
}
if (urb->status != 0 || urb->actual_length == 0)
goto resubmit;
type = data[0];
if (type == ZD1201_PACKET_EVENTSTAT || type == ZD1201_PACKET_RESOURCE) {
memcpy(zd->rxdata, data, urb->actual_length);
zd->rxlen = urb->actual_length;
zd->rxdatas = 1;
wake_up(&zd->rxdataq);
}
/* Info frame */
if (type == ZD1201_PACKET_INQUIRE) {
int i = 0;
unsigned short infotype, framelen, copylen;
framelen = le16_to_cpu(*(__le16*)&data[4]);
infotype = le16_to_cpu(*(__le16*)&data[6]);
if (infotype == ZD1201_INF_LINKSTATUS) {
short linkstatus;
linkstatus = le16_to_cpu(*(__le16*)&data[8]);
switch(linkstatus) {
case 1:
netif_carrier_on(zd->dev);
break;
case 2:
netif_carrier_off(zd->dev);
break;
case 3:
netif_carrier_off(zd->dev);
break;
case 4:
netif_carrier_on(zd->dev);
break;
default:
netif_carrier_off(zd->dev);
}
goto resubmit;
}
if (infotype == ZD1201_INF_ASSOCSTATUS) {
short status = le16_to_cpu(*(__le16*)(data+8));
int event;
union iwreq_data wrqu;
switch (status) {
case ZD1201_ASSOCSTATUS_STAASSOC:
case ZD1201_ASSOCSTATUS_REASSOC:
event = IWEVREGISTERED;
break;
case ZD1201_ASSOCSTATUS_DISASSOC:
case ZD1201_ASSOCSTATUS_ASSOCFAIL:
case ZD1201_ASSOCSTATUS_AUTHFAIL:
default:
event = IWEVEXPIRED;
}
memcpy(wrqu.addr.sa_data, data+10, ETH_ALEN);
wrqu.addr.sa_family = ARPHRD_ETHER;
/* Send event to user space */
wireless_send_event(zd->dev, event, &wrqu, NULL);
goto resubmit;
}
if (infotype == ZD1201_INF_AUTHREQ) {
union iwreq_data wrqu;
memcpy(wrqu.addr.sa_data, data+8, ETH_ALEN);
wrqu.addr.sa_family = ARPHRD_ETHER;
/* There isn't a event that trully fits this request.
We assume that userspace will be smart enough to
see a new station being expired and sends back a
authstation ioctl to authorize it. */
wireless_send_event(zd->dev, IWEVEXPIRED, &wrqu, NULL);
goto resubmit;
}
/* Other infotypes are handled outside this handler */
zd->rxlen = 0;
while (i < urb->actual_length) {
copylen = le16_to_cpu(*(__le16*)&data[i+2]);
/* Sanity check, sometimes we get junk */
if (copylen+zd->rxlen > sizeof(zd->rxdata))
break;
memcpy(zd->rxdata+zd->rxlen, data+i+4, copylen);
zd->rxlen += copylen;
i += 64;
}
if (i >= urb->actual_length) {
zd->rxdatas = 1;
wake_up(&zd->rxdataq);
}
goto resubmit;
}
/* Actual data */
if (data[urb->actual_length-1] == ZD1201_PACKET_RXDATA) {
int datalen = urb->actual_length-1;
unsigned short len, fc, seq;
struct hlist_node *node;
len = ntohs(*(__be16 *)&data[datalen-2]);
if (len>datalen)
len=datalen;
fc = le16_to_cpu(*(__le16 *)&data[datalen-16]);
seq = le16_to_cpu(*(__le16 *)&data[datalen-24]);
if (zd->monitor) {
if (datalen < 24)
goto resubmit;
if (!(skb = dev_alloc_skb(datalen+24)))
goto resubmit;
memcpy(skb_put(skb, 2), &data[datalen-16], 2);
memcpy(skb_put(skb, 2), &data[datalen-2], 2);
memcpy(skb_put(skb, 6), &data[datalen-14], 6);
memcpy(skb_put(skb, 6), &data[datalen-22], 6);
memcpy(skb_put(skb, 6), &data[datalen-8], 6);
memcpy(skb_put(skb, 2), &data[datalen-24], 2);
memcpy(skb_put(skb, len), data, len);
skb->protocol = eth_type_trans(skb, zd->dev);
zd->dev->stats.rx_packets++;
zd->dev->stats.rx_bytes += skb->len;
netif_rx(skb);
goto resubmit;
}
if ((seq & IEEE80211_SCTL_FRAG) ||
(fc & IEEE80211_FCTL_MOREFRAGS)) {
struct zd1201_frag *frag = NULL;
char *ptr;
if (datalen<14)
goto resubmit;
if ((seq & IEEE80211_SCTL_FRAG) == 0) {
frag = kmalloc(sizeof(*frag), GFP_ATOMIC);
if (!frag)
goto resubmit;
skb = dev_alloc_skb(IEEE80211_MAX_DATA_LEN +14+2);
if (!skb) {
kfree(frag);
goto resubmit;
}
frag->skb = skb;
frag->seq = seq & IEEE80211_SCTL_SEQ;
skb_reserve(skb, 2);
memcpy(skb_put(skb, 12), &data[datalen-14], 12);
memcpy(skb_put(skb, 2), &data[6], 2);
memcpy(skb_put(skb, len), data+8, len);
hlist_add_head(&frag->fnode, &zd->fraglist);
goto resubmit;
}
hlist_for_each_entry(frag, node, &zd->fraglist, fnode)
if (frag->seq == (seq&IEEE80211_SCTL_SEQ))
break;
if (!frag)
goto resubmit;
skb = frag->skb;
ptr = skb_put(skb, len);
if (ptr)
memcpy(ptr, data+8, len);
if (fc & IEEE80211_FCTL_MOREFRAGS)
goto resubmit;
hlist_del_init(&frag->fnode);
kfree(frag);
} else {
if (datalen<14)
goto resubmit;
skb = dev_alloc_skb(len + 14 + 2);
if (!skb)
goto resubmit;
skb_reserve(skb, 2);
memcpy(skb_put(skb, 12), &data[datalen-14], 12);
memcpy(skb_put(skb, 2), &data[6], 2);
memcpy(skb_put(skb, len), data+8, len);
}
skb->protocol = eth_type_trans(skb, zd->dev);
zd->dev->stats.rx_packets++;
zd->dev->stats.rx_bytes += skb->len;
netif_rx(skb);
}
resubmit:
memset(data, 0, ZD1201_RXSIZE);
urb->status = 0;
urb->dev = zd->usb;
if(usb_submit_urb(urb, GFP_ATOMIC))
free = 1;
exit:
if (free) {
zd->rxlen = 0;
zd->rxdatas = 1;
wake_up(&zd->rxdataq);
kfree(urb->transfer_buffer);
}
}
static int zd1201_getconfig(struct zd1201 *zd, int rid, void *riddata,
unsigned int riddatalen)
{
int err;
int i = 0;
int code;
int rid_fid;
int length;
unsigned char *pdata;
zd->rxdatas = 0;
err = zd1201_docmd(zd, ZD1201_CMDCODE_ACCESS, rid, 0, 0);
if (err)
return err;
wait_event_interruptible(zd->rxdataq, zd->rxdatas);
if (!zd->rxlen)
return -EIO;
code = le16_to_cpu(*(__le16*)(&zd->rxdata[4]));
rid_fid = le16_to_cpu(*(__le16*)(&zd->rxdata[6]));
length = le16_to_cpu(*(__le16*)(&zd->rxdata[8]));
if (length > zd->rxlen)
length = zd->rxlen-6;
/* If access bit is not on, then error */
if ((code & ZD1201_ACCESSBIT) != ZD1201_ACCESSBIT || rid_fid != rid )
return -EINVAL;
/* Not enough buffer for allocating data */
if (riddatalen != (length - 4)) {
dev_dbg(&zd->usb->dev, "riddatalen mismatches, expected=%u, (packet=%u) length=%u, rid=0x%04X, rid_fid=0x%04X\n",
riddatalen, zd->rxlen, length, rid, rid_fid);
return -ENODATA;
}
zd->rxdatas = 0;
/* Issue SetRxRid commnd */
err = zd1201_docmd(zd, ZD1201_CMDCODE_SETRXRID, rid, 0, length);
if (err)
return err;
/* Receive RID record from resource packets */
wait_event_interruptible(zd->rxdataq, zd->rxdatas);
if (!zd->rxlen)
return -EIO;
if (zd->rxdata[zd->rxlen - 1] != ZD1201_PACKET_RESOURCE) {
dev_dbg(&zd->usb->dev, "Packet type mismatch: 0x%x not 0x3\n",
zd->rxdata[zd->rxlen-1]);
return -EINVAL;
}
/* Set the data pointer and received data length */
pdata = zd->rxdata;
length = zd->rxlen;
do {
int actual_length;
actual_length = (length > 64) ? 64 : length;
if (pdata[0] != 0x3) {
dev_dbg(&zd->usb->dev, "Rx Resource packet type error: %02X\n",
pdata[0]);
return -EINVAL;
}
if (actual_length != 64) {
/* Trim the last packet type byte */
actual_length--;
}
/* Skip the 4 bytes header (RID length and RID) */
if (i == 0) {
pdata += 8;
actual_length -= 8;
} else {
pdata += 4;
actual_length -= 4;
}
memcpy(riddata, pdata, actual_length);
riddata += actual_length;
pdata += actual_length;
length -= 64;
i++;
} while (length > 0);
return 0;
}
/*
* resreq:
* byte type
* byte sequence
* u16 reserved
* byte data[12]
* total: 16
*/
static int zd1201_setconfig(struct zd1201 *zd, int rid, void *buf, int len, int wait)
{
int err;
unsigned char *request;
int reqlen;
char seq=0;
struct urb *urb;
gfp_t gfp_mask = wait ? GFP_NOIO : GFP_ATOMIC;
len += 4; /* first 4 are for header */
zd->rxdatas = 0;
zd->rxlen = 0;
for (seq=0; len > 0; seq++) {
request = kmalloc(16, gfp_mask);
if (!request)
return -ENOMEM;
urb = usb_alloc_urb(0, gfp_mask);
if (!urb) {
kfree(request);
return -ENOMEM;
}
memset(request, 0, 16);
reqlen = len>12 ? 12 : len;
request[0] = ZD1201_USB_RESREQ;
request[1] = seq;
request[2] = 0;
request[3] = 0;
if (request[1] == 0) {
/* add header */
*(__le16*)&request[4] = cpu_to_le16((len-2+1)/2);
*(__le16*)&request[6] = cpu_to_le16(rid);
memcpy(request+8, buf, reqlen-4);
buf += reqlen-4;
} else {
memcpy(request+4, buf, reqlen);
buf += reqlen;
}
len -= reqlen;
usb_fill_bulk_urb(urb, zd->usb, usb_sndbulkpipe(zd->usb,
zd->endp_out2), request, 16, zd1201_usbfree, zd);
err = usb_submit_urb(urb, gfp_mask);
if (err)
goto err;
}
request = kmalloc(16, gfp_mask);
if (!request)
return -ENOMEM;
urb = usb_alloc_urb(0, gfp_mask);
if (!urb) {
kfree(request);
return -ENOMEM;
}
*((__le32*)request) = cpu_to_le32(ZD1201_USB_CMDREQ);
*((__le16*)&request[4]) =
cpu_to_le16(ZD1201_CMDCODE_ACCESS|ZD1201_ACCESSBIT);
*((__le16*)&request[6]) = cpu_to_le16(rid);
*((__le16*)&request[8]) = cpu_to_le16(0);
*((__le16*)&request[10]) = cpu_to_le16(0);
usb_fill_bulk_urb(urb, zd->usb, usb_sndbulkpipe(zd->usb, zd->endp_out2),
request, 16, zd1201_usbfree, zd);
err = usb_submit_urb(urb, gfp_mask);
if (err)
goto err;
if (wait) {
wait_event_interruptible(zd->rxdataq, zd->rxdatas);
if (!zd->rxlen || le16_to_cpu(*(__le16*)&zd->rxdata[6]) != rid) {
dev_dbg(&zd->usb->dev, "wrong or no RID received\n");
}
}
return 0;
err:
kfree(request);
usb_free_urb(urb);
return err;
}
static inline int zd1201_getconfig16(struct zd1201 *zd, int rid, short *val)
{
int err;
__le16 zdval;
err = zd1201_getconfig(zd, rid, &zdval, sizeof(__le16));
if (err)
return err;
*val = le16_to_cpu(zdval);
return 0;
}
static inline int zd1201_setconfig16(struct zd1201 *zd, int rid, short val)
{
__le16 zdval = cpu_to_le16(val);
return (zd1201_setconfig(zd, rid, &zdval, sizeof(__le16), 1));
}
static int zd1201_drvr_start(struct zd1201 *zd)
{
int err, i;
short max;
__le16 zdmax;
unsigned char *buffer;
buffer = kzalloc(ZD1201_RXSIZE, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
usb_fill_bulk_urb(zd->rx_urb, zd->usb,
usb_rcvbulkpipe(zd->usb, zd->endp_in), buffer, ZD1201_RXSIZE,
zd1201_usbrx, zd);
err = usb_submit_urb(zd->rx_urb, GFP_KERNEL);
if (err)
goto err_buffer;
err = zd1201_docmd(zd, ZD1201_CMDCODE_INIT, 0, 0, 0);
if (err)
goto err_urb;
err = zd1201_getconfig(zd, ZD1201_RID_CNFMAXTXBUFFERNUMBER, &zdmax,
sizeof(__le16));
if (err)
goto err_urb;
max = le16_to_cpu(zdmax);
for (i=0; i<max; i++) {
err = zd1201_docmd(zd, ZD1201_CMDCODE_ALLOC, 1514, 0, 0);
if (err)
goto err_urb;
}
return 0;
err_urb:
usb_kill_urb(zd->rx_urb);
return err;
err_buffer:
kfree(buffer);
return err;
}
/* Magic alert: The firmware doesn't seem to like the MAC state being
* toggled in promisc (aka monitor) mode.
* (It works a number of times, but will halt eventually)
* So we turn it of before disabling and on after enabling if needed.
*/
static int zd1201_enable(struct zd1201 *zd)
{
int err;
if (zd->mac_enabled)
return 0;
err = zd1201_docmd(zd, ZD1201_CMDCODE_ENABLE, 0, 0, 0);
if (!err)
zd->mac_enabled = 1;
if (zd->monitor)
err = zd1201_setconfig16(zd, ZD1201_RID_PROMISCUOUSMODE, 1);
return err;
}
static int zd1201_disable(struct zd1201 *zd)
{
int err;
if (!zd->mac_enabled)
return 0;
if (zd->monitor) {
err = zd1201_setconfig16(zd, ZD1201_RID_PROMISCUOUSMODE, 0);
if (err)
return err;
}
err = zd1201_docmd(zd, ZD1201_CMDCODE_DISABLE, 0, 0, 0);
if (!err)
zd->mac_enabled = 0;
return err;
}
static int zd1201_mac_reset(struct zd1201 *zd)
{
if (!zd->mac_enabled)
return 0;
zd1201_disable(zd);
return zd1201_enable(zd);
}
static int zd1201_join(struct zd1201 *zd, char *essid, int essidlen)
{
int err, val;
char buf[IW_ESSID_MAX_SIZE+2];
err = zd1201_disable(zd);
if (err)
return err;
val = ZD1201_CNFAUTHENTICATION_OPENSYSTEM;
val |= ZD1201_CNFAUTHENTICATION_SHAREDKEY;
err = zd1201_setconfig16(zd, ZD1201_RID_CNFAUTHENTICATION, val);
if (err)
return err;
*(__le16 *)buf = cpu_to_le16(essidlen);
memcpy(buf+2, essid, essidlen);
if (!zd->ap) { /* Normal station */
err = zd1201_setconfig(zd, ZD1201_RID_CNFDESIREDSSID, buf,
IW_ESSID_MAX_SIZE+2, 1);
if (err)
return err;
} else { /* AP */
err = zd1201_setconfig(zd, ZD1201_RID_CNFOWNSSID, buf,
IW_ESSID_MAX_SIZE+2, 1);
if (err)
return err;
}
err = zd1201_setconfig(zd, ZD1201_RID_CNFOWNMACADDR,
zd->dev->dev_addr, zd->dev->addr_len, 1);
if (err)
return err;
err = zd1201_enable(zd);
if (err)
return err;
msleep(100);
return 0;
}
static int zd1201_net_open(struct net_device *dev)
{
struct zd1201 *zd = netdev_priv(dev);
/* Start MAC with wildcard if no essid set */
if (!zd->mac_enabled)
zd1201_join(zd, zd->essid, zd->essidlen);
netif_start_queue(dev);
return 0;
}
static int zd1201_net_stop(struct net_device *dev)
{
netif_stop_queue(dev);
return 0;
}
/*
RFC 1042 encapsulates Ethernet frames in 802.11 frames
by prefixing them with 0xaa, 0xaa, 0x03) followed by a SNAP OID of 0
(0x00, 0x00, 0x00). Zd requires an additional padding, copy
of ethernet addresses, length of the standard RFC 1042 packet
and a command byte (which is nul for tx).
tx frame (from Wlan NG):
RFC 1042:
llc 0xAA 0xAA 0x03 (802.2 LLC)
snap 0x00 0x00 0x00 (Ethernet encapsulated)
type 2 bytes, Ethernet type field
payload (minus eth header)
Zydas specific:
padding 1B if (skb->len+8+1)%64==0
Eth MAC addr 12 bytes, Ethernet MAC addresses
length 2 bytes, RFC 1042 packet length
(llc+snap+type+payload)
zd 1 null byte, zd1201 packet type
*/
static netdev_tx_t zd1201_hard_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct zd1201 *zd = netdev_priv(dev);
unsigned char *txbuf = zd->txdata;
int txbuflen, pad = 0, err;
struct urb *urb = zd->tx_urb;
if (!zd->mac_enabled || zd->monitor) {
dev->stats.tx_dropped++;
kfree_skb(skb);
return NETDEV_TX_OK;
}
netif_stop_queue(dev);
txbuflen = skb->len + 8 + 1;
if (txbuflen%64 == 0) {
pad = 1;
txbuflen++;
}
txbuf[0] = 0xAA;
txbuf[1] = 0xAA;
txbuf[2] = 0x03;
txbuf[3] = 0x00; /* rfc1042 */
txbuf[4] = 0x00;
txbuf[5] = 0x00;
skb_copy_from_linear_data_offset(skb, 12, txbuf + 6, skb->len - 12);
if (pad)
txbuf[skb->len-12+6]=0;
skb_copy_from_linear_data(skb, txbuf + skb->len - 12 + 6 + pad, 12);
*(__be16*)&txbuf[skb->len+6+pad] = htons(skb->len-12+6);
txbuf[txbuflen-1] = 0;
usb_fill_bulk_urb(urb, zd->usb, usb_sndbulkpipe(zd->usb, zd->endp_out),
txbuf, txbuflen, zd1201_usbtx, zd);
err = usb_submit_urb(zd->tx_urb, GFP_ATOMIC);
if (err) {
dev->stats.tx_errors++;
netif_start_queue(dev);
} else {
dev->stats.tx_packets++;
dev->stats.tx_bytes += skb->len;
}
kfree_skb(skb);
return NETDEV_TX_OK;
}
static void zd1201_tx_timeout(struct net_device *dev)
{
struct zd1201 *zd = netdev_priv(dev);
if (!zd)
return;
dev_warn(&zd->usb->dev, "%s: TX timeout, shooting down urb\n",
dev->name);
usb_unlink_urb(zd->tx_urb);
dev->stats.tx_errors++;
/* Restart the timeout to quiet the watchdog: */
dev->trans_start = jiffies; /* prevent tx timeout */
}
static int zd1201_set_mac_address(struct net_device *dev, void *p)
{
struct sockaddr *addr = p;
struct zd1201 *zd = netdev_priv(dev);
int err;
if (!zd)
return -ENODEV;
err = zd1201_setconfig(zd, ZD1201_RID_CNFOWNMACADDR,
addr->sa_data, dev->addr_len, 1);
if (err)
return err;
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
return zd1201_mac_reset(zd);
}
static struct iw_statistics *zd1201_get_wireless_stats(struct net_device *dev)
{
struct zd1201 *zd = netdev_priv(dev);
return &zd->iwstats;
}
static void zd1201_set_multicast(struct net_device *dev)
{
struct zd1201 *zd = netdev_priv(dev);
struct netdev_hw_addr *ha;
unsigned char reqbuf[ETH_ALEN*ZD1201_MAXMULTI];
int i;
if (netdev_mc_count(dev) > ZD1201_MAXMULTI)
return;
i = 0;
netdev_for_each_mc_addr(ha, dev)
memcpy(reqbuf + i++ * ETH_ALEN, ha->addr, ETH_ALEN);
zd1201_setconfig(zd, ZD1201_RID_CNFGROUPADDRESS, reqbuf,
netdev_mc_count(dev) * ETH_ALEN, 0);
}
static int zd1201_config_commit(struct net_device *dev,
struct iw_request_info *info, struct iw_point *data, char *essid)
{
struct zd1201 *zd = netdev_priv(dev);
return zd1201_mac_reset(zd);
}
static int zd1201_get_name(struct net_device *dev,
struct iw_request_info *info, char *name, char *extra)
{
strcpy(name, "IEEE 802.11b");
return 0;
}
static int zd1201_set_freq(struct net_device *dev,
struct iw_request_info *info, struct iw_freq *freq, char *extra)
{
struct zd1201 *zd = netdev_priv(dev);
short channel = 0;
int err;
if (freq->e == 0)
channel = freq->m;
else {
channel = ieee80211_freq_to_dsss_chan(freq->m);
if (channel < 0)
channel = 0;
}
err = zd1201_setconfig16(zd, ZD1201_RID_CNFOWNCHANNEL, channel);
if (err)
return err;
zd1201_mac_reset(zd);
return 0;
}
static int zd1201_get_freq(struct net_device *dev,
struct iw_request_info *info, struct iw_freq *freq, char *extra)
{
struct zd1201 *zd = netdev_priv(dev);
short channel;
int err;
err = zd1201_getconfig16(zd, ZD1201_RID_CNFOWNCHANNEL, &channel);
if (err)
return err;
freq->e = 0;
freq->m = channel;
return 0;
}
static int zd1201_set_mode(struct net_device *dev,
struct iw_request_info *info, __u32 *mode, char *extra)
{
struct zd1201 *zd = netdev_priv(dev);
short porttype, monitor = 0;
unsigned char buffer[IW_ESSID_MAX_SIZE+2];
int err;
if (zd->ap) {
if (*mode != IW_MODE_MASTER)
return -EINVAL;
return 0;
}
err = zd1201_setconfig16(zd, ZD1201_RID_PROMISCUOUSMODE, 0);
if (err)
return err;
zd->dev->type = ARPHRD_ETHER;
switch(*mode) {
case IW_MODE_MONITOR:
monitor = 1;
zd->dev->type = ARPHRD_IEEE80211;
/* Make sure we are no longer associated with by
setting an 'impossible' essid.
(otherwise we mess up firmware)
*/
zd1201_join(zd, "\0-*#\0", 5);
/* Put port in pIBSS */
case 8: /* No pseudo-IBSS in wireless extensions (yet) */
porttype = ZD1201_PORTTYPE_PSEUDOIBSS;
break;
case IW_MODE_ADHOC:
porttype = ZD1201_PORTTYPE_IBSS;
break;
case IW_MODE_INFRA:
porttype = ZD1201_PORTTYPE_BSS;
break;
default:
return -EINVAL;
}
err = zd1201_setconfig16(zd, ZD1201_RID_CNFPORTTYPE, porttype);
if (err)
return err;
if (zd->monitor && !monitor) {
zd1201_disable(zd);
*(__le16 *)buffer = cpu_to_le16(zd->essidlen);
memcpy(buffer+2, zd->essid, zd->essidlen);
err = zd1201_setconfig(zd, ZD1201_RID_CNFDESIREDSSID,
buffer, IW_ESSID_MAX_SIZE+2, 1);
if (err)
return err;
}
zd->monitor = monitor;
/* If monitor mode is set we don't actually turn it on here since it
* is done during mac reset anyway (see zd1201_mac_enable).
*/
zd1201_mac_reset(zd);
return 0;
}
static int zd1201_get_mode(struct net_device *dev,
struct iw_request_info *info, __u32 *mode, char *extra)
{
struct zd1201 *zd = netdev_priv(dev);
short porttype;
int err;
err = zd1201_getconfig16(zd, ZD1201_RID_CNFPORTTYPE, &porttype);
if (err)
return err;
switch(porttype) {
case ZD1201_PORTTYPE_IBSS:
*mode = IW_MODE_ADHOC;
break;
case ZD1201_PORTTYPE_BSS:
*mode = IW_MODE_INFRA;
break;
case ZD1201_PORTTYPE_WDS:
*mode = IW_MODE_REPEAT;
break;
case ZD1201_PORTTYPE_PSEUDOIBSS:
*mode = 8;/* No Pseudo-IBSS... */
break;
case ZD1201_PORTTYPE_AP:
*mode = IW_MODE_MASTER;
break;
default:
dev_dbg(&zd->usb->dev, "Unknown porttype: %d\n",
porttype);
*mode = IW_MODE_AUTO;
}
if (zd->monitor)
*mode = IW_MODE_MONITOR;
return 0;
}
static int zd1201_get_range(struct net_device *dev,
struct iw_request_info *info, struct iw_point *wrq, char *extra)
{
struct iw_range *range = (struct iw_range *)extra;
wrq->length = sizeof(struct iw_range);
memset(range, 0, sizeof(struct iw_range));
range->we_version_compiled = WIRELESS_EXT;
range->we_version_source = WIRELESS_EXT;
range->max_qual.qual = 128;
range->max_qual.level = 128;
range->max_qual.noise = 128;
range->max_qual.updated = 7;
range->encoding_size[0] = 5;
range->encoding_size[1] = 13;
range->num_encoding_sizes = 2;
range->max_encoding_tokens = ZD1201_NUMKEYS;
range->num_bitrates = 4;
range->bitrate[0] = 1000000;
range->bitrate[1] = 2000000;
range->bitrate[2] = 5500000;
range->bitrate[3] = 11000000;
range->min_rts = 0;
range->min_frag = ZD1201_FRAGMIN;
range->max_rts = ZD1201_RTSMAX;
range->min_frag = ZD1201_FRAGMAX;
return 0;
}
/* Little bit of magic here: we only get the quality if we poll
* for it, and we never get an actual request to trigger such
* a poll. Therefore we 'assume' that the user will soon ask for
* the stats after asking the bssid.
*/
static int zd1201_get_wap(struct net_device *dev,
struct iw_request_info *info, struct sockaddr *ap_addr, char *extra)
{
struct zd1201 *zd = netdev_priv(dev);
unsigned char buffer[6];
if (!zd1201_getconfig(zd, ZD1201_RID_COMMSQUALITY, buffer, 6)) {
/* Unfortunately the quality and noise reported is useless.
they seem to be accumulators that increase until you
read them, unless we poll on a fixed interval we can't
use them
*/
/*zd->iwstats.qual.qual = le16_to_cpu(((__le16 *)buffer)[0]);*/
zd->iwstats.qual.level = le16_to_cpu(((__le16 *)buffer)[1]);
/*zd->iwstats.qual.noise = le16_to_cpu(((__le16 *)buffer)[2]);*/
zd->iwstats.qual.updated = 2;
}
return zd1201_getconfig(zd, ZD1201_RID_CURRENTBSSID, ap_addr->sa_data, 6);
}
static int zd1201_set_scan(struct net_device *dev,
struct iw_request_info *info, struct iw_point *srq, char *extra)
{
/* We do everything in get_scan */
return 0;
}
static int zd1201_get_scan(struct net_device *dev,
struct iw_request_info *info, struct iw_point *srq, char *extra)
{
struct zd1201 *zd = netdev_priv(dev);
int err, i, j, enabled_save;
struct iw_event iwe;
char *cev = extra;
char *end_buf = extra + IW_SCAN_MAX_DATA;
/* No scanning in AP mode */
if (zd->ap)
return -EOPNOTSUPP;
/* Scan doesn't seem to work if disabled */
enabled_save = zd->mac_enabled;
zd1201_enable(zd);
zd->rxdatas = 0;
err = zd1201_docmd(zd, ZD1201_CMDCODE_INQUIRE,
ZD1201_INQ_SCANRESULTS, 0, 0);
if (err)
return err;
wait_event_interruptible(zd->rxdataq, zd->rxdatas);
if (!zd->rxlen)
return -EIO;
if (le16_to_cpu(*(__le16*)&zd->rxdata[2]) != ZD1201_INQ_SCANRESULTS)
return -EIO;
for(i=8; i<zd->rxlen; i+=62) {
iwe.cmd = SIOCGIWAP;
iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
memcpy(iwe.u.ap_addr.sa_data, zd->rxdata+i+6, 6);
cev = iwe_stream_add_event(info, cev, end_buf,
&iwe, IW_EV_ADDR_LEN);
iwe.cmd = SIOCGIWESSID;
iwe.u.data.length = zd->rxdata[i+16];
iwe.u.data.flags = 1;
cev = iwe_stream_add_point(info, cev, end_buf,
&iwe, zd->rxdata+i+18);
iwe.cmd = SIOCGIWMODE;
if (zd->rxdata[i+14]&0x01)
iwe.u.mode = IW_MODE_MASTER;
else
iwe.u.mode = IW_MODE_ADHOC;
cev = iwe_stream_add_event(info, cev, end_buf,
&iwe, IW_EV_UINT_LEN);
iwe.cmd = SIOCGIWFREQ;
iwe.u.freq.m = zd->rxdata[i+0];
iwe.u.freq.e = 0;
cev = iwe_stream_add_event(info, cev, end_buf,
&iwe, IW_EV_FREQ_LEN);
iwe.cmd = SIOCGIWRATE;
iwe.u.bitrate.fixed = 0;
iwe.u.bitrate.disabled = 0;
for (j=0; j<10; j++) if (zd->rxdata[i+50+j]) {
iwe.u.bitrate.value = (zd->rxdata[i+50+j]&0x7f)*500000;
cev = iwe_stream_add_event(info, cev, end_buf,
&iwe, IW_EV_PARAM_LEN);
}
iwe.cmd = SIOCGIWENCODE;
iwe.u.data.length = 0;
if (zd->rxdata[i+14]&0x10)
iwe.u.data.flags = IW_ENCODE_ENABLED;
else
iwe.u.data.flags = IW_ENCODE_DISABLED;
cev = iwe_stream_add_point(info, cev, end_buf, &iwe, NULL);
iwe.cmd = IWEVQUAL;
iwe.u.qual.qual = zd->rxdata[i+4];
iwe.u.qual.noise= zd->rxdata[i+2]/10-100;
iwe.u.qual.level = (256+zd->rxdata[i+4]*100)/255-100;
iwe.u.qual.updated = 7;
cev = iwe_stream_add_event(info, cev, end_buf,
&iwe, IW_EV_QUAL_LEN);
}
if (!enabled_save)
zd1201_disable(zd);
srq->length = cev - extra;
srq->flags = 0;
return 0;
}
static int zd1201_set_essid(struct net_device *dev,
struct iw_request_info *info, struct iw_point *data, char *essid)
{
struct zd1201 *zd = netdev_priv(dev);
if (data->length > IW_ESSID_MAX_SIZE)
return -EINVAL;
if (data->length < 1)
data->length = 1;
zd->essidlen = data->length;
memset(zd->essid, 0, IW_ESSID_MAX_SIZE+1);
memcpy(zd->essid, essid, data->length);
return zd1201_join(zd, zd->essid, zd->essidlen);
}
static int zd1201_get_essid(struct net_device *dev,
struct iw_request_info *info, struct iw_point *data, char *essid)
{
struct zd1201 *zd = netdev_priv(dev);
memcpy(essid, zd->essid, zd->essidlen);
data->flags = 1;
data->length = zd->essidlen;
return 0;
}
static int zd1201_get_nick(struct net_device *dev, struct iw_request_info *info,
struct iw_point *data, char *nick)
{
strcpy(nick, "zd1201");
data->flags = 1;
data->length = strlen(nick);
return 0;
}
static int zd1201_set_rate(struct net_device *dev,
struct iw_request_info *info, struct iw_param *rrq, char *extra)
{
struct zd1201 *zd = netdev_priv(dev);
short rate;
int err;
switch (rrq->value) {
case 1000000:
rate = ZD1201_RATEB1;
break;
case 2000000:
rate = ZD1201_RATEB2;
break;
case 5500000:
rate = ZD1201_RATEB5;
break;
case 11000000:
default:
rate = ZD1201_RATEB11;
break;
}
if (!rrq->fixed) { /* Also enable all lower bitrates */
rate |= rate-1;
}
err = zd1201_setconfig16(zd, ZD1201_RID_TXRATECNTL, rate);
if (err)
return err;
return zd1201_mac_reset(zd);
}
static int zd1201_get_rate(struct net_device *dev,
struct iw_request_info *info, struct iw_param *rrq, char *extra)
{
struct zd1201 *zd = netdev_priv(dev);
short rate;
int err;
err = zd1201_getconfig16(zd, ZD1201_RID_CURRENTTXRATE, &rate);
if (err)
return err;
switch(rate) {
case 1:
rrq->value = 1000000;
break;
case 2:
rrq->value = 2000000;
break;
case 5:
rrq->value = 5500000;
break;
case 11:
rrq->value = 11000000;
break;
default:
rrq->value = 0;
}
rrq->fixed = 0;
rrq->disabled = 0;
return 0;
}
static int zd1201_set_rts(struct net_device *dev, struct iw_request_info *info,
struct iw_param *rts, char *extra)
{
struct zd1201 *zd = netdev_priv(dev);
int err;
short val = rts->value;
if (rts->disabled || !rts->fixed)
val = ZD1201_RTSMAX;
if (val > ZD1201_RTSMAX)
return -EINVAL;
if (val < 0)
return -EINVAL;
err = zd1201_setconfig16(zd, ZD1201_RID_CNFRTSTHRESHOLD, val);
if (err)
return err;
return zd1201_mac_reset(zd);
}
static int zd1201_get_rts(struct net_device *dev, struct iw_request_info *info,
struct iw_param *rts, char *extra)
{
struct zd1201 *zd = netdev_priv(dev);
short rtst;
int err;
err = zd1201_getconfig16(zd, ZD1201_RID_CNFRTSTHRESHOLD, &rtst);
if (err)
return err;
rts->value = rtst;
rts->disabled = (rts->value == ZD1201_RTSMAX);
rts->fixed = 1;
return 0;
}
static int zd1201_set_frag(struct net_device *dev, struct iw_request_info *info,
struct iw_param *frag, char *extra)
{
struct zd1201 *zd = netdev_priv(dev);
int err;
short val = frag->value;
if (frag->disabled || !frag->fixed)
val = ZD1201_FRAGMAX;
if (val > ZD1201_FRAGMAX)
return -EINVAL;
if (val < ZD1201_FRAGMIN)
return -EINVAL;
if (val & 1)
return -EINVAL;
err = zd1201_setconfig16(zd, ZD1201_RID_CNFFRAGTHRESHOLD, val);
if (err)
return err;
return zd1201_mac_reset(zd);
}
static int zd1201_get_frag(struct net_device *dev, struct iw_request_info *info,
struct iw_param *frag, char *extra)
{
struct zd1201 *zd = netdev_priv(dev);
short fragt;
int err;
err = zd1201_getconfig16(zd, ZD1201_RID_CNFFRAGTHRESHOLD, &fragt);
if (err)
return err;
frag->value = fragt;
frag->disabled = (frag->value == ZD1201_FRAGMAX);
frag->fixed = 1;
return 0;
}
static int zd1201_set_retry(struct net_device *dev,
struct iw_request_info *info, struct iw_param *rrq, char *extra)
{
return 0;
}
static int zd1201_get_retry(struct net_device *dev,
struct iw_request_info *info, struct iw_param *rrq, char *extra)
{
return 0;
}
static int zd1201_set_encode(struct net_device *dev,
struct iw_request_info *info, struct iw_point *erq, char *key)
{
struct zd1201 *zd = netdev_priv(dev);
short i;
int err, rid;
if (erq->length > ZD1201_MAXKEYLEN)
return -EINVAL;
i = (erq->flags & IW_ENCODE_INDEX)-1;
if (i == -1) {
err = zd1201_getconfig16(zd,ZD1201_RID_CNFDEFAULTKEYID,&i);
if (err)
return err;
} else {
err = zd1201_setconfig16(zd, ZD1201_RID_CNFDEFAULTKEYID, i);
if (err)
return err;
}
if (i < 0 || i >= ZD1201_NUMKEYS)
return -EINVAL;
rid = ZD1201_RID_CNFDEFAULTKEY0 + i;
err = zd1201_setconfig(zd, rid, key, erq->length, 1);
if (err)
return err;
zd->encode_keylen[i] = erq->length;
memcpy(zd->encode_keys[i], key, erq->length);
i=0;
if (!(erq->flags & IW_ENCODE_DISABLED & IW_ENCODE_MODE)) {
i |= 0x01;
zd->encode_enabled = 1;
} else
zd->encode_enabled = 0;
if (erq->flags & IW_ENCODE_RESTRICTED & IW_ENCODE_MODE) {
i |= 0x02;
zd->encode_restricted = 1;
} else
zd->encode_restricted = 0;
err = zd1201_setconfig16(zd, ZD1201_RID_CNFWEBFLAGS, i);
if (err)
return err;
if (zd->encode_enabled)
i = ZD1201_CNFAUTHENTICATION_SHAREDKEY;
else
i = ZD1201_CNFAUTHENTICATION_OPENSYSTEM;
err = zd1201_setconfig16(zd, ZD1201_RID_CNFAUTHENTICATION, i);
if (err)
return err;
return zd1201_mac_reset(zd);
}
static int zd1201_get_encode(struct net_device *dev,
struct iw_request_info *info, struct iw_point *erq, char *key)
{
struct zd1201 *zd = netdev_priv(dev);
short i;
int err;
if (zd->encode_enabled)
erq->flags = IW_ENCODE_ENABLED;
else
erq->flags = IW_ENCODE_DISABLED;
if (zd->encode_restricted)
erq->flags |= IW_ENCODE_RESTRICTED;
else
erq->flags |= IW_ENCODE_OPEN;
i = (erq->flags & IW_ENCODE_INDEX) -1;
if (i == -1) {
err = zd1201_getconfig16(zd, ZD1201_RID_CNFDEFAULTKEYID, &i);
if (err)
return err;
}
if (i<0 || i>= ZD1201_NUMKEYS)
return -EINVAL;
erq->flags |= i+1;
erq->length = zd->encode_keylen[i];
memcpy(key, zd->encode_keys[i], erq->length);
return 0;
}
static int zd1201_set_power(struct net_device *dev,
struct iw_request_info *info, struct iw_param *vwrq, char *extra)
{
struct zd1201 *zd = netdev_priv(dev);
short enabled, duration, level;
int err;
enabled = vwrq->disabled ? 0 : 1;
if (enabled) {
if (vwrq->flags & IW_POWER_PERIOD) {
duration = vwrq->value;
err = zd1201_setconfig16(zd,
ZD1201_RID_CNFMAXSLEEPDURATION, duration);
if (err)
return err;
goto out;
}
if (vwrq->flags & IW_POWER_TIMEOUT) {
err = zd1201_getconfig16(zd,
ZD1201_RID_CNFMAXSLEEPDURATION, &duration);
if (err)
return err;
level = vwrq->value * 4 / duration;
if (level > 4)
level = 4;
if (level < 0)
level = 0;
err = zd1201_setconfig16(zd, ZD1201_RID_CNFPMEPS,
level);
if (err)
return err;
goto out;
}
return -EINVAL;
}
out:
return zd1201_setconfig16(zd, ZD1201_RID_CNFPMENABLED, enabled);
}
static int zd1201_get_power(struct net_device *dev,
struct iw_request_info *info, struct iw_param *vwrq, char *extra)
{
struct zd1201 *zd = netdev_priv(dev);
short enabled, level, duration;
int err;
err = zd1201_getconfig16(zd, ZD1201_RID_CNFPMENABLED, &enabled);
if (err)
return err;
err = zd1201_getconfig16(zd, ZD1201_RID_CNFPMEPS, &level);
if (err)
return err;
err = zd1201_getconfig16(zd, ZD1201_RID_CNFMAXSLEEPDURATION, &duration);
if (err)
return err;
vwrq->disabled = enabled ? 0 : 1;
if (vwrq->flags & IW_POWER_TYPE) {
if (vwrq->flags & IW_POWER_PERIOD) {
vwrq->value = duration;
vwrq->flags = IW_POWER_PERIOD;
} else {
vwrq->value = duration * level / 4;
vwrq->flags = IW_POWER_TIMEOUT;
}
}
if (vwrq->flags & IW_POWER_MODE) {
if (enabled && level)
vwrq->flags = IW_POWER_UNICAST_R;
else
vwrq->flags = IW_POWER_ALL_R;
}
return 0;
}
static const iw_handler zd1201_iw_handler[] =
{
(iw_handler) zd1201_config_commit, /* SIOCSIWCOMMIT */
(iw_handler) zd1201_get_name, /* SIOCGIWNAME */
(iw_handler) NULL, /* SIOCSIWNWID */
(iw_handler) NULL, /* SIOCGIWNWID */
(iw_handler) zd1201_set_freq, /* SIOCSIWFREQ */
(iw_handler) zd1201_get_freq, /* SIOCGIWFREQ */
(iw_handler) zd1201_set_mode, /* SIOCSIWMODE */
(iw_handler) zd1201_get_mode, /* SIOCGIWMODE */
(iw_handler) NULL, /* SIOCSIWSENS */
(iw_handler) NULL, /* SIOCGIWSENS */
(iw_handler) NULL, /* SIOCSIWRANGE */
(iw_handler) zd1201_get_range, /* SIOCGIWRANGE */
(iw_handler) NULL, /* SIOCSIWPRIV */
(iw_handler) NULL, /* SIOCGIWPRIV */
(iw_handler) NULL, /* SIOCSIWSTATS */
(iw_handler) NULL, /* SIOCGIWSTATS */
(iw_handler) NULL, /* SIOCSIWSPY */
(iw_handler) NULL, /* SIOCGIWSPY */
(iw_handler) NULL, /* -- hole -- */
(iw_handler) NULL, /* -- hole -- */
(iw_handler) NULL/*zd1201_set_wap*/, /* SIOCSIWAP */
(iw_handler) zd1201_get_wap, /* SIOCGIWAP */
(iw_handler) NULL, /* -- hole -- */
(iw_handler) NULL, /* SIOCGIWAPLIST */
(iw_handler) zd1201_set_scan, /* SIOCSIWSCAN */
(iw_handler) zd1201_get_scan, /* SIOCGIWSCAN */
(iw_handler) zd1201_set_essid, /* SIOCSIWESSID */
(iw_handler) zd1201_get_essid, /* SIOCGIWESSID */
(iw_handler) NULL, /* SIOCSIWNICKN */
(iw_handler) zd1201_get_nick, /* SIOCGIWNICKN */
(iw_handler) NULL, /* -- hole -- */
(iw_handler) NULL, /* -- hole -- */
(iw_handler) zd1201_set_rate, /* SIOCSIWRATE */
(iw_handler) zd1201_get_rate, /* SIOCGIWRATE */
(iw_handler) zd1201_set_rts, /* SIOCSIWRTS */
(iw_handler) zd1201_get_rts, /* SIOCGIWRTS */
(iw_handler) zd1201_set_frag, /* SIOCSIWFRAG */
(iw_handler) zd1201_get_frag, /* SIOCGIWFRAG */
(iw_handler) NULL, /* SIOCSIWTXPOW */
(iw_handler) NULL, /* SIOCGIWTXPOW */
(iw_handler) zd1201_set_retry, /* SIOCSIWRETRY */
(iw_handler) zd1201_get_retry, /* SIOCGIWRETRY */
(iw_handler) zd1201_set_encode, /* SIOCSIWENCODE */
(iw_handler) zd1201_get_encode, /* SIOCGIWENCODE */
(iw_handler) zd1201_set_power, /* SIOCSIWPOWER */
(iw_handler) zd1201_get_power, /* SIOCGIWPOWER */
};
static int zd1201_set_hostauth(struct net_device *dev,
struct iw_request_info *info, struct iw_param *rrq, char *extra)
{
struct zd1201 *zd = netdev_priv(dev);
if (!zd->ap)
return -EOPNOTSUPP;
return zd1201_setconfig16(zd, ZD1201_RID_CNFHOSTAUTH, rrq->value);
}
static int zd1201_get_hostauth(struct net_device *dev,
struct iw_request_info *info, struct iw_param *rrq, char *extra)
{
struct zd1201 *zd = netdev_priv(dev);
short hostauth;
int err;
if (!zd->ap)
return -EOPNOTSUPP;
err = zd1201_getconfig16(zd, ZD1201_RID_CNFHOSTAUTH, &hostauth);
if (err)
return err;
rrq->value = hostauth;
rrq->fixed = 1;
return 0;
}
static int zd1201_auth_sta(struct net_device *dev,
struct iw_request_info *info, struct sockaddr *sta, char *extra)
{
struct zd1201 *zd = netdev_priv(dev);
unsigned char buffer[10];
if (!zd->ap)
return -EOPNOTSUPP;
memcpy(buffer, sta->sa_data, ETH_ALEN);
*(short*)(buffer+6) = 0; /* 0==success, 1==failure */
*(short*)(buffer+8) = 0;
return zd1201_setconfig(zd, ZD1201_RID_AUTHENTICATESTA, buffer, 10, 1);
}
static int zd1201_set_maxassoc(struct net_device *dev,
struct iw_request_info *info, struct iw_param *rrq, char *extra)
{
struct zd1201 *zd = netdev_priv(dev);
int err;
if (!zd->ap)
return -EOPNOTSUPP;
err = zd1201_setconfig16(zd, ZD1201_RID_CNFMAXASSOCSTATIONS, rrq->value);
if (err)
return err;
return 0;
}
static int zd1201_get_maxassoc(struct net_device *dev,
struct iw_request_info *info, struct iw_param *rrq, char *extra)
{
struct zd1201 *zd = netdev_priv(dev);
short maxassoc;
int err;
if (!zd->ap)
return -EOPNOTSUPP;
err = zd1201_getconfig16(zd, ZD1201_RID_CNFMAXASSOCSTATIONS, &maxassoc);
if (err)
return err;
rrq->value = maxassoc;
rrq->fixed = 1;
return 0;
}
static const iw_handler zd1201_private_handler[] = {
(iw_handler) zd1201_set_hostauth, /* ZD1201SIWHOSTAUTH */
(iw_handler) zd1201_get_hostauth, /* ZD1201GIWHOSTAUTH */
(iw_handler) zd1201_auth_sta, /* ZD1201SIWAUTHSTA */
(iw_handler) NULL, /* nothing to get */
(iw_handler) zd1201_set_maxassoc, /* ZD1201SIMAXASSOC */
(iw_handler) zd1201_get_maxassoc, /* ZD1201GIMAXASSOC */
};
static const struct iw_priv_args zd1201_private_args[] = {
{ ZD1201SIWHOSTAUTH, IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
IW_PRIV_TYPE_NONE, "sethostauth" },
{ ZD1201GIWHOSTAUTH, IW_PRIV_TYPE_NONE,
IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, "gethostauth" },
{ ZD1201SIWAUTHSTA, IW_PRIV_TYPE_ADDR | IW_PRIV_SIZE_FIXED | 1,
IW_PRIV_TYPE_NONE, "authstation" },
{ ZD1201SIWMAXASSOC, IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
IW_PRIV_TYPE_NONE, "setmaxassoc" },
{ ZD1201GIWMAXASSOC, IW_PRIV_TYPE_NONE,
IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, "getmaxassoc" },
};
static const struct iw_handler_def zd1201_iw_handlers = {
.num_standard = ARRAY_SIZE(zd1201_iw_handler),
.num_private = ARRAY_SIZE(zd1201_private_handler),
.num_private_args = ARRAY_SIZE(zd1201_private_args),
.standard = (iw_handler *)zd1201_iw_handler,
.private = (iw_handler *)zd1201_private_handler,
.private_args = (struct iw_priv_args *) zd1201_private_args,
.get_wireless_stats = zd1201_get_wireless_stats,
};
static const struct net_device_ops zd1201_netdev_ops = {
.ndo_open = zd1201_net_open,
.ndo_stop = zd1201_net_stop,
.ndo_start_xmit = zd1201_hard_start_xmit,
.ndo_tx_timeout = zd1201_tx_timeout,
.ndo_set_multicast_list = zd1201_set_multicast,
.ndo_set_mac_address = zd1201_set_mac_address,
.ndo_change_mtu = eth_change_mtu,
.ndo_validate_addr = eth_validate_addr,
};
static int zd1201_probe(struct usb_interface *interface,
const struct usb_device_id *id)
{
struct zd1201 *zd;
struct net_device *dev;
struct usb_device *usb;
int err;
short porttype;
char buf[IW_ESSID_MAX_SIZE+2];
usb = interface_to_usbdev(interface);
dev = alloc_etherdev(sizeof(*zd));
if (!dev)
return -ENOMEM;
zd = netdev_priv(dev);
zd->dev = dev;
zd->ap = ap;
zd->usb = usb;
zd->removed = 0;
init_waitqueue_head(&zd->rxdataq);
INIT_HLIST_HEAD(&zd->fraglist);
err = zd1201_fw_upload(usb, zd->ap);
if (err) {
dev_err(&usb->dev, "zd1201 firmware upload failed: %d\n", err);
goto err_zd;
}
zd->endp_in = 1;
zd->endp_out = 1;
zd->endp_out2 = 2;
zd->rx_urb = usb_alloc_urb(0, GFP_KERNEL);
zd->tx_urb = usb_alloc_urb(0, GFP_KERNEL);
if (!zd->rx_urb || !zd->tx_urb)
goto err_zd;
mdelay(100);
err = zd1201_drvr_start(zd);
if (err)
goto err_zd;
err = zd1201_setconfig16(zd, ZD1201_RID_CNFMAXDATALEN, 2312);
if (err)
goto err_start;
err = zd1201_setconfig16(zd, ZD1201_RID_TXRATECNTL,
ZD1201_RATEB1 | ZD1201_RATEB2 | ZD1201_RATEB5 | ZD1201_RATEB11);
if (err)
goto err_start;
dev->netdev_ops = &zd1201_netdev_ops;
dev->wireless_handlers = &zd1201_iw_handlers;
dev->watchdog_timeo = ZD1201_TX_TIMEOUT;
strcpy(dev->name, "wlan%d");
err = zd1201_getconfig(zd, ZD1201_RID_CNFOWNMACADDR,
dev->dev_addr, dev->addr_len);
if (err)
goto err_start;
/* Set wildcard essid to match zd->essid */
*(__le16 *)buf = cpu_to_le16(0);
err = zd1201_setconfig(zd, ZD1201_RID_CNFDESIREDSSID, buf,
IW_ESSID_MAX_SIZE+2, 1);
if (err)
goto err_start;
if (zd->ap)
porttype = ZD1201_PORTTYPE_AP;
else
porttype = ZD1201_PORTTYPE_BSS;
err = zd1201_setconfig16(zd, ZD1201_RID_CNFPORTTYPE, porttype);
if (err)
goto err_start;
SET_NETDEV_DEV(dev, &usb->dev);
err = register_netdev(dev);
if (err)
goto err_start;
dev_info(&usb->dev, "%s: ZD1201 USB Wireless interface\n",
dev->name);
usb_set_intfdata(interface, zd);
zd1201_enable(zd); /* zd1201 likes to startup enabled, */
zd1201_disable(zd); /* interfering with all the wifis in range */
return 0;
err_start:
/* Leave the device in reset state */
zd1201_docmd(zd, ZD1201_CMDCODE_INIT, 0, 0, 0);
err_zd:
usb_free_urb(zd->tx_urb);
usb_free_urb(zd->rx_urb);
free_netdev(dev);
return err;
}
static void zd1201_disconnect(struct usb_interface *interface)
{
struct zd1201 *zd = usb_get_intfdata(interface);
struct hlist_node *node, *node2;
struct zd1201_frag *frag;
if (!zd)
return;
usb_set_intfdata(interface, NULL);
hlist_for_each_entry_safe(frag, node, node2, &zd->fraglist, fnode) {
hlist_del_init(&frag->fnode);
kfree_skb(frag->skb);
kfree(frag);
}
if (zd->tx_urb) {
usb_kill_urb(zd->tx_urb);
usb_free_urb(zd->tx_urb);
}
if (zd->rx_urb) {
usb_kill_urb(zd->rx_urb);
usb_free_urb(zd->rx_urb);
}
if (zd->dev) {
unregister_netdev(zd->dev);
free_netdev(zd->dev);
}
}
#ifdef CONFIG_PM
static int zd1201_suspend(struct usb_interface *interface,
pm_message_t message)
{
struct zd1201 *zd = usb_get_intfdata(interface);
netif_device_detach(zd->dev);
zd->was_enabled = zd->mac_enabled;
if (zd->was_enabled)
return zd1201_disable(zd);
else
return 0;
}
static int zd1201_resume(struct usb_interface *interface)
{
struct zd1201 *zd = usb_get_intfdata(interface);
if (!zd || !zd->dev)
return -ENODEV;
netif_device_attach(zd->dev);
if (zd->was_enabled)
return zd1201_enable(zd);
else
return 0;
}
#else
#define zd1201_suspend NULL
#define zd1201_resume NULL
#endif
static struct usb_driver zd1201_usb = {
.name = "zd1201",
.probe = zd1201_probe,
.disconnect = zd1201_disconnect,
.id_table = zd1201_table,
.suspend = zd1201_suspend,
.resume = zd1201_resume,
};
static int __init zd1201_init(void)
{
return usb_register(&zd1201_usb);
}
static void __exit zd1201_cleanup(void)
{
usb_deregister(&zd1201_usb);
}
module_init(zd1201_init);
module_exit(zd1201_cleanup);