2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-25 13:43:55 +08:00
linux-next/arch/sparc/kernel/pci_msi.c

447 lines
9.7 KiB
C
Raw Normal View History

/* pci_msi.c: Sparc64 MSI support common layer.
*
* Copyright (C) 2007 David S. Miller (davem@davemloft.net)
*/
#include <linux/kernel.h>
#include <linux/interrupt.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/irq.h>
#include "pci_impl.h"
static irqreturn_t sparc64_msiq_interrupt(int irq, void *cookie)
{
struct sparc64_msiq_cookie *msiq_cookie = cookie;
struct pci_pbm_info *pbm = msiq_cookie->pbm;
unsigned long msiqid = msiq_cookie->msiqid;
const struct sparc64_msiq_ops *ops;
unsigned long orig_head, head;
int err;
ops = pbm->msi_ops;
err = ops->get_head(pbm, msiqid, &head);
if (unlikely(err < 0))
goto err_get_head;
orig_head = head;
for (;;) {
unsigned long msi;
err = ops->dequeue_msi(pbm, msiqid, &head, &msi);
if (likely(err > 0)) {
unsigned int irq;
irq = pbm->msi_irq_table[msi - pbm->msi_first];
generic_handle_irq(irq);
}
if (unlikely(err < 0))
goto err_dequeue;
if (err == 0)
break;
}
if (likely(head != orig_head)) {
err = ops->set_head(pbm, msiqid, head);
if (unlikely(err < 0))
goto err_set_head;
}
return IRQ_HANDLED;
err_get_head:
printk(KERN_EMERG "MSI: Get head on msiqid[%lu] gives error %d\n",
msiqid, err);
goto err_out;
err_dequeue:
printk(KERN_EMERG "MSI: Dequeue head[%lu] from msiqid[%lu] "
"gives error %d\n",
head, msiqid, err);
goto err_out;
err_set_head:
printk(KERN_EMERG "MSI: Set head[%lu] on msiqid[%lu] "
"gives error %d\n",
head, msiqid, err);
goto err_out;
err_out:
return IRQ_NONE;
}
static u32 pick_msiq(struct pci_pbm_info *pbm)
{
static DEFINE_SPINLOCK(rotor_lock);
unsigned long flags;
u32 ret, rotor;
spin_lock_irqsave(&rotor_lock, flags);
rotor = pbm->msiq_rotor;
ret = pbm->msiq_first + rotor;
if (++rotor >= pbm->msiq_num)
rotor = 0;
pbm->msiq_rotor = rotor;
spin_unlock_irqrestore(&rotor_lock, flags);
return ret;
}
static int alloc_msi(struct pci_pbm_info *pbm)
{
int i;
for (i = 0; i < pbm->msi_num; i++) {
if (!test_and_set_bit(i, pbm->msi_bitmap))
return i + pbm->msi_first;
}
return -ENOENT;
}
static void free_msi(struct pci_pbm_info *pbm, int msi_num)
{
msi_num -= pbm->msi_first;
clear_bit(msi_num, pbm->msi_bitmap);
}
static struct irq_chip msi_irq = {
.name = "PCI-MSI",
.irq_mask = mask_msi_irq,
.irq_unmask = unmask_msi_irq,
.irq_enable = unmask_msi_irq,
.irq_disable = mask_msi_irq,
/* XXX affinity XXX */
};
static int sparc64_setup_msi_irq(unsigned int *irq_p,
struct pci_dev *pdev,
struct msi_desc *entry)
{
struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
const struct sparc64_msiq_ops *ops = pbm->msi_ops;
struct msi_msg msg;
int msi, err;
u32 msiqid;
*irq_p = irq_alloc(0, 0);
err = -ENOMEM;
if (!*irq_p)
goto out_err;
irq_set_chip_and_handler_name(*irq_p, &msi_irq, handle_simple_irq,
"MSI");
err = alloc_msi(pbm);
if (unlikely(err < 0))
goto out_irq_free;
msi = err;
msiqid = pick_msiq(pbm);
err = ops->msi_setup(pbm, msiqid, msi,
(entry->msi_attrib.is_64 ? 1 : 0));
if (err)
goto out_msi_free;
pbm->msi_irq_table[msi - pbm->msi_first] = *irq_p;
if (entry->msi_attrib.is_64) {
msg.address_hi = pbm->msi64_start >> 32;
msg.address_lo = pbm->msi64_start & 0xffffffff;
} else {
msg.address_hi = 0;
msg.address_lo = pbm->msi32_start;
}
msg.data = msi;
irq_set_msi_desc(*irq_p, entry);
write_msi_msg(*irq_p, &msg);
return 0;
out_msi_free:
free_msi(pbm, msi);
out_irq_free:
irq_set_chip(*irq_p, NULL);
irq_free(*irq_p);
*irq_p = 0;
out_err:
return err;
}
static void sparc64_teardown_msi_irq(unsigned int irq,
struct pci_dev *pdev)
{
struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
const struct sparc64_msiq_ops *ops = pbm->msi_ops;
unsigned int msi_num;
int i, err;
for (i = 0; i < pbm->msi_num; i++) {
if (pbm->msi_irq_table[i] == irq)
break;
}
if (i >= pbm->msi_num) {
printk(KERN_ERR "%s: teardown: No MSI for irq %u\n",
pbm->name, irq);
return;
}
msi_num = pbm->msi_first + i;
pbm->msi_irq_table[i] = ~0U;
err = ops->msi_teardown(pbm, msi_num);
if (err) {
printk(KERN_ERR "%s: teardown: ops->teardown() on MSI %u, "
"irq %u, gives error %d\n",
pbm->name, msi_num, irq, err);
return;
}
free_msi(pbm, msi_num);
irq_set_chip(irq, NULL);
irq_free(irq);
}
static int msi_bitmap_alloc(struct pci_pbm_info *pbm)
{
unsigned long size, bits_per_ulong;
bits_per_ulong = sizeof(unsigned long) * 8;
size = (pbm->msi_num + (bits_per_ulong - 1)) & ~(bits_per_ulong - 1);
size /= 8;
BUG_ON(size % sizeof(unsigned long));
pbm->msi_bitmap = kzalloc(size, GFP_KERNEL);
if (!pbm->msi_bitmap)
return -ENOMEM;
return 0;
}
static void msi_bitmap_free(struct pci_pbm_info *pbm)
{
kfree(pbm->msi_bitmap);
pbm->msi_bitmap = NULL;
}
static int msi_table_alloc(struct pci_pbm_info *pbm)
{
int size, i;
size = pbm->msiq_num * sizeof(struct sparc64_msiq_cookie);
pbm->msiq_irq_cookies = kzalloc(size, GFP_KERNEL);
if (!pbm->msiq_irq_cookies)
return -ENOMEM;
for (i = 0; i < pbm->msiq_num; i++) {
struct sparc64_msiq_cookie *p;
p = &pbm->msiq_irq_cookies[i];
p->pbm = pbm;
p->msiqid = pbm->msiq_first + i;
}
size = pbm->msi_num * sizeof(unsigned int);
pbm->msi_irq_table = kzalloc(size, GFP_KERNEL);
if (!pbm->msi_irq_table) {
kfree(pbm->msiq_irq_cookies);
pbm->msiq_irq_cookies = NULL;
return -ENOMEM;
}
return 0;
}
static void msi_table_free(struct pci_pbm_info *pbm)
{
kfree(pbm->msiq_irq_cookies);
pbm->msiq_irq_cookies = NULL;
kfree(pbm->msi_irq_table);
pbm->msi_irq_table = NULL;
}
static int bringup_one_msi_queue(struct pci_pbm_info *pbm,
const struct sparc64_msiq_ops *ops,
unsigned long msiqid,
unsigned long devino)
{
int irq = ops->msiq_build_irq(pbm, msiqid, devino);
int err, nid;
if (irq < 0)
return irq;
nid = pbm->numa_node;
if (nid != -1) {
cpumask_t numa_mask;
cpumask_copy(&numa_mask, cpumask_of_node(nid));
irq_set_affinity(irq, &numa_mask);
}
err = request_irq(irq, sparc64_msiq_interrupt, 0,
"MSIQ",
&pbm->msiq_irq_cookies[msiqid - pbm->msiq_first]);
if (err)
return err;
return 0;
}
static int sparc64_bringup_msi_queues(struct pci_pbm_info *pbm,
const struct sparc64_msiq_ops *ops)
{
int i;
for (i = 0; i < pbm->msiq_num; i++) {
unsigned long msiqid = i + pbm->msiq_first;
unsigned long devino = i + pbm->msiq_first_devino;
int err;
err = bringup_one_msi_queue(pbm, ops, msiqid, devino);
if (err)
return err;
}
return 0;
}
void sparc64_pbm_msi_init(struct pci_pbm_info *pbm,
const struct sparc64_msiq_ops *ops)
{
const u32 *val;
int len;
val = of_get_property(pbm->op->dev.of_node, "#msi-eqs", &len);
if (!val || len != 4)
goto no_msi;
pbm->msiq_num = *val;
if (pbm->msiq_num) {
const struct msiq_prop {
u32 first_msiq;
u32 num_msiq;
u32 first_devino;
} *mqp;
const struct msi_range_prop {
u32 first_msi;
u32 num_msi;
} *mrng;
const struct addr_range_prop {
u32 msi32_high;
u32 msi32_low;
u32 msi32_len;
u32 msi64_high;
u32 msi64_low;
u32 msi64_len;
} *arng;
val = of_get_property(pbm->op->dev.of_node, "msi-eq-size", &len);
if (!val || len != 4)
goto no_msi;
pbm->msiq_ent_count = *val;
mqp = of_get_property(pbm->op->dev.of_node,
"msi-eq-to-devino", &len);
if (!mqp)
mqp = of_get_property(pbm->op->dev.of_node,
"msi-eq-devino", &len);
if (!mqp || len != sizeof(struct msiq_prop))
goto no_msi;
pbm->msiq_first = mqp->first_msiq;
pbm->msiq_first_devino = mqp->first_devino;
val = of_get_property(pbm->op->dev.of_node, "#msi", &len);
if (!val || len != 4)
goto no_msi;
pbm->msi_num = *val;
mrng = of_get_property(pbm->op->dev.of_node, "msi-ranges", &len);
if (!mrng || len != sizeof(struct msi_range_prop))
goto no_msi;
pbm->msi_first = mrng->first_msi;
val = of_get_property(pbm->op->dev.of_node, "msi-data-mask", &len);
if (!val || len != 4)
goto no_msi;
pbm->msi_data_mask = *val;
val = of_get_property(pbm->op->dev.of_node, "msix-data-width", &len);
if (!val || len != 4)
goto no_msi;
pbm->msix_data_width = *val;
arng = of_get_property(pbm->op->dev.of_node, "msi-address-ranges",
&len);
if (!arng || len != sizeof(struct addr_range_prop))
goto no_msi;
pbm->msi32_start = ((u64)arng->msi32_high << 32) |
(u64) arng->msi32_low;
pbm->msi64_start = ((u64)arng->msi64_high << 32) |
(u64) arng->msi64_low;
pbm->msi32_len = arng->msi32_len;
pbm->msi64_len = arng->msi64_len;
if (msi_bitmap_alloc(pbm))
goto no_msi;
if (msi_table_alloc(pbm)) {
msi_bitmap_free(pbm);
goto no_msi;
}
if (ops->msiq_alloc(pbm)) {
msi_table_free(pbm);
msi_bitmap_free(pbm);
goto no_msi;
}
if (sparc64_bringup_msi_queues(pbm, ops)) {
ops->msiq_free(pbm);
msi_table_free(pbm);
msi_bitmap_free(pbm);
goto no_msi;
}
printk(KERN_INFO "%s: MSI Queue first[%u] num[%u] count[%u] "
"devino[0x%x]\n",
pbm->name,
pbm->msiq_first, pbm->msiq_num,
pbm->msiq_ent_count,
pbm->msiq_first_devino);
printk(KERN_INFO "%s: MSI first[%u] num[%u] mask[0x%x] "
"width[%u]\n",
pbm->name,
pbm->msi_first, pbm->msi_num, pbm->msi_data_mask,
pbm->msix_data_width);
printk(KERN_INFO "%s: MSI addr32[0x%llx:0x%x] "
"addr64[0x%llx:0x%x]\n",
pbm->name,
pbm->msi32_start, pbm->msi32_len,
pbm->msi64_start, pbm->msi64_len);
printk(KERN_INFO "%s: MSI queues at RA [%016lx]\n",
pbm->name,
__pa(pbm->msi_queues));
pbm->msi_ops = ops;
pbm->setup_msi_irq = sparc64_setup_msi_irq;
pbm->teardown_msi_irq = sparc64_teardown_msi_irq;
}
return;
no_msi:
pbm->msiq_num = 0;
printk(KERN_INFO "%s: No MSI support.\n", pbm->name);
}