mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-10 06:34:17 +08:00
152 lines
4.1 KiB
C
152 lines
4.1 KiB
C
|
#ifndef _TOOLS_LINUX_REFCOUNT_H
|
||
|
#define _TOOLS_LINUX_REFCOUNT_H
|
||
|
|
||
|
/*
|
||
|
* Variant of atomic_t specialized for reference counts.
|
||
|
*
|
||
|
* The interface matches the atomic_t interface (to aid in porting) but only
|
||
|
* provides the few functions one should use for reference counting.
|
||
|
*
|
||
|
* It differs in that the counter saturates at UINT_MAX and will not move once
|
||
|
* there. This avoids wrapping the counter and causing 'spurious'
|
||
|
* use-after-free issues.
|
||
|
*
|
||
|
* Memory ordering rules are slightly relaxed wrt regular atomic_t functions
|
||
|
* and provide only what is strictly required for refcounts.
|
||
|
*
|
||
|
* The increments are fully relaxed; these will not provide ordering. The
|
||
|
* rationale is that whatever is used to obtain the object we're increasing the
|
||
|
* reference count on will provide the ordering. For locked data structures,
|
||
|
* its the lock acquire, for RCU/lockless data structures its the dependent
|
||
|
* load.
|
||
|
*
|
||
|
* Do note that inc_not_zero() provides a control dependency which will order
|
||
|
* future stores against the inc, this ensures we'll never modify the object
|
||
|
* if we did not in fact acquire a reference.
|
||
|
*
|
||
|
* The decrements will provide release order, such that all the prior loads and
|
||
|
* stores will be issued before, it also provides a control dependency, which
|
||
|
* will order us against the subsequent free().
|
||
|
*
|
||
|
* The control dependency is against the load of the cmpxchg (ll/sc) that
|
||
|
* succeeded. This means the stores aren't fully ordered, but this is fine
|
||
|
* because the 1->0 transition indicates no concurrency.
|
||
|
*
|
||
|
* Note that the allocator is responsible for ordering things between free()
|
||
|
* and alloc().
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#include <linux/atomic.h>
|
||
|
#include <linux/kernel.h>
|
||
|
|
||
|
#ifdef NDEBUG
|
||
|
#define REFCOUNT_WARN(cond, str) (void)(cond)
|
||
|
#define __refcount_check
|
||
|
#else
|
||
|
#define REFCOUNT_WARN(cond, str) BUG_ON(cond)
|
||
|
#define __refcount_check __must_check
|
||
|
#endif
|
||
|
|
||
|
typedef struct refcount_struct {
|
||
|
atomic_t refs;
|
||
|
} refcount_t;
|
||
|
|
||
|
#define REFCOUNT_INIT(n) { .refs = ATOMIC_INIT(n), }
|
||
|
|
||
|
static inline void refcount_set(refcount_t *r, unsigned int n)
|
||
|
{
|
||
|
atomic_set(&r->refs, n);
|
||
|
}
|
||
|
|
||
|
static inline unsigned int refcount_read(const refcount_t *r)
|
||
|
{
|
||
|
return atomic_read(&r->refs);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Similar to atomic_inc_not_zero(), will saturate at UINT_MAX and WARN.
|
||
|
*
|
||
|
* Provides no memory ordering, it is assumed the caller has guaranteed the
|
||
|
* object memory to be stable (RCU, etc.). It does provide a control dependency
|
||
|
* and thereby orders future stores. See the comment on top.
|
||
|
*/
|
||
|
static inline __refcount_check
|
||
|
bool refcount_inc_not_zero(refcount_t *r)
|
||
|
{
|
||
|
unsigned int old, new, val = atomic_read(&r->refs);
|
||
|
|
||
|
for (;;) {
|
||
|
new = val + 1;
|
||
|
|
||
|
if (!val)
|
||
|
return false;
|
||
|
|
||
|
if (unlikely(!new))
|
||
|
return true;
|
||
|
|
||
|
old = atomic_cmpxchg_relaxed(&r->refs, val, new);
|
||
|
if (old == val)
|
||
|
break;
|
||
|
|
||
|
val = old;
|
||
|
}
|
||
|
|
||
|
REFCOUNT_WARN(new == UINT_MAX, "refcount_t: saturated; leaking memory.\n");
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Similar to atomic_inc(), will saturate at UINT_MAX and WARN.
|
||
|
*
|
||
|
* Provides no memory ordering, it is assumed the caller already has a
|
||
|
* reference on the object, will WARN when this is not so.
|
||
|
*/
|
||
|
static inline void refcount_inc(refcount_t *r)
|
||
|
{
|
||
|
REFCOUNT_WARN(!refcount_inc_not_zero(r), "refcount_t: increment on 0; use-after-free.\n");
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Similar to atomic_dec_and_test(), it will WARN on underflow and fail to
|
||
|
* decrement when saturated at UINT_MAX.
|
||
|
*
|
||
|
* Provides release memory ordering, such that prior loads and stores are done
|
||
|
* before, and provides a control dependency such that free() must come after.
|
||
|
* See the comment on top.
|
||
|
*/
|
||
|
static inline __refcount_check
|
||
|
bool refcount_sub_and_test(unsigned int i, refcount_t *r)
|
||
|
{
|
||
|
unsigned int old, new, val = atomic_read(&r->refs);
|
||
|
|
||
|
for (;;) {
|
||
|
if (unlikely(val == UINT_MAX))
|
||
|
return false;
|
||
|
|
||
|
new = val - i;
|
||
|
if (new > val) {
|
||
|
REFCOUNT_WARN(new > val, "refcount_t: underflow; use-after-free.\n");
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
old = atomic_cmpxchg_release(&r->refs, val, new);
|
||
|
if (old == val)
|
||
|
break;
|
||
|
|
||
|
val = old;
|
||
|
}
|
||
|
|
||
|
return !new;
|
||
|
}
|
||
|
|
||
|
static inline __refcount_check
|
||
|
bool refcount_dec_and_test(refcount_t *r)
|
||
|
{
|
||
|
return refcount_sub_and_test(1, r);
|
||
|
}
|
||
|
|
||
|
|
||
|
#endif /* _ATOMIC_LINUX_REFCOUNT_H */
|