2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-26 07:35:44 +08:00
linux-next/drivers/pwm/pwm-sti.c

698 lines
17 KiB
C
Raw Normal View History

/*
* PWM device driver for ST SoCs
*
* Copyright (C) 2013-2016 STMicroelectronics (R&D) Limited
*
* Author: Ajit Pal Singh <ajitpal.singh@st.com>
* Lee Jones <lee.jones@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/clk.h>
#include <linux/interrupt.h>
#include <linux/math64.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pwm.h>
#include <linux/regmap.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <linux/wait.h>
#define PWM_OUT_VAL(x) (0x00 + (4 * (x))) /* Device's Duty Cycle register */
#define PWM_CPT_VAL(x) (0x10 + (4 * (x))) /* Capture value */
#define PWM_CPT_EDGE(x) (0x30 + (4 * (x))) /* Edge to capture on */
#define STI_PWM_CTRL 0x50 /* Control/Config register */
#define STI_INT_EN 0x54 /* Interrupt Enable/Disable register */
#define STI_INT_STA 0x58 /* Interrupt Status register */
#define PWM_INT_ACK 0x5c
#define PWM_PRESCALE_LOW_MASK 0x0f
#define PWM_PRESCALE_HIGH_MASK 0xf0
#define PWM_CPT_EDGE_MASK 0x03
#define PWM_INT_ACK_MASK 0x1ff
#define STI_MAX_CPT_DEVS 4
#define CPT_DC_MAX 0xff
/* Regfield IDs */
enum {
/* Bits in PWM_CTRL*/
PWMCLK_PRESCALE_LOW,
PWMCLK_PRESCALE_HIGH,
CPTCLK_PRESCALE,
PWM_OUT_EN,
PWM_CPT_EN,
PWM_CPT_INT_EN,
PWM_CPT_INT_STAT,
/* Keep last */
MAX_REGFIELDS
};
/*
* Each capture input can be programmed to detect rising-edge, falling-edge,
* either edge or neither egde.
*/
enum sti_cpt_edge {
CPT_EDGE_DISABLED,
CPT_EDGE_RISING,
CPT_EDGE_FALLING,
CPT_EDGE_BOTH,
};
struct sti_cpt_ddata {
u32 snapshot[3];
unsigned int index;
struct mutex lock;
wait_queue_head_t wait;
};
struct sti_pwm_compat_data {
const struct reg_field *reg_fields;
unsigned int pwm_num_devs;
unsigned int cpt_num_devs;
unsigned int max_pwm_cnt;
unsigned int max_prescale;
};
struct sti_pwm_chip {
struct device *dev;
struct clk *pwm_clk;
struct clk *cpt_clk;
struct regmap *regmap;
struct sti_pwm_compat_data *cdata;
struct regmap_field *prescale_low;
struct regmap_field *prescale_high;
struct regmap_field *pwm_out_en;
struct regmap_field *pwm_cpt_en;
struct regmap_field *pwm_cpt_int_en;
struct regmap_field *pwm_cpt_int_stat;
struct pwm_chip chip;
struct pwm_device *cur;
unsigned long configured;
unsigned int en_count;
struct mutex sti_pwm_lock; /* To sync between enable/disable calls */
void __iomem *mmio;
};
static const struct reg_field sti_pwm_regfields[MAX_REGFIELDS] = {
[PWMCLK_PRESCALE_LOW] = REG_FIELD(STI_PWM_CTRL, 0, 3),
[PWMCLK_PRESCALE_HIGH] = REG_FIELD(STI_PWM_CTRL, 11, 14),
[CPTCLK_PRESCALE] = REG_FIELD(STI_PWM_CTRL, 4, 8),
[PWM_OUT_EN] = REG_FIELD(STI_PWM_CTRL, 9, 9),
[PWM_CPT_EN] = REG_FIELD(STI_PWM_CTRL, 10, 10),
[PWM_CPT_INT_EN] = REG_FIELD(STI_INT_EN, 1, 4),
[PWM_CPT_INT_STAT] = REG_FIELD(STI_INT_STA, 1, 4),
};
static inline struct sti_pwm_chip *to_sti_pwmchip(struct pwm_chip *chip)
{
return container_of(chip, struct sti_pwm_chip, chip);
}
/*
* Calculate the prescaler value corresponding to the period.
*/
static int sti_pwm_get_prescale(struct sti_pwm_chip *pc, unsigned long period,
unsigned int *prescale)
{
struct sti_pwm_compat_data *cdata = pc->cdata;
unsigned long clk_rate;
unsigned long value;
unsigned int ps;
clk_rate = clk_get_rate(pc->pwm_clk);
if (!clk_rate) {
dev_err(pc->dev, "failed to get clock rate\n");
return -EINVAL;
}
/*
* prescale = ((period_ns * clk_rate) / (10^9 * (max_pwm_cnt + 1)) - 1
*/
value = NSEC_PER_SEC / clk_rate;
value *= cdata->max_pwm_cnt + 1;
if (period % value)
return -EINVAL;
ps = period / value - 1;
if (ps > cdata->max_prescale)
return -EINVAL;
*prescale = ps;
return 0;
}
/*
* For STiH4xx PWM IP, the PWM period is fixed to 256 local clock cycles. The
* only way to change the period (apart from changing the PWM input clock) is
* to change the PWM clock prescaler.
*
* The prescaler is of 8 bits, so 256 prescaler values and hence 256 possible
* period values are supported (for a particular clock rate). The requested
* period will be applied only if it matches one of these 256 values.
*/
static int sti_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
int duty_ns, int period_ns)
{
struct sti_pwm_chip *pc = to_sti_pwmchip(chip);
struct sti_pwm_compat_data *cdata = pc->cdata;
unsigned int ncfg, value, prescale = 0;
struct pwm_device *cur = pc->cur;
struct device *dev = pc->dev;
bool period_same = false;
int ret;
ncfg = hweight_long(pc->configured);
if (ncfg)
period_same = (period_ns == pwm_get_period(cur));
/*
* Allow configuration changes if one of the following conditions
* satisfy.
* 1. No devices have been configured.
* 2. Only one device has been configured and the new request is for
* the same device.
* 3. Only one device has been configured and the new request is for
* a new device and period of the new device is same as the current
* configured period.
* 4. More than one devices are configured and period of the new
* requestis the same as the current period.
*/
if (!ncfg ||
((ncfg == 1) && (pwm->hwpwm == cur->hwpwm)) ||
((ncfg == 1) && (pwm->hwpwm != cur->hwpwm) && period_same) ||
((ncfg > 1) && period_same)) {
/* Enable clock before writing to PWM registers. */
ret = clk_enable(pc->pwm_clk);
if (ret)
return ret;
ret = clk_enable(pc->cpt_clk);
if (ret)
return ret;
if (!period_same) {
ret = sti_pwm_get_prescale(pc, period_ns, &prescale);
if (ret)
goto clk_dis;
value = prescale & PWM_PRESCALE_LOW_MASK;
ret = regmap_field_write(pc->prescale_low, value);
if (ret)
goto clk_dis;
value = (prescale & PWM_PRESCALE_HIGH_MASK) >> 4;
ret = regmap_field_write(pc->prescale_high, value);
if (ret)
goto clk_dis;
}
/*
* When PWMVal == 0, PWM pulse = 1 local clock cycle.
* When PWMVal == max_pwm_count,
* PWM pulse = (max_pwm_count + 1) local cycles,
* that is continuous pulse: signal never goes low.
*/
value = cdata->max_pwm_cnt * duty_ns / period_ns;
ret = regmap_write(pc->regmap, PWM_OUT_VAL(pwm->hwpwm), value);
if (ret)
goto clk_dis;
ret = regmap_field_write(pc->pwm_cpt_int_en, 0);
set_bit(pwm->hwpwm, &pc->configured);
pc->cur = pwm;
dev_dbg(dev, "prescale:%u, period:%i, duty:%i, value:%u\n",
prescale, period_ns, duty_ns, value);
} else {
return -EINVAL;
}
clk_dis:
clk_disable(pc->pwm_clk);
clk_disable(pc->cpt_clk);
return ret;
}
static int sti_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct sti_pwm_chip *pc = to_sti_pwmchip(chip);
struct device *dev = pc->dev;
int ret = 0;
/*
* Since we have a common enable for all PWM devices, do not enable if
* already enabled.
*/
mutex_lock(&pc->sti_pwm_lock);
if (!pc->en_count) {
ret = clk_enable(pc->pwm_clk);
if (ret)
goto out;
ret = clk_enable(pc->cpt_clk);
if (ret)
goto out;
ret = regmap_field_write(pc->pwm_out_en, 1);
if (ret) {
dev_err(dev, "failed to enable PWM device %u: %d\n",
pwm->hwpwm, ret);
goto out;
}
}
pc->en_count++;
out:
mutex_unlock(&pc->sti_pwm_lock);
return ret;
}
static void sti_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct sti_pwm_chip *pc = to_sti_pwmchip(chip);
mutex_lock(&pc->sti_pwm_lock);
if (--pc->en_count) {
mutex_unlock(&pc->sti_pwm_lock);
return;
}
regmap_field_write(pc->pwm_out_en, 0);
clk_disable(pc->pwm_clk);
clk_disable(pc->cpt_clk);
mutex_unlock(&pc->sti_pwm_lock);
}
static void sti_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct sti_pwm_chip *pc = to_sti_pwmchip(chip);
clear_bit(pwm->hwpwm, &pc->configured);
}
static int sti_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm_capture *result, unsigned long timeout)
{
struct sti_pwm_chip *pc = to_sti_pwmchip(chip);
struct sti_pwm_compat_data *cdata = pc->cdata;
struct sti_cpt_ddata *ddata = pwm_get_chip_data(pwm);
struct device *dev = pc->dev;
unsigned int effective_ticks;
unsigned long long high, low;
int ret;
if (pwm->hwpwm >= cdata->cpt_num_devs) {
dev_err(dev, "device %u is not valid\n", pwm->hwpwm);
return -EINVAL;
}
mutex_lock(&ddata->lock);
ddata->index = 0;
/* Prepare capture measurement */
regmap_write(pc->regmap, PWM_CPT_EDGE(pwm->hwpwm), CPT_EDGE_RISING);
regmap_field_write(pc->pwm_cpt_int_en, BIT(pwm->hwpwm));
/* Enable capture */
ret = regmap_field_write(pc->pwm_cpt_en, 1);
if (ret) {
dev_err(dev, "failed to enable PWM capture %u: %d\n",
pwm->hwpwm, ret);
goto out;
}
ret = wait_event_interruptible_timeout(ddata->wait, ddata->index > 1,
msecs_to_jiffies(timeout));
regmap_write(pc->regmap, PWM_CPT_EDGE(pwm->hwpwm), CPT_EDGE_DISABLED);
if (ret == -ERESTARTSYS)
goto out;
switch (ddata->index) {
case 0:
case 1:
/*
* Getting here could mean:
* - input signal is constant of less than 1 Hz
* - there is no input signal at all
*
* In such case the frequency is rounded down to 0
*/
result->period = 0;
result->duty_cycle = 0;
break;
case 2:
/* We have everying we need */
high = ddata->snapshot[1] - ddata->snapshot[0];
low = ddata->snapshot[2] - ddata->snapshot[1];
effective_ticks = clk_get_rate(pc->cpt_clk);
result->period = (high + low) * NSEC_PER_SEC;
result->period /= effective_ticks;
result->duty_cycle = high * NSEC_PER_SEC;
result->duty_cycle /= effective_ticks;
break;
default:
dev_err(dev, "internal error\n");
break;
}
out:
/* Disable capture */
regmap_field_write(pc->pwm_cpt_en, 0);
mutex_unlock(&ddata->lock);
return ret;
}
static const struct pwm_ops sti_pwm_ops = {
.capture = sti_pwm_capture,
.config = sti_pwm_config,
.enable = sti_pwm_enable,
.disable = sti_pwm_disable,
.free = sti_pwm_free,
.owner = THIS_MODULE,
};
static irqreturn_t sti_pwm_interrupt(int irq, void *data)
{
struct sti_pwm_chip *pc = data;
struct device *dev = pc->dev;
struct sti_cpt_ddata *ddata;
int devicenum;
unsigned int cpt_int_stat;
unsigned int reg;
int ret = IRQ_NONE;
ret = regmap_field_read(pc->pwm_cpt_int_stat, &cpt_int_stat);
if (ret)
return ret;
while (cpt_int_stat) {
devicenum = ffs(cpt_int_stat) - 1;
ddata = pwm_get_chip_data(&pc->chip.pwms[devicenum]);
/*
* Capture input:
* _______ _______
* | | | |
* __| |_________________| |________
* ^0 ^1 ^2
*
* Capture start by the first available rising edge. When a
* capture event occurs, capture value (CPT_VALx) is stored,
* index incremented, capture edge changed.
*
* After the capture, if the index > 1, we have collected the
* necessary data so we signal the thread waiting for it and
* disable the capture by setting capture edge to none
*/
regmap_read(pc->regmap,
PWM_CPT_VAL(devicenum),
&ddata->snapshot[ddata->index]);
switch (ddata->index) {
case 0:
case 1:
regmap_read(pc->regmap, PWM_CPT_EDGE(devicenum), &reg);
reg ^= PWM_CPT_EDGE_MASK;
regmap_write(pc->regmap, PWM_CPT_EDGE(devicenum), reg);
ddata->index++;
break;
case 2:
regmap_write(pc->regmap,
PWM_CPT_EDGE(devicenum),
CPT_EDGE_DISABLED);
wake_up(&ddata->wait);
break;
default:
dev_err(dev, "Internal error\n");
}
cpt_int_stat &= ~BIT_MASK(devicenum);
ret = IRQ_HANDLED;
}
/* Just ACK everything */
regmap_write(pc->regmap, PWM_INT_ACK, PWM_INT_ACK_MASK);
return ret;
}
static int sti_pwm_probe_dt(struct sti_pwm_chip *pc)
{
struct device *dev = pc->dev;
const struct reg_field *reg_fields;
struct device_node *np = dev->of_node;
struct sti_pwm_compat_data *cdata = pc->cdata;
u32 num_devs;
int ret;
ret = of_property_read_u32(np, "st,pwm-num-chan", &num_devs);
if (!ret)
cdata->pwm_num_devs = num_devs;
ret = of_property_read_u32(np, "st,capture-num-chan", &num_devs);
if (!ret)
cdata->cpt_num_devs = num_devs;
if (!cdata->pwm_num_devs && !cdata->cpt_num_devs) {
dev_err(dev, "No channels configured\n");
return -EINVAL;
}
reg_fields = cdata->reg_fields;
pc->prescale_low = devm_regmap_field_alloc(dev, pc->regmap,
reg_fields[PWMCLK_PRESCALE_LOW]);
if (IS_ERR(pc->prescale_low))
return PTR_ERR(pc->prescale_low);
pc->prescale_high = devm_regmap_field_alloc(dev, pc->regmap,
reg_fields[PWMCLK_PRESCALE_HIGH]);
if (IS_ERR(pc->prescale_high))
return PTR_ERR(pc->prescale_high);
pc->pwm_out_en = devm_regmap_field_alloc(dev, pc->regmap,
reg_fields[PWM_OUT_EN]);
if (IS_ERR(pc->pwm_out_en))
return PTR_ERR(pc->pwm_out_en);
pc->pwm_cpt_en = devm_regmap_field_alloc(dev, pc->regmap,
reg_fields[PWM_CPT_EN]);
if (IS_ERR(pc->pwm_cpt_en))
return PTR_ERR(pc->pwm_cpt_en);
pc->pwm_cpt_int_en = devm_regmap_field_alloc(dev, pc->regmap,
reg_fields[PWM_CPT_INT_EN]);
if (IS_ERR(pc->pwm_cpt_int_en))
return PTR_ERR(pc->pwm_cpt_int_en);
pc->pwm_cpt_int_stat = devm_regmap_field_alloc(dev, pc->regmap,
reg_fields[PWM_CPT_INT_STAT]);
if (PTR_ERR_OR_ZERO(pc->pwm_cpt_int_stat))
return PTR_ERR(pc->pwm_cpt_int_stat);
return 0;
}
static const struct regmap_config sti_pwm_regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
};
static int sti_pwm_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct sti_pwm_compat_data *cdata;
struct sti_pwm_chip *pc;
struct resource *res;
unsigned int i;
int irq, ret;
pc = devm_kzalloc(dev, sizeof(*pc), GFP_KERNEL);
if (!pc)
return -ENOMEM;
cdata = devm_kzalloc(dev, sizeof(*cdata), GFP_KERNEL);
if (!cdata)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
pc->mmio = devm_ioremap_resource(dev, res);
if (IS_ERR(pc->mmio))
return PTR_ERR(pc->mmio);
pc->regmap = devm_regmap_init_mmio(dev, pc->mmio,
&sti_pwm_regmap_config);
if (IS_ERR(pc->regmap))
return PTR_ERR(pc->regmap);
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "Failed to obtain IRQ\n");
return irq;
}
ret = devm_request_irq(&pdev->dev, irq, sti_pwm_interrupt, 0,
pdev->name, pc);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to request IRQ\n");
return ret;
}
/*
* Setup PWM data with default values: some values could be replaced
* with specific ones provided from Device Tree.
*/
cdata->reg_fields = sti_pwm_regfields;
cdata->max_prescale = 0xff;
cdata->max_pwm_cnt = 255;
cdata->pwm_num_devs = 0;
cdata->cpt_num_devs = 0;
pc->cdata = cdata;
pc->dev = dev;
pc->en_count = 0;
mutex_init(&pc->sti_pwm_lock);
ret = sti_pwm_probe_dt(pc);
if (ret)
return ret;
if (!cdata->pwm_num_devs)
goto skip_pwm;
pc->pwm_clk = of_clk_get_by_name(dev->of_node, "pwm");
if (IS_ERR(pc->pwm_clk)) {
dev_err(dev, "failed to get PWM clock\n");
return PTR_ERR(pc->pwm_clk);
}
ret = clk_prepare(pc->pwm_clk);
if (ret) {
dev_err(dev, "failed to prepare clock\n");
return ret;
}
skip_pwm:
if (!cdata->cpt_num_devs)
goto skip_cpt;
pc->cpt_clk = of_clk_get_by_name(dev->of_node, "capture");
if (IS_ERR(pc->cpt_clk)) {
dev_err(dev, "failed to get PWM capture clock\n");
return PTR_ERR(pc->cpt_clk);
}
ret = clk_prepare(pc->cpt_clk);
if (ret) {
dev_err(dev, "failed to prepare clock\n");
return ret;
}
skip_cpt:
pc->chip.dev = dev;
pc->chip.ops = &sti_pwm_ops;
pc->chip.base = -1;
pc->chip.npwm = pc->cdata->pwm_num_devs;
pc->chip.can_sleep = true;
ret = pwmchip_add(&pc->chip);
if (ret < 0) {
clk_unprepare(pc->pwm_clk);
clk_unprepare(pc->cpt_clk);
return ret;
}
for (i = 0; i < cdata->cpt_num_devs; i++) {
struct sti_cpt_ddata *ddata;
ddata = devm_kzalloc(dev, sizeof(*ddata), GFP_KERNEL);
if (!ddata)
return -ENOMEM;
init_waitqueue_head(&ddata->wait);
mutex_init(&ddata->lock);
pwm_set_chip_data(&pc->chip.pwms[i], ddata);
}
platform_set_drvdata(pdev, pc);
return 0;
}
static int sti_pwm_remove(struct platform_device *pdev)
{
struct sti_pwm_chip *pc = platform_get_drvdata(pdev);
unsigned int i;
for (i = 0; i < pc->cdata->pwm_num_devs; i++)
pwm_disable(&pc->chip.pwms[i]);
clk_unprepare(pc->pwm_clk);
clk_unprepare(pc->cpt_clk);
return pwmchip_remove(&pc->chip);
}
static const struct of_device_id sti_pwm_of_match[] = {
{ .compatible = "st,sti-pwm", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sti_pwm_of_match);
static struct platform_driver sti_pwm_driver = {
.driver = {
.name = "sti-pwm",
.of_match_table = sti_pwm_of_match,
},
.probe = sti_pwm_probe,
.remove = sti_pwm_remove,
};
module_platform_driver(sti_pwm_driver);
MODULE_AUTHOR("Ajit Pal Singh <ajitpal.singh@st.com>");
MODULE_DESCRIPTION("STMicroelectronics ST PWM driver");
MODULE_LICENSE("GPL");