2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-21 11:44:01 +08:00
linux-next/arch/arm/mach-tegra/tegra30_clocks.c

3100 lines
90 KiB
C
Raw Normal View History

/*
* arch/arm/mach-tegra/tegra30_clocks.c
*
* Copyright (c) 2010-2011 NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/cpufreq.h>
#include <linux/syscore_ops.h>
#include <asm/clkdev.h>
#include <mach/iomap.h>
#include "clock.h"
#include "fuse.h"
#define USE_PLL_LOCK_BITS 0
#define RST_DEVICES_L 0x004
#define RST_DEVICES_H 0x008
#define RST_DEVICES_U 0x00C
#define RST_DEVICES_V 0x358
#define RST_DEVICES_W 0x35C
#define RST_DEVICES_SET_L 0x300
#define RST_DEVICES_CLR_L 0x304
#define RST_DEVICES_SET_V 0x430
#define RST_DEVICES_CLR_V 0x434
#define RST_DEVICES_NUM 5
#define CLK_OUT_ENB_L 0x010
#define CLK_OUT_ENB_H 0x014
#define CLK_OUT_ENB_U 0x018
#define CLK_OUT_ENB_V 0x360
#define CLK_OUT_ENB_W 0x364
#define CLK_OUT_ENB_SET_L 0x320
#define CLK_OUT_ENB_CLR_L 0x324
#define CLK_OUT_ENB_SET_V 0x440
#define CLK_OUT_ENB_CLR_V 0x444
#define CLK_OUT_ENB_NUM 5
#define RST_DEVICES_V_SWR_CPULP_RST_DIS (0x1 << 1)
#define CLK_OUT_ENB_V_CLK_ENB_CPULP_EN (0x1 << 1)
#define PERIPH_CLK_TO_BIT(c) (1 << (c->u.periph.clk_num % 32))
#define PERIPH_CLK_TO_RST_REG(c) \
periph_clk_to_reg((c), RST_DEVICES_L, RST_DEVICES_V, 4)
#define PERIPH_CLK_TO_RST_SET_REG(c) \
periph_clk_to_reg((c), RST_DEVICES_SET_L, RST_DEVICES_SET_V, 8)
#define PERIPH_CLK_TO_RST_CLR_REG(c) \
periph_clk_to_reg((c), RST_DEVICES_CLR_L, RST_DEVICES_CLR_V, 8)
#define PERIPH_CLK_TO_ENB_REG(c) \
periph_clk_to_reg((c), CLK_OUT_ENB_L, CLK_OUT_ENB_V, 4)
#define PERIPH_CLK_TO_ENB_SET_REG(c) \
periph_clk_to_reg((c), CLK_OUT_ENB_SET_L, CLK_OUT_ENB_SET_V, 8)
#define PERIPH_CLK_TO_ENB_CLR_REG(c) \
periph_clk_to_reg((c), CLK_OUT_ENB_CLR_L, CLK_OUT_ENB_CLR_V, 8)
#define CLK_MASK_ARM 0x44
#define MISC_CLK_ENB 0x48
#define OSC_CTRL 0x50
#define OSC_CTRL_OSC_FREQ_MASK (0xF<<28)
#define OSC_CTRL_OSC_FREQ_13MHZ (0x0<<28)
#define OSC_CTRL_OSC_FREQ_19_2MHZ (0x4<<28)
#define OSC_CTRL_OSC_FREQ_12MHZ (0x8<<28)
#define OSC_CTRL_OSC_FREQ_26MHZ (0xC<<28)
#define OSC_CTRL_OSC_FREQ_16_8MHZ (0x1<<28)
#define OSC_CTRL_OSC_FREQ_38_4MHZ (0x5<<28)
#define OSC_CTRL_OSC_FREQ_48MHZ (0x9<<28)
#define OSC_CTRL_MASK (0x3f2 | OSC_CTRL_OSC_FREQ_MASK)
#define OSC_CTRL_PLL_REF_DIV_MASK (3<<26)
#define OSC_CTRL_PLL_REF_DIV_1 (0<<26)
#define OSC_CTRL_PLL_REF_DIV_2 (1<<26)
#define OSC_CTRL_PLL_REF_DIV_4 (2<<26)
#define OSC_FREQ_DET 0x58
#define OSC_FREQ_DET_TRIG (1<<31)
#define OSC_FREQ_DET_STATUS 0x5C
#define OSC_FREQ_DET_BUSY (1<<31)
#define OSC_FREQ_DET_CNT_MASK 0xFFFF
#define PERIPH_CLK_SOURCE_I2S1 0x100
#define PERIPH_CLK_SOURCE_EMC 0x19c
#define PERIPH_CLK_SOURCE_OSC 0x1fc
#define PERIPH_CLK_SOURCE_NUM1 \
((PERIPH_CLK_SOURCE_OSC - PERIPH_CLK_SOURCE_I2S1) / 4)
#define PERIPH_CLK_SOURCE_G3D2 0x3b0
#define PERIPH_CLK_SOURCE_SE 0x42c
#define PERIPH_CLK_SOURCE_NUM2 \
((PERIPH_CLK_SOURCE_SE - PERIPH_CLK_SOURCE_G3D2) / 4 + 1)
#define AUDIO_DLY_CLK 0x49c
#define AUDIO_SYNC_CLK_SPDIF 0x4b4
#define PERIPH_CLK_SOURCE_NUM3 \
((AUDIO_SYNC_CLK_SPDIF - AUDIO_DLY_CLK) / 4 + 1)
#define PERIPH_CLK_SOURCE_NUM (PERIPH_CLK_SOURCE_NUM1 + \
PERIPH_CLK_SOURCE_NUM2 + \
PERIPH_CLK_SOURCE_NUM3)
#define CPU_SOFTRST_CTRL 0x380
#define PERIPH_CLK_SOURCE_DIVU71_MASK 0xFF
#define PERIPH_CLK_SOURCE_DIVU16_MASK 0xFFFF
#define PERIPH_CLK_SOURCE_DIV_SHIFT 0
#define PERIPH_CLK_SOURCE_DIVIDLE_SHIFT 8
#define PERIPH_CLK_SOURCE_DIVIDLE_VAL 50
#define PERIPH_CLK_UART_DIV_ENB (1<<24)
#define PERIPH_CLK_VI_SEL_EX_SHIFT 24
#define PERIPH_CLK_VI_SEL_EX_MASK (0x3<<PERIPH_CLK_VI_SEL_EX_SHIFT)
#define PERIPH_CLK_NAND_DIV_EX_ENB (1<<8)
#define PERIPH_CLK_DTV_POLARITY_INV (1<<25)
#define AUDIO_SYNC_SOURCE_MASK 0x0F
#define AUDIO_SYNC_DISABLE_BIT 0x10
#define AUDIO_SYNC_TAP_NIBBLE_SHIFT(c) ((c->reg_shift - 24) * 4)
#define PLL_BASE 0x0
#define PLL_BASE_BYPASS (1<<31)
#define PLL_BASE_ENABLE (1<<30)
#define PLL_BASE_REF_ENABLE (1<<29)
#define PLL_BASE_OVERRIDE (1<<28)
#define PLL_BASE_LOCK (1<<27)
#define PLL_BASE_DIVP_MASK (0x7<<20)
#define PLL_BASE_DIVP_SHIFT 20
#define PLL_BASE_DIVN_MASK (0x3FF<<8)
#define PLL_BASE_DIVN_SHIFT 8
#define PLL_BASE_DIVM_MASK (0x1F)
#define PLL_BASE_DIVM_SHIFT 0
#define PLL_OUT_RATIO_MASK (0xFF<<8)
#define PLL_OUT_RATIO_SHIFT 8
#define PLL_OUT_OVERRIDE (1<<2)
#define PLL_OUT_CLKEN (1<<1)
#define PLL_OUT_RESET_DISABLE (1<<0)
#define PLL_MISC(c) \
(((c)->flags & PLL_ALT_MISC_REG) ? 0x4 : 0xc)
#define PLL_MISC_LOCK_ENABLE(c) \
(((c)->flags & (PLLU | PLLD)) ? (1<<22) : (1<<18))
#define PLL_MISC_DCCON_SHIFT 20
#define PLL_MISC_CPCON_SHIFT 8
#define PLL_MISC_CPCON_MASK (0xF<<PLL_MISC_CPCON_SHIFT)
#define PLL_MISC_LFCON_SHIFT 4
#define PLL_MISC_LFCON_MASK (0xF<<PLL_MISC_LFCON_SHIFT)
#define PLL_MISC_VCOCON_SHIFT 0
#define PLL_MISC_VCOCON_MASK (0xF<<PLL_MISC_VCOCON_SHIFT)
#define PLLD_MISC_CLKENABLE (1<<30)
#define PLLU_BASE_POST_DIV (1<<20)
#define PLLD_BASE_DSIB_MUX_SHIFT 25
#define PLLD_BASE_DSIB_MUX_MASK (1<<PLLD_BASE_DSIB_MUX_SHIFT)
#define PLLD_BASE_CSI_CLKENABLE (1<<26)
#define PLLD_MISC_DSI_CLKENABLE (1<<30)
#define PLLD_MISC_DIV_RST (1<<23)
#define PLLD_MISC_DCCON_SHIFT 12
#define PLLDU_LFCON_SET_DIVN 600
/* FIXME: OUT_OF_TABLE_CPCON per pll */
#define OUT_OF_TABLE_CPCON 0x8
#define SUPER_CLK_MUX 0x00
#define SUPER_STATE_SHIFT 28
#define SUPER_STATE_MASK (0xF << SUPER_STATE_SHIFT)
#define SUPER_STATE_STANDBY (0x0 << SUPER_STATE_SHIFT)
#define SUPER_STATE_IDLE (0x1 << SUPER_STATE_SHIFT)
#define SUPER_STATE_RUN (0x2 << SUPER_STATE_SHIFT)
#define SUPER_STATE_IRQ (0x3 << SUPER_STATE_SHIFT)
#define SUPER_STATE_FIQ (0x4 << SUPER_STATE_SHIFT)
#define SUPER_LP_DIV2_BYPASS (0x1 << 16)
#define SUPER_SOURCE_MASK 0xF
#define SUPER_FIQ_SOURCE_SHIFT 12
#define SUPER_IRQ_SOURCE_SHIFT 8
#define SUPER_RUN_SOURCE_SHIFT 4
#define SUPER_IDLE_SOURCE_SHIFT 0
#define SUPER_CLK_DIVIDER 0x04
#define SUPER_CLOCK_DIV_U71_SHIFT 16
#define SUPER_CLOCK_DIV_U71_MASK (0xff << SUPER_CLOCK_DIV_U71_SHIFT)
/* guarantees safe cpu backup */
#define SUPER_CLOCK_DIV_U71_MIN 0x2
#define BUS_CLK_DISABLE (1<<3)
#define BUS_CLK_DIV_MASK 0x3
#define PMC_CTRL 0x0
#define PMC_CTRL_BLINK_ENB (1 << 7)
#define PMC_DPD_PADS_ORIDE 0x1c
#define PMC_DPD_PADS_ORIDE_BLINK_ENB (1 << 20)
#define PMC_BLINK_TIMER_DATA_ON_SHIFT 0
#define PMC_BLINK_TIMER_DATA_ON_MASK 0x7fff
#define PMC_BLINK_TIMER_ENB (1 << 15)
#define PMC_BLINK_TIMER_DATA_OFF_SHIFT 16
#define PMC_BLINK_TIMER_DATA_OFF_MASK 0xffff
#define PMC_PLLP_WB0_OVERRIDE 0xf8
#define PMC_PLLP_WB0_OVERRIDE_PLLM_ENABLE (1 << 12)
#define UTMIP_PLL_CFG2 0x488
#define UTMIP_PLL_CFG2_STABLE_COUNT(x) (((x) & 0xfff) << 6)
#define UTMIP_PLL_CFG2_ACTIVE_DLY_COUNT(x) (((x) & 0x3f) << 18)
#define UTMIP_PLL_CFG2_FORCE_PD_SAMP_A_POWERDOWN (1 << 0)
#define UTMIP_PLL_CFG2_FORCE_PD_SAMP_B_POWERDOWN (1 << 2)
#define UTMIP_PLL_CFG2_FORCE_PD_SAMP_C_POWERDOWN (1 << 4)
#define UTMIP_PLL_CFG1 0x484
#define UTMIP_PLL_CFG1_ENABLE_DLY_COUNT(x) (((x) & 0x1f) << 27)
#define UTMIP_PLL_CFG1_XTAL_FREQ_COUNT(x) (((x) & 0xfff) << 0)
#define UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERDOWN (1 << 14)
#define UTMIP_PLL_CFG1_FORCE_PLL_ACTIVE_POWERDOWN (1 << 12)
#define UTMIP_PLL_CFG1_FORCE_PLLU_POWERDOWN (1 << 16)
#define PLLE_BASE_CML_ENABLE (1<<31)
#define PLLE_BASE_ENABLE (1<<30)
#define PLLE_BASE_DIVCML_SHIFT 24
#define PLLE_BASE_DIVCML_MASK (0xf<<PLLE_BASE_DIVCML_SHIFT)
#define PLLE_BASE_DIVP_SHIFT 16
#define PLLE_BASE_DIVP_MASK (0x3f<<PLLE_BASE_DIVP_SHIFT)
#define PLLE_BASE_DIVN_SHIFT 8
#define PLLE_BASE_DIVN_MASK (0xFF<<PLLE_BASE_DIVN_SHIFT)
#define PLLE_BASE_DIVM_SHIFT 0
#define PLLE_BASE_DIVM_MASK (0xFF<<PLLE_BASE_DIVM_SHIFT)
#define PLLE_BASE_DIV_MASK \
(PLLE_BASE_DIVCML_MASK | PLLE_BASE_DIVP_MASK | \
PLLE_BASE_DIVN_MASK | PLLE_BASE_DIVM_MASK)
#define PLLE_BASE_DIV(m, n, p, cml) \
(((cml)<<PLLE_BASE_DIVCML_SHIFT) | ((p)<<PLLE_BASE_DIVP_SHIFT) | \
((n)<<PLLE_BASE_DIVN_SHIFT) | ((m)<<PLLE_BASE_DIVM_SHIFT))
#define PLLE_MISC_SETUP_BASE_SHIFT 16
#define PLLE_MISC_SETUP_BASE_MASK (0xFFFF<<PLLE_MISC_SETUP_BASE_SHIFT)
#define PLLE_MISC_READY (1<<15)
#define PLLE_MISC_LOCK (1<<11)
#define PLLE_MISC_LOCK_ENABLE (1<<9)
#define PLLE_MISC_SETUP_EX_SHIFT 2
#define PLLE_MISC_SETUP_EX_MASK (0x3<<PLLE_MISC_SETUP_EX_SHIFT)
#define PLLE_MISC_SETUP_MASK \
(PLLE_MISC_SETUP_BASE_MASK | PLLE_MISC_SETUP_EX_MASK)
#define PLLE_MISC_SETUP_VALUE \
((0x7<<PLLE_MISC_SETUP_BASE_SHIFT) | (0x0<<PLLE_MISC_SETUP_EX_SHIFT))
#define PLLE_SS_CTRL 0x68
#define PLLE_SS_INCINTRV_SHIFT 24
#define PLLE_SS_INCINTRV_MASK (0x3f<<PLLE_SS_INCINTRV_SHIFT)
#define PLLE_SS_INC_SHIFT 16
#define PLLE_SS_INC_MASK (0xff<<PLLE_SS_INC_SHIFT)
#define PLLE_SS_MAX_SHIFT 0
#define PLLE_SS_MAX_MASK (0x1ff<<PLLE_SS_MAX_SHIFT)
#define PLLE_SS_COEFFICIENTS_MASK \
(PLLE_SS_INCINTRV_MASK | PLLE_SS_INC_MASK | PLLE_SS_MAX_MASK)
#define PLLE_SS_COEFFICIENTS_12MHZ \
((0x18<<PLLE_SS_INCINTRV_SHIFT) | (0x1<<PLLE_SS_INC_SHIFT) | \
(0x24<<PLLE_SS_MAX_SHIFT))
#define PLLE_SS_DISABLE ((1<<12) | (1<<11) | (1<<10))
#define PLLE_AUX 0x48c
#define PLLE_AUX_PLLP_SEL (1<<2)
#define PLLE_AUX_CML_SATA_ENABLE (1<<1)
#define PLLE_AUX_CML_PCIE_ENABLE (1<<0)
#define PMC_SATA_PWRGT 0x1ac
#define PMC_SATA_PWRGT_PLLE_IDDQ_VALUE (1<<5)
#define PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL (1<<4)
#define ROUND_DIVIDER_UP 0
#define ROUND_DIVIDER_DOWN 1
/* FIXME: recommended safety delay after lock is detected */
#define PLL_POST_LOCK_DELAY 100
/**
* Structure defining the fields for USB UTMI clocks Parameters.
*/
struct utmi_clk_param {
/* Oscillator Frequency in KHz */
u32 osc_frequency;
/* UTMIP PLL Enable Delay Count */
u8 enable_delay_count;
/* UTMIP PLL Stable count */
u8 stable_count;
/* UTMIP PLL Active delay count */
u8 active_delay_count;
/* UTMIP PLL Xtal frequency count */
u8 xtal_freq_count;
};
static const struct utmi_clk_param utmi_parameters[] = {
{
.osc_frequency = 13000000,
.enable_delay_count = 0x02,
.stable_count = 0x33,
.active_delay_count = 0x05,
.xtal_freq_count = 0x7F
},
{
.osc_frequency = 19200000,
.enable_delay_count = 0x03,
.stable_count = 0x4B,
.active_delay_count = 0x06,
.xtal_freq_count = 0xBB},
{
.osc_frequency = 12000000,
.enable_delay_count = 0x02,
.stable_count = 0x2F,
.active_delay_count = 0x04,
.xtal_freq_count = 0x76
},
{
.osc_frequency = 26000000,
.enable_delay_count = 0x04,
.stable_count = 0x66,
.active_delay_count = 0x09,
.xtal_freq_count = 0xFE
},
{
.osc_frequency = 16800000,
.enable_delay_count = 0x03,
.stable_count = 0x41,
.active_delay_count = 0x0A,
.xtal_freq_count = 0xA4
},
};
static void __iomem *reg_clk_base = IO_ADDRESS(TEGRA_CLK_RESET_BASE);
static void __iomem *reg_pmc_base = IO_ADDRESS(TEGRA_PMC_BASE);
static void __iomem *misc_gp_hidrev_base = IO_ADDRESS(TEGRA_APB_MISC_BASE);
#define MISC_GP_HIDREV 0x804
/*
* Some peripheral clocks share an enable bit, so refcount the enable bits
* in registers CLK_ENABLE_L, ... CLK_ENABLE_W
*/
static int tegra_periph_clk_enable_refcount[CLK_OUT_ENB_NUM * 32];
#define clk_writel(value, reg) \
__raw_writel(value, (u32)reg_clk_base + (reg))
#define clk_readl(reg) \
__raw_readl((u32)reg_clk_base + (reg))
#define pmc_writel(value, reg) \
__raw_writel(value, (u32)reg_pmc_base + (reg))
#define pmc_readl(reg) \
__raw_readl((u32)reg_pmc_base + (reg))
#define chipid_readl() \
__raw_readl((u32)misc_gp_hidrev_base + MISC_GP_HIDREV)
#define clk_writel_delay(value, reg) \
do { \
__raw_writel((value), (u32)reg_clk_base + (reg)); \
udelay(2); \
} while (0)
static inline int clk_set_div(struct clk *c, u32 n)
{
return clk_set_rate(c, (clk_get_rate(c->parent) + n-1) / n);
}
static inline u32 periph_clk_to_reg(
struct clk *c, u32 reg_L, u32 reg_V, int offs)
{
u32 reg = c->u.periph.clk_num / 32;
BUG_ON(reg >= RST_DEVICES_NUM);
if (reg < 3)
reg = reg_L + (reg * offs);
else
reg = reg_V + ((reg - 3) * offs);
return reg;
}
static unsigned long clk_measure_input_freq(void)
{
u32 clock_autodetect;
clk_writel(OSC_FREQ_DET_TRIG | 1, OSC_FREQ_DET);
do {} while (clk_readl(OSC_FREQ_DET_STATUS) & OSC_FREQ_DET_BUSY);
clock_autodetect = clk_readl(OSC_FREQ_DET_STATUS);
if (clock_autodetect >= 732 - 3 && clock_autodetect <= 732 + 3) {
return 12000000;
} else if (clock_autodetect >= 794 - 3 && clock_autodetect <= 794 + 3) {
return 13000000;
} else if (clock_autodetect >= 1172 - 3 && clock_autodetect <= 1172 + 3) {
return 19200000;
} else if (clock_autodetect >= 1587 - 3 && clock_autodetect <= 1587 + 3) {
return 26000000;
} else if (clock_autodetect >= 1025 - 3 && clock_autodetect <= 1025 + 3) {
return 16800000;
} else if (clock_autodetect >= 2344 - 3 && clock_autodetect <= 2344 + 3) {
return 38400000;
} else if (clock_autodetect >= 2928 - 3 && clock_autodetect <= 2928 + 3) {
return 48000000;
} else {
pr_err("%s: Unexpected clock autodetect value %d", __func__,
clock_autodetect);
BUG();
return 0;
}
}
static int clk_div71_get_divider(unsigned long parent_rate, unsigned long rate,
u32 flags, u32 round_mode)
{
s64 divider_u71 = parent_rate;
if (!rate)
return -EINVAL;
if (!(flags & DIV_U71_INT))
divider_u71 *= 2;
if (round_mode == ROUND_DIVIDER_UP)
divider_u71 += rate - 1;
do_div(divider_u71, rate);
if (flags & DIV_U71_INT)
divider_u71 *= 2;
if (divider_u71 - 2 < 0)
return 0;
if (divider_u71 - 2 > 255)
return -EINVAL;
return divider_u71 - 2;
}
static int clk_div16_get_divider(unsigned long parent_rate, unsigned long rate)
{
s64 divider_u16;
divider_u16 = parent_rate;
if (!rate)
return -EINVAL;
divider_u16 += rate - 1;
do_div(divider_u16, rate);
if (divider_u16 - 1 < 0)
return 0;
if (divider_u16 - 1 > 0xFFFF)
return -EINVAL;
return divider_u16 - 1;
}
/* clk_m functions */
static unsigned long tegra30_clk_m_autodetect_rate(struct clk *c)
{
u32 osc_ctrl = clk_readl(OSC_CTRL);
u32 auto_clock_control = osc_ctrl & ~OSC_CTRL_OSC_FREQ_MASK;
u32 pll_ref_div = osc_ctrl & OSC_CTRL_PLL_REF_DIV_MASK;
c->rate = clk_measure_input_freq();
switch (c->rate) {
case 12000000:
auto_clock_control |= OSC_CTRL_OSC_FREQ_12MHZ;
BUG_ON(pll_ref_div != OSC_CTRL_PLL_REF_DIV_1);
break;
case 13000000:
auto_clock_control |= OSC_CTRL_OSC_FREQ_13MHZ;
BUG_ON(pll_ref_div != OSC_CTRL_PLL_REF_DIV_1);
break;
case 19200000:
auto_clock_control |= OSC_CTRL_OSC_FREQ_19_2MHZ;
BUG_ON(pll_ref_div != OSC_CTRL_PLL_REF_DIV_1);
break;
case 26000000:
auto_clock_control |= OSC_CTRL_OSC_FREQ_26MHZ;
BUG_ON(pll_ref_div != OSC_CTRL_PLL_REF_DIV_1);
break;
case 16800000:
auto_clock_control |= OSC_CTRL_OSC_FREQ_16_8MHZ;
BUG_ON(pll_ref_div != OSC_CTRL_PLL_REF_DIV_1);
break;
case 38400000:
auto_clock_control |= OSC_CTRL_OSC_FREQ_38_4MHZ;
BUG_ON(pll_ref_div != OSC_CTRL_PLL_REF_DIV_2);
break;
case 48000000:
auto_clock_control |= OSC_CTRL_OSC_FREQ_48MHZ;
BUG_ON(pll_ref_div != OSC_CTRL_PLL_REF_DIV_4);
break;
default:
pr_err("%s: Unexpected clock rate %ld", __func__, c->rate);
BUG();
}
clk_writel(auto_clock_control, OSC_CTRL);
return c->rate;
}
static void tegra30_clk_m_init(struct clk *c)
{
pr_debug("%s on clock %s\n", __func__, c->name);
tegra30_clk_m_autodetect_rate(c);
}
static int tegra30_clk_m_enable(struct clk *c)
{
pr_debug("%s on clock %s\n", __func__, c->name);
return 0;
}
static void tegra30_clk_m_disable(struct clk *c)
{
pr_debug("%s on clock %s\n", __func__, c->name);
WARN(1, "Attempting to disable main SoC clock\n");
}
static struct clk_ops tegra_clk_m_ops = {
.init = tegra30_clk_m_init,
.enable = tegra30_clk_m_enable,
.disable = tegra30_clk_m_disable,
};
static struct clk_ops tegra_clk_m_div_ops = {
.enable = tegra30_clk_m_enable,
};
/* PLL reference divider functions */
static void tegra30_pll_ref_init(struct clk *c)
{
u32 pll_ref_div = clk_readl(OSC_CTRL) & OSC_CTRL_PLL_REF_DIV_MASK;
pr_debug("%s on clock %s\n", __func__, c->name);
switch (pll_ref_div) {
case OSC_CTRL_PLL_REF_DIV_1:
c->div = 1;
break;
case OSC_CTRL_PLL_REF_DIV_2:
c->div = 2;
break;
case OSC_CTRL_PLL_REF_DIV_4:
c->div = 4;
break;
default:
pr_err("%s: Invalid pll ref divider %d", __func__, pll_ref_div);
BUG();
}
c->mul = 1;
c->state = ON;
}
static struct clk_ops tegra_pll_ref_ops = {
.init = tegra30_pll_ref_init,
.enable = tegra30_clk_m_enable,
.disable = tegra30_clk_m_disable,
};
/* super clock functions */
/* "super clocks" on tegra30 have two-stage muxes, fractional 7.1 divider and
* clock skipping super divider. We will ignore the clock skipping divider,
* since we can't lower the voltage when using the clock skip, but we can if
* we lower the PLL frequency. We will use 7.1 divider for CPU super-clock
* only when its parent is a fixed rate PLL, since we can't change PLL rate
* in this case.
*/
static void tegra30_super_clk_init(struct clk *c)
{
u32 val;
int source;
int shift;
const struct clk_mux_sel *sel;
val = clk_readl(c->reg + SUPER_CLK_MUX);
c->state = ON;
BUG_ON(((val & SUPER_STATE_MASK) != SUPER_STATE_RUN) &&
((val & SUPER_STATE_MASK) != SUPER_STATE_IDLE));
shift = ((val & SUPER_STATE_MASK) == SUPER_STATE_IDLE) ?
SUPER_IDLE_SOURCE_SHIFT : SUPER_RUN_SOURCE_SHIFT;
source = (val >> shift) & SUPER_SOURCE_MASK;
if (c->flags & DIV_2)
source |= val & SUPER_LP_DIV2_BYPASS;
for (sel = c->inputs; sel->input != NULL; sel++) {
if (sel->value == source)
break;
}
BUG_ON(sel->input == NULL);
c->parent = sel->input;
if (c->flags & DIV_U71) {
/* Init safe 7.1 divider value (does not affect PLLX path) */
clk_writel(SUPER_CLOCK_DIV_U71_MIN << SUPER_CLOCK_DIV_U71_SHIFT,
c->reg + SUPER_CLK_DIVIDER);
c->mul = 2;
c->div = 2;
if (!(c->parent->flags & PLLX))
c->div += SUPER_CLOCK_DIV_U71_MIN;
} else
clk_writel(0, c->reg + SUPER_CLK_DIVIDER);
}
static int tegra30_super_clk_enable(struct clk *c)
{
return 0;
}
static void tegra30_super_clk_disable(struct clk *c)
{
/* since tegra 3 has 2 CPU super clocks - low power lp-mode clock and
geared up g-mode super clock - mode switch may request to disable
either of them; accept request with no affect on h/w */
}
static int tegra30_super_clk_set_parent(struct clk *c, struct clk *p)
{
u32 val;
const struct clk_mux_sel *sel;
int shift;
val = clk_readl(c->reg + SUPER_CLK_MUX);
BUG_ON(((val & SUPER_STATE_MASK) != SUPER_STATE_RUN) &&
((val & SUPER_STATE_MASK) != SUPER_STATE_IDLE));
shift = ((val & SUPER_STATE_MASK) == SUPER_STATE_IDLE) ?
SUPER_IDLE_SOURCE_SHIFT : SUPER_RUN_SOURCE_SHIFT;
for (sel = c->inputs; sel->input != NULL; sel++) {
if (sel->input == p) {
/* For LP mode super-clock switch between PLLX direct
and divided-by-2 outputs is allowed only when other
than PLLX clock source is current parent */
if ((c->flags & DIV_2) && (p->flags & PLLX) &&
((sel->value ^ val) & SUPER_LP_DIV2_BYPASS)) {
if (c->parent->flags & PLLX)
return -EINVAL;
val ^= SUPER_LP_DIV2_BYPASS;
clk_writel_delay(val, c->reg);
}
val &= ~(SUPER_SOURCE_MASK << shift);
val |= (sel->value & SUPER_SOURCE_MASK) << shift;
/* 7.1 divider for CPU super-clock does not affect
PLLX path */
if (c->flags & DIV_U71) {
u32 div = 0;
if (!(p->flags & PLLX)) {
div = clk_readl(c->reg +
SUPER_CLK_DIVIDER);
div &= SUPER_CLOCK_DIV_U71_MASK;
div >>= SUPER_CLOCK_DIV_U71_SHIFT;
}
c->div = div + 2;
c->mul = 2;
}
if (c->refcnt)
clk_enable(p);
clk_writel_delay(val, c->reg);
if (c->refcnt && c->parent)
clk_disable(c->parent);
clk_reparent(c, p);
return 0;
}
}
return -EINVAL;
}
/*
* Do not use super clocks "skippers", since dividing using a clock skipper
* does not allow the voltage to be scaled down. Instead adjust the rate of
* the parent clock. This requires that the parent of a super clock have no
* other children, otherwise the rate will change underneath the other
* children. Special case: if fixed rate PLL is CPU super clock parent the
* rate of this PLL can't be changed, and it has many other children. In
* this case use 7.1 fractional divider to adjust the super clock rate.
*/
static int tegra30_super_clk_set_rate(struct clk *c, unsigned long rate)
{
if ((c->flags & DIV_U71) && (c->parent->flags & PLL_FIXED)) {
int div = clk_div71_get_divider(c->parent->u.pll.fixed_rate,
rate, c->flags, ROUND_DIVIDER_DOWN);
div = max(div, SUPER_CLOCK_DIV_U71_MIN);
clk_writel(div << SUPER_CLOCK_DIV_U71_SHIFT,
c->reg + SUPER_CLK_DIVIDER);
c->div = div + 2;
c->mul = 2;
return 0;
}
return clk_set_rate(c->parent, rate);
}
static struct clk_ops tegra_super_ops = {
.init = tegra30_super_clk_init,
.enable = tegra30_super_clk_enable,
.disable = tegra30_super_clk_disable,
.set_parent = tegra30_super_clk_set_parent,
.set_rate = tegra30_super_clk_set_rate,
};
static int tegra30_twd_clk_set_rate(struct clk *c, unsigned long rate)
{
/* The input value 'rate' is the clock rate of the CPU complex. */
c->rate = (rate * c->mul) / c->div;
return 0;
}
static struct clk_ops tegra30_twd_ops = {
.set_rate = tegra30_twd_clk_set_rate,
};
/* Blink output functions */
static void tegra30_blink_clk_init(struct clk *c)
{
u32 val;
val = pmc_readl(PMC_CTRL);
c->state = (val & PMC_CTRL_BLINK_ENB) ? ON : OFF;
c->mul = 1;
val = pmc_readl(c->reg);
if (val & PMC_BLINK_TIMER_ENB) {
unsigned int on_off;
on_off = (val >> PMC_BLINK_TIMER_DATA_ON_SHIFT) &
PMC_BLINK_TIMER_DATA_ON_MASK;
val >>= PMC_BLINK_TIMER_DATA_OFF_SHIFT;
val &= PMC_BLINK_TIMER_DATA_OFF_MASK;
on_off += val;
/* each tick in the blink timer is 4 32KHz clocks */
c->div = on_off * 4;
} else {
c->div = 1;
}
}
static int tegra30_blink_clk_enable(struct clk *c)
{
u32 val;
val = pmc_readl(PMC_DPD_PADS_ORIDE);
pmc_writel(val | PMC_DPD_PADS_ORIDE_BLINK_ENB, PMC_DPD_PADS_ORIDE);
val = pmc_readl(PMC_CTRL);
pmc_writel(val | PMC_CTRL_BLINK_ENB, PMC_CTRL);
return 0;
}
static void tegra30_blink_clk_disable(struct clk *c)
{
u32 val;
val = pmc_readl(PMC_CTRL);
pmc_writel(val & ~PMC_CTRL_BLINK_ENB, PMC_CTRL);
val = pmc_readl(PMC_DPD_PADS_ORIDE);
pmc_writel(val & ~PMC_DPD_PADS_ORIDE_BLINK_ENB, PMC_DPD_PADS_ORIDE);
}
static int tegra30_blink_clk_set_rate(struct clk *c, unsigned long rate)
{
unsigned long parent_rate = clk_get_rate(c->parent);
if (rate >= parent_rate) {
c->div = 1;
pmc_writel(0, c->reg);
} else {
unsigned int on_off;
u32 val;
on_off = DIV_ROUND_UP(parent_rate / 8, rate);
c->div = on_off * 8;
val = (on_off & PMC_BLINK_TIMER_DATA_ON_MASK) <<
PMC_BLINK_TIMER_DATA_ON_SHIFT;
on_off &= PMC_BLINK_TIMER_DATA_OFF_MASK;
on_off <<= PMC_BLINK_TIMER_DATA_OFF_SHIFT;
val |= on_off;
val |= PMC_BLINK_TIMER_ENB;
pmc_writel(val, c->reg);
}
return 0;
}
static struct clk_ops tegra_blink_clk_ops = {
.init = &tegra30_blink_clk_init,
.enable = &tegra30_blink_clk_enable,
.disable = &tegra30_blink_clk_disable,
.set_rate = &tegra30_blink_clk_set_rate,
};
/* PLL Functions */
static int tegra30_pll_clk_wait_for_lock(struct clk *c, u32 lock_reg,
u32 lock_bit)
{
#if USE_PLL_LOCK_BITS
int i;
for (i = 0; i < c->u.pll.lock_delay; i++) {
if (clk_readl(lock_reg) & lock_bit) {
udelay(PLL_POST_LOCK_DELAY);
return 0;
}
udelay(2); /* timeout = 2 * lock time */
}
pr_err("Timed out waiting for lock bit on pll %s", c->name);
return -1;
#endif
udelay(c->u.pll.lock_delay);
return 0;
}
static void tegra30_utmi_param_configure(struct clk *c)
{
u32 reg;
int i;
unsigned long main_rate =
clk_get_rate(c->parent->parent);
for (i = 0; i < ARRAY_SIZE(utmi_parameters); i++) {
if (main_rate == utmi_parameters[i].osc_frequency)
break;
}
if (i >= ARRAY_SIZE(utmi_parameters)) {
pr_err("%s: Unexpected main rate %lu\n", __func__, main_rate);
return;
}
reg = clk_readl(UTMIP_PLL_CFG2);
/* Program UTMIP PLL stable and active counts */
/* [FIXME] arclk_rst.h says WRONG! This should be 1ms -> 0x50 Check! */
reg &= ~UTMIP_PLL_CFG2_STABLE_COUNT(~0);
reg |= UTMIP_PLL_CFG2_STABLE_COUNT(
utmi_parameters[i].stable_count);
reg &= ~UTMIP_PLL_CFG2_ACTIVE_DLY_COUNT(~0);
reg |= UTMIP_PLL_CFG2_ACTIVE_DLY_COUNT(
utmi_parameters[i].active_delay_count);
/* Remove power downs from UTMIP PLL control bits */
reg &= ~UTMIP_PLL_CFG2_FORCE_PD_SAMP_A_POWERDOWN;
reg &= ~UTMIP_PLL_CFG2_FORCE_PD_SAMP_B_POWERDOWN;
reg &= ~UTMIP_PLL_CFG2_FORCE_PD_SAMP_C_POWERDOWN;
clk_writel(reg, UTMIP_PLL_CFG2);
/* Program UTMIP PLL delay and oscillator frequency counts */
reg = clk_readl(UTMIP_PLL_CFG1);
reg &= ~UTMIP_PLL_CFG1_ENABLE_DLY_COUNT(~0);
reg |= UTMIP_PLL_CFG1_ENABLE_DLY_COUNT(
utmi_parameters[i].enable_delay_count);
reg &= ~UTMIP_PLL_CFG1_XTAL_FREQ_COUNT(~0);
reg |= UTMIP_PLL_CFG1_XTAL_FREQ_COUNT(
utmi_parameters[i].xtal_freq_count);
/* Remove power downs from UTMIP PLL control bits */
reg &= ~UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERDOWN;
reg &= ~UTMIP_PLL_CFG1_FORCE_PLL_ACTIVE_POWERDOWN;
reg &= ~UTMIP_PLL_CFG1_FORCE_PLLU_POWERDOWN;
clk_writel(reg, UTMIP_PLL_CFG1);
}
static void tegra30_pll_clk_init(struct clk *c)
{
u32 val = clk_readl(c->reg + PLL_BASE);
c->state = (val & PLL_BASE_ENABLE) ? ON : OFF;
if (c->flags & PLL_FIXED && !(val & PLL_BASE_OVERRIDE)) {
const struct clk_pll_freq_table *sel;
unsigned long input_rate = clk_get_rate(c->parent);
for (sel = c->u.pll.freq_table; sel->input_rate != 0; sel++) {
if (sel->input_rate == input_rate &&
sel->output_rate == c->u.pll.fixed_rate) {
c->mul = sel->n;
c->div = sel->m * sel->p;
return;
}
}
pr_err("Clock %s has unknown fixed frequency\n", c->name);
BUG();
} else if (val & PLL_BASE_BYPASS) {
c->mul = 1;
c->div = 1;
} else {
c->mul = (val & PLL_BASE_DIVN_MASK) >> PLL_BASE_DIVN_SHIFT;
c->div = (val & PLL_BASE_DIVM_MASK) >> PLL_BASE_DIVM_SHIFT;
if (c->flags & PLLU)
c->div *= (val & PLLU_BASE_POST_DIV) ? 1 : 2;
else
c->div *= (0x1 << ((val & PLL_BASE_DIVP_MASK) >>
PLL_BASE_DIVP_SHIFT));
if (c->flags & PLL_FIXED) {
unsigned long rate = clk_get_rate_locked(c);
BUG_ON(rate != c->u.pll.fixed_rate);
}
}
if (c->flags & PLLU)
tegra30_utmi_param_configure(c);
}
static int tegra30_pll_clk_enable(struct clk *c)
{
u32 val;
pr_debug("%s on clock %s\n", __func__, c->name);
#if USE_PLL_LOCK_BITS
val = clk_readl(c->reg + PLL_MISC(c));
val |= PLL_MISC_LOCK_ENABLE(c);
clk_writel(val, c->reg + PLL_MISC(c));
#endif
val = clk_readl(c->reg + PLL_BASE);
val &= ~PLL_BASE_BYPASS;
val |= PLL_BASE_ENABLE;
clk_writel(val, c->reg + PLL_BASE);
if (c->flags & PLLM) {
val = pmc_readl(PMC_PLLP_WB0_OVERRIDE);
val |= PMC_PLLP_WB0_OVERRIDE_PLLM_ENABLE;
pmc_writel(val, PMC_PLLP_WB0_OVERRIDE);
}
tegra30_pll_clk_wait_for_lock(c, c->reg + PLL_BASE, PLL_BASE_LOCK);
return 0;
}
static void tegra30_pll_clk_disable(struct clk *c)
{
u32 val;
pr_debug("%s on clock %s\n", __func__, c->name);
val = clk_readl(c->reg);
val &= ~(PLL_BASE_BYPASS | PLL_BASE_ENABLE);
clk_writel(val, c->reg);
if (c->flags & PLLM) {
val = pmc_readl(PMC_PLLP_WB0_OVERRIDE);
val &= ~PMC_PLLP_WB0_OVERRIDE_PLLM_ENABLE;
pmc_writel(val, PMC_PLLP_WB0_OVERRIDE);
}
}
static int tegra30_pll_clk_set_rate(struct clk *c, unsigned long rate)
{
u32 val, p_div, old_base;
unsigned long input_rate;
const struct clk_pll_freq_table *sel;
struct clk_pll_freq_table cfg;
pr_debug("%s: %s %lu\n", __func__, c->name, rate);
if (c->flags & PLL_FIXED) {
int ret = 0;
if (rate != c->u.pll.fixed_rate) {
pr_err("%s: Can not change %s fixed rate %lu to %lu\n",
__func__, c->name, c->u.pll.fixed_rate, rate);
ret = -EINVAL;
}
return ret;
}
if (c->flags & PLLM) {
if (rate != clk_get_rate_locked(c)) {
pr_err("%s: Can not change memory %s rate in flight\n",
__func__, c->name);
return -EINVAL;
}
return 0;
}
p_div = 0;
input_rate = clk_get_rate(c->parent);
/* Check if the target rate is tabulated */
for (sel = c->u.pll.freq_table; sel->input_rate != 0; sel++) {
if (sel->input_rate == input_rate && sel->output_rate == rate) {
if (c->flags & PLLU) {
BUG_ON(sel->p < 1 || sel->p > 2);
if (sel->p == 1)
p_div = PLLU_BASE_POST_DIV;
} else {
BUG_ON(sel->p < 1);
for (val = sel->p; val > 1; val >>= 1)
p_div++;
p_div <<= PLL_BASE_DIVP_SHIFT;
}
break;
}
}
/* Configure out-of-table rate */
if (sel->input_rate == 0) {
unsigned long cfreq;
BUG_ON(c->flags & PLLU);
sel = &cfg;
switch (input_rate) {
case 12000000:
case 26000000:
cfreq = (rate <= 1000000 * 1000) ? 1000000 : 2000000;
break;
case 13000000:
cfreq = (rate <= 1000000 * 1000) ? 1000000 : 2600000;
break;
case 16800000:
case 19200000:
cfreq = (rate <= 1200000 * 1000) ? 1200000 : 2400000;
break;
default:
pr_err("%s: Unexpected reference rate %lu\n",
__func__, input_rate);
BUG();
}
/* Raise VCO to guarantee 0.5% accuracy */
for (cfg.output_rate = rate; cfg.output_rate < 200 * cfreq;
cfg.output_rate <<= 1)
p_div++;
cfg.p = 0x1 << p_div;
cfg.m = input_rate / cfreq;
cfg.n = cfg.output_rate / cfreq;
cfg.cpcon = OUT_OF_TABLE_CPCON;
if ((cfg.m > (PLL_BASE_DIVM_MASK >> PLL_BASE_DIVM_SHIFT)) ||
(cfg.n > (PLL_BASE_DIVN_MASK >> PLL_BASE_DIVN_SHIFT)) ||
(p_div > (PLL_BASE_DIVP_MASK >> PLL_BASE_DIVP_SHIFT)) ||
(cfg.output_rate > c->u.pll.vco_max)) {
pr_err("%s: Failed to set %s out-of-table rate %lu\n",
__func__, c->name, rate);
return -EINVAL;
}
p_div <<= PLL_BASE_DIVP_SHIFT;
}
c->mul = sel->n;
c->div = sel->m * sel->p;
old_base = val = clk_readl(c->reg + PLL_BASE);
val &= ~(PLL_BASE_DIVM_MASK | PLL_BASE_DIVN_MASK |
((c->flags & PLLU) ? PLLU_BASE_POST_DIV : PLL_BASE_DIVP_MASK));
val |= (sel->m << PLL_BASE_DIVM_SHIFT) |
(sel->n << PLL_BASE_DIVN_SHIFT) | p_div;
if (val == old_base)
return 0;
if (c->state == ON) {
tegra30_pll_clk_disable(c);
val &= ~(PLL_BASE_BYPASS | PLL_BASE_ENABLE);
}
clk_writel(val, c->reg + PLL_BASE);
if (c->flags & PLL_HAS_CPCON) {
val = clk_readl(c->reg + PLL_MISC(c));
val &= ~PLL_MISC_CPCON_MASK;
val |= sel->cpcon << PLL_MISC_CPCON_SHIFT;
if (c->flags & (PLLU | PLLD)) {
val &= ~PLL_MISC_LFCON_MASK;
if (sel->n >= PLLDU_LFCON_SET_DIVN)
val |= 0x1 << PLL_MISC_LFCON_SHIFT;
} else if (c->flags & (PLLX | PLLM)) {
val &= ~(0x1 << PLL_MISC_DCCON_SHIFT);
if (rate >= (c->u.pll.vco_max >> 1))
val |= 0x1 << PLL_MISC_DCCON_SHIFT;
}
clk_writel(val, c->reg + PLL_MISC(c));
}
if (c->state == ON)
tegra30_pll_clk_enable(c);
return 0;
}
static struct clk_ops tegra_pll_ops = {
.init = tegra30_pll_clk_init,
.enable = tegra30_pll_clk_enable,
.disable = tegra30_pll_clk_disable,
.set_rate = tegra30_pll_clk_set_rate,
};
static int
tegra30_plld_clk_cfg_ex(struct clk *c, enum tegra_clk_ex_param p, u32 setting)
{
u32 val, mask, reg;
switch (p) {
case TEGRA_CLK_PLLD_CSI_OUT_ENB:
mask = PLLD_BASE_CSI_CLKENABLE;
reg = c->reg + PLL_BASE;
break;
case TEGRA_CLK_PLLD_DSI_OUT_ENB:
mask = PLLD_MISC_DSI_CLKENABLE;
reg = c->reg + PLL_MISC(c);
break;
case TEGRA_CLK_PLLD_MIPI_MUX_SEL:
if (!(c->flags & PLL_ALT_MISC_REG)) {
mask = PLLD_BASE_DSIB_MUX_MASK;
reg = c->reg + PLL_BASE;
break;
}
/* fall through - error since PLLD2 does not have MUX_SEL control */
default:
return -EINVAL;
}
val = clk_readl(reg);
if (setting)
val |= mask;
else
val &= ~mask;
clk_writel(val, reg);
return 0;
}
static struct clk_ops tegra_plld_ops = {
.init = tegra30_pll_clk_init,
.enable = tegra30_pll_clk_enable,
.disable = tegra30_pll_clk_disable,
.set_rate = tegra30_pll_clk_set_rate,
.clk_cfg_ex = tegra30_plld_clk_cfg_ex,
};
static void tegra30_plle_clk_init(struct clk *c)
{
u32 val;
val = clk_readl(PLLE_AUX);
c->parent = (val & PLLE_AUX_PLLP_SEL) ?
tegra_get_clock_by_name("pll_p") :
tegra_get_clock_by_name("pll_ref");
val = clk_readl(c->reg + PLL_BASE);
c->state = (val & PLLE_BASE_ENABLE) ? ON : OFF;
c->mul = (val & PLLE_BASE_DIVN_MASK) >> PLLE_BASE_DIVN_SHIFT;
c->div = (val & PLLE_BASE_DIVM_MASK) >> PLLE_BASE_DIVM_SHIFT;
c->div *= (val & PLLE_BASE_DIVP_MASK) >> PLLE_BASE_DIVP_SHIFT;
}
static void tegra30_plle_clk_disable(struct clk *c)
{
u32 val;
pr_debug("%s on clock %s\n", __func__, c->name);
val = clk_readl(c->reg + PLL_BASE);
val &= ~(PLLE_BASE_CML_ENABLE | PLLE_BASE_ENABLE);
clk_writel(val, c->reg + PLL_BASE);
}
static void tegra30_plle_training(struct clk *c)
{
u32 val;
/* PLLE is already disabled, and setup cleared;
* create falling edge on PLLE IDDQ input */
val = pmc_readl(PMC_SATA_PWRGT);
val |= PMC_SATA_PWRGT_PLLE_IDDQ_VALUE;
pmc_writel(val, PMC_SATA_PWRGT);
val = pmc_readl(PMC_SATA_PWRGT);
val |= PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL;
pmc_writel(val, PMC_SATA_PWRGT);
val = pmc_readl(PMC_SATA_PWRGT);
val &= ~PMC_SATA_PWRGT_PLLE_IDDQ_VALUE;
pmc_writel(val, PMC_SATA_PWRGT);
do {
val = clk_readl(c->reg + PLL_MISC(c));
} while (!(val & PLLE_MISC_READY));
}
static int tegra30_plle_configure(struct clk *c, bool force_training)
{
u32 val;
const struct clk_pll_freq_table *sel;
unsigned long rate = c->u.pll.fixed_rate;
unsigned long input_rate = clk_get_rate(c->parent);
for (sel = c->u.pll.freq_table; sel->input_rate != 0; sel++) {
if (sel->input_rate == input_rate && sel->output_rate == rate)
break;
}
if (sel->input_rate == 0)
return -ENOSYS;
/* disable PLLE, clear setup fiels */
tegra30_plle_clk_disable(c);
val = clk_readl(c->reg + PLL_MISC(c));
val &= ~(PLLE_MISC_LOCK_ENABLE | PLLE_MISC_SETUP_MASK);
clk_writel(val, c->reg + PLL_MISC(c));
/* training */
val = clk_readl(c->reg + PLL_MISC(c));
if (force_training || (!(val & PLLE_MISC_READY)))
tegra30_plle_training(c);
/* configure dividers, setup, disable SS */
val = clk_readl(c->reg + PLL_BASE);
val &= ~PLLE_BASE_DIV_MASK;
val |= PLLE_BASE_DIV(sel->m, sel->n, sel->p, sel->cpcon);
clk_writel(val, c->reg + PLL_BASE);
c->mul = sel->n;
c->div = sel->m * sel->p;
val = clk_readl(c->reg + PLL_MISC(c));
val |= PLLE_MISC_SETUP_VALUE;
val |= PLLE_MISC_LOCK_ENABLE;
clk_writel(val, c->reg + PLL_MISC(c));
val = clk_readl(PLLE_SS_CTRL);
val |= PLLE_SS_DISABLE;
clk_writel(val, PLLE_SS_CTRL);
/* enable and lock PLLE*/
val = clk_readl(c->reg + PLL_BASE);
val |= (PLLE_BASE_CML_ENABLE | PLLE_BASE_ENABLE);
clk_writel(val, c->reg + PLL_BASE);
tegra30_pll_clk_wait_for_lock(c, c->reg + PLL_MISC(c), PLLE_MISC_LOCK);
return 0;
}
static int tegra30_plle_clk_enable(struct clk *c)
{
pr_debug("%s on clock %s\n", __func__, c->name);
return tegra30_plle_configure(c, !c->set);
}
static struct clk_ops tegra_plle_ops = {
.init = tegra30_plle_clk_init,
.enable = tegra30_plle_clk_enable,
.disable = tegra30_plle_clk_disable,
};
/* Clock divider ops */
static void tegra30_pll_div_clk_init(struct clk *c)
{
if (c->flags & DIV_U71) {
u32 divu71;
u32 val = clk_readl(c->reg);
val >>= c->reg_shift;
c->state = (val & PLL_OUT_CLKEN) ? ON : OFF;
if (!(val & PLL_OUT_RESET_DISABLE))
c->state = OFF;
divu71 = (val & PLL_OUT_RATIO_MASK) >> PLL_OUT_RATIO_SHIFT;
c->div = (divu71 + 2);
c->mul = 2;
} else if (c->flags & DIV_2) {
c->state = ON;
if (c->flags & (PLLD | PLLX)) {
c->div = 2;
c->mul = 1;
} else
BUG();
} else {
c->state = ON;
c->div = 1;
c->mul = 1;
}
}
static int tegra30_pll_div_clk_enable(struct clk *c)
{
u32 val;
u32 new_val;
pr_debug("%s: %s\n", __func__, c->name);
if (c->flags & DIV_U71) {
val = clk_readl(c->reg);
new_val = val >> c->reg_shift;
new_val &= 0xFFFF;
new_val |= PLL_OUT_CLKEN | PLL_OUT_RESET_DISABLE;
val &= ~(0xFFFF << c->reg_shift);
val |= new_val << c->reg_shift;
clk_writel_delay(val, c->reg);
return 0;
} else if (c->flags & DIV_2) {
return 0;
}
return -EINVAL;
}
static void tegra30_pll_div_clk_disable(struct clk *c)
{
u32 val;
u32 new_val;
pr_debug("%s: %s\n", __func__, c->name);
if (c->flags & DIV_U71) {
val = clk_readl(c->reg);
new_val = val >> c->reg_shift;
new_val &= 0xFFFF;
new_val &= ~(PLL_OUT_CLKEN | PLL_OUT_RESET_DISABLE);
val &= ~(0xFFFF << c->reg_shift);
val |= new_val << c->reg_shift;
clk_writel_delay(val, c->reg);
}
}
static int tegra30_pll_div_clk_set_rate(struct clk *c, unsigned long rate)
{
u32 val;
u32 new_val;
int divider_u71;
unsigned long parent_rate = clk_get_rate(c->parent);
pr_debug("%s: %s %lu\n", __func__, c->name, rate);
if (c->flags & DIV_U71) {
divider_u71 = clk_div71_get_divider(
parent_rate, rate, c->flags, ROUND_DIVIDER_UP);
if (divider_u71 >= 0) {
val = clk_readl(c->reg);
new_val = val >> c->reg_shift;
new_val &= 0xFFFF;
if (c->flags & DIV_U71_FIXED)
new_val |= PLL_OUT_OVERRIDE;
new_val &= ~PLL_OUT_RATIO_MASK;
new_val |= divider_u71 << PLL_OUT_RATIO_SHIFT;
val &= ~(0xFFFF << c->reg_shift);
val |= new_val << c->reg_shift;
clk_writel_delay(val, c->reg);
c->div = divider_u71 + 2;
c->mul = 2;
return 0;
}
} else if (c->flags & DIV_2)
return clk_set_rate(c->parent, rate * 2);
return -EINVAL;
}
static long tegra30_pll_div_clk_round_rate(struct clk *c, unsigned long rate)
{
int divider;
unsigned long parent_rate = clk_get_rate(c->parent);
pr_debug("%s: %s %lu\n", __func__, c->name, rate);
if (c->flags & DIV_U71) {
divider = clk_div71_get_divider(
parent_rate, rate, c->flags, ROUND_DIVIDER_UP);
if (divider < 0)
return divider;
return DIV_ROUND_UP(parent_rate * 2, divider + 2);
} else if (c->flags & DIV_2)
/* no rounding - fixed DIV_2 dividers pass rate to parent PLL */
return rate;
return -EINVAL;
}
static struct clk_ops tegra_pll_div_ops = {
.init = tegra30_pll_div_clk_init,
.enable = tegra30_pll_div_clk_enable,
.disable = tegra30_pll_div_clk_disable,
.set_rate = tegra30_pll_div_clk_set_rate,
.round_rate = tegra30_pll_div_clk_round_rate,
};
/* Periph clk ops */
static inline u32 periph_clk_source_mask(struct clk *c)
{
if (c->flags & MUX8)
return 7 << 29;
else if (c->flags & MUX_PWM)
return 3 << 28;
else if (c->flags & MUX_CLK_OUT)
return 3 << (c->u.periph.clk_num + 4);
else if (c->flags & PLLD)
return PLLD_BASE_DSIB_MUX_MASK;
else
return 3 << 30;
}
static inline u32 periph_clk_source_shift(struct clk *c)
{
if (c->flags & MUX8)
return 29;
else if (c->flags & MUX_PWM)
return 28;
else if (c->flags & MUX_CLK_OUT)
return c->u.periph.clk_num + 4;
else if (c->flags & PLLD)
return PLLD_BASE_DSIB_MUX_SHIFT;
else
return 30;
}
static void tegra30_periph_clk_init(struct clk *c)
{
u32 val = clk_readl(c->reg);
const struct clk_mux_sel *mux = 0;
const struct clk_mux_sel *sel;
if (c->flags & MUX) {
for (sel = c->inputs; sel->input != NULL; sel++) {
if (((val & periph_clk_source_mask(c)) >>
periph_clk_source_shift(c)) == sel->value)
mux = sel;
}
BUG_ON(!mux);
c->parent = mux->input;
} else {
c->parent = c->inputs[0].input;
}
if (c->flags & DIV_U71) {
u32 divu71 = val & PERIPH_CLK_SOURCE_DIVU71_MASK;
if ((c->flags & DIV_U71_UART) &&
(!(val & PERIPH_CLK_UART_DIV_ENB))) {
divu71 = 0;
}
if (c->flags & DIV_U71_IDLE) {
val &= ~(PERIPH_CLK_SOURCE_DIVU71_MASK <<
PERIPH_CLK_SOURCE_DIVIDLE_SHIFT);
val |= (PERIPH_CLK_SOURCE_DIVIDLE_VAL <<
PERIPH_CLK_SOURCE_DIVIDLE_SHIFT);
clk_writel(val, c->reg);
}
c->div = divu71 + 2;
c->mul = 2;
} else if (c->flags & DIV_U16) {
u32 divu16 = val & PERIPH_CLK_SOURCE_DIVU16_MASK;
c->div = divu16 + 1;
c->mul = 1;
} else {
c->div = 1;
c->mul = 1;
}
c->state = ON;
if (!(clk_readl(PERIPH_CLK_TO_ENB_REG(c)) & PERIPH_CLK_TO_BIT(c)))
c->state = OFF;
if (!(c->flags & PERIPH_NO_RESET))
if (clk_readl(PERIPH_CLK_TO_RST_REG(c)) & PERIPH_CLK_TO_BIT(c))
c->state = OFF;
}
static int tegra30_periph_clk_enable(struct clk *c)
{
pr_debug("%s on clock %s\n", __func__, c->name);
tegra_periph_clk_enable_refcount[c->u.periph.clk_num]++;
if (tegra_periph_clk_enable_refcount[c->u.periph.clk_num] > 1)
return 0;
clk_writel_delay(PERIPH_CLK_TO_BIT(c), PERIPH_CLK_TO_ENB_SET_REG(c));
if (!(c->flags & PERIPH_NO_RESET) &&
!(c->flags & PERIPH_MANUAL_RESET)) {
if (clk_readl(PERIPH_CLK_TO_RST_REG(c)) &
PERIPH_CLK_TO_BIT(c)) {
udelay(5); /* reset propagation delay */
clk_writel(PERIPH_CLK_TO_BIT(c),
PERIPH_CLK_TO_RST_CLR_REG(c));
}
}
return 0;
}
static void tegra30_periph_clk_disable(struct clk *c)
{
unsigned long val;
pr_debug("%s on clock %s\n", __func__, c->name);
if (c->refcnt)
tegra_periph_clk_enable_refcount[c->u.periph.clk_num]--;
if (tegra_periph_clk_enable_refcount[c->u.periph.clk_num] == 0) {
/* If peripheral is in the APB bus then read the APB bus to
* flush the write operation in apb bus. This will avoid the
* peripheral access after disabling clock*/
if (c->flags & PERIPH_ON_APB)
val = chipid_readl();
clk_writel_delay(
PERIPH_CLK_TO_BIT(c), PERIPH_CLK_TO_ENB_CLR_REG(c));
}
}
static void tegra30_periph_clk_reset(struct clk *c, bool assert)
{
unsigned long val;
pr_debug("%s %s on clock %s\n", __func__,
assert ? "assert" : "deassert", c->name);
if (!(c->flags & PERIPH_NO_RESET)) {
if (assert) {
/* If peripheral is in the APB bus then read the APB
* bus to flush the write operation in apb bus. This
* will avoid the peripheral access after disabling
* clock */
if (c->flags & PERIPH_ON_APB)
val = chipid_readl();
clk_writel(PERIPH_CLK_TO_BIT(c),
PERIPH_CLK_TO_RST_SET_REG(c));
} else
clk_writel(PERIPH_CLK_TO_BIT(c),
PERIPH_CLK_TO_RST_CLR_REG(c));
}
}
static int tegra30_periph_clk_set_parent(struct clk *c, struct clk *p)
{
u32 val;
const struct clk_mux_sel *sel;
pr_debug("%s: %s %s\n", __func__, c->name, p->name);
if (!(c->flags & MUX))
return (p == c->parent) ? 0 : (-EINVAL);
for (sel = c->inputs; sel->input != NULL; sel++) {
if (sel->input == p) {
val = clk_readl(c->reg);
val &= ~periph_clk_source_mask(c);
val |= (sel->value << periph_clk_source_shift(c));
if (c->refcnt)
clk_enable(p);
clk_writel_delay(val, c->reg);
if (c->refcnt && c->parent)
clk_disable(c->parent);
clk_reparent(c, p);
return 0;
}
}
return -EINVAL;
}
static int tegra30_periph_clk_set_rate(struct clk *c, unsigned long rate)
{
u32 val;
int divider;
unsigned long parent_rate = clk_get_rate(c->parent);
if (c->flags & DIV_U71) {
divider = clk_div71_get_divider(
parent_rate, rate, c->flags, ROUND_DIVIDER_UP);
if (divider >= 0) {
val = clk_readl(c->reg);
val &= ~PERIPH_CLK_SOURCE_DIVU71_MASK;
val |= divider;
if (c->flags & DIV_U71_UART) {
if (divider)
val |= PERIPH_CLK_UART_DIV_ENB;
else
val &= ~PERIPH_CLK_UART_DIV_ENB;
}
clk_writel_delay(val, c->reg);
c->div = divider + 2;
c->mul = 2;
return 0;
}
} else if (c->flags & DIV_U16) {
divider = clk_div16_get_divider(parent_rate, rate);
if (divider >= 0) {
val = clk_readl(c->reg);
val &= ~PERIPH_CLK_SOURCE_DIVU16_MASK;
val |= divider;
clk_writel_delay(val, c->reg);
c->div = divider + 1;
c->mul = 1;
return 0;
}
} else if (parent_rate <= rate) {
c->div = 1;
c->mul = 1;
return 0;
}
return -EINVAL;
}
static long tegra30_periph_clk_round_rate(struct clk *c,
unsigned long rate)
{
int divider;
unsigned long parent_rate = clk_get_rate(c->parent);
pr_debug("%s: %s %lu\n", __func__, c->name, rate);
if (c->flags & DIV_U71) {
divider = clk_div71_get_divider(
parent_rate, rate, c->flags, ROUND_DIVIDER_UP);
if (divider < 0)
return divider;
return DIV_ROUND_UP(parent_rate * 2, divider + 2);
} else if (c->flags & DIV_U16) {
divider = clk_div16_get_divider(parent_rate, rate);
if (divider < 0)
return divider;
return DIV_ROUND_UP(parent_rate, divider + 1);
}
return -EINVAL;
}
static struct clk_ops tegra_periph_clk_ops = {
.init = &tegra30_periph_clk_init,
.enable = &tegra30_periph_clk_enable,
.disable = &tegra30_periph_clk_disable,
.set_parent = &tegra30_periph_clk_set_parent,
.set_rate = &tegra30_periph_clk_set_rate,
.round_rate = &tegra30_periph_clk_round_rate,
.reset = &tegra30_periph_clk_reset,
};
/* Periph extended clock configuration ops */
static int
tegra30_vi_clk_cfg_ex(struct clk *c, enum tegra_clk_ex_param p, u32 setting)
{
if (p == TEGRA_CLK_VI_INP_SEL) {
u32 val = clk_readl(c->reg);
val &= ~PERIPH_CLK_VI_SEL_EX_MASK;
val |= (setting << PERIPH_CLK_VI_SEL_EX_SHIFT) &
PERIPH_CLK_VI_SEL_EX_MASK;
clk_writel(val, c->reg);
return 0;
}
return -EINVAL;
}
static struct clk_ops tegra_vi_clk_ops = {
.init = &tegra30_periph_clk_init,
.enable = &tegra30_periph_clk_enable,
.disable = &tegra30_periph_clk_disable,
.set_parent = &tegra30_periph_clk_set_parent,
.set_rate = &tegra30_periph_clk_set_rate,
.round_rate = &tegra30_periph_clk_round_rate,
.clk_cfg_ex = &tegra30_vi_clk_cfg_ex,
.reset = &tegra30_periph_clk_reset,
};
static int
tegra30_nand_clk_cfg_ex(struct clk *c, enum tegra_clk_ex_param p, u32 setting)
{
if (p == TEGRA_CLK_NAND_PAD_DIV2_ENB) {
u32 val = clk_readl(c->reg);
if (setting)
val |= PERIPH_CLK_NAND_DIV_EX_ENB;
else
val &= ~PERIPH_CLK_NAND_DIV_EX_ENB;
clk_writel(val, c->reg);
return 0;
}
return -EINVAL;
}
static struct clk_ops tegra_nand_clk_ops = {
.init = &tegra30_periph_clk_init,
.enable = &tegra30_periph_clk_enable,
.disable = &tegra30_periph_clk_disable,
.set_parent = &tegra30_periph_clk_set_parent,
.set_rate = &tegra30_periph_clk_set_rate,
.round_rate = &tegra30_periph_clk_round_rate,
.clk_cfg_ex = &tegra30_nand_clk_cfg_ex,
.reset = &tegra30_periph_clk_reset,
};
static int
tegra30_dtv_clk_cfg_ex(struct clk *c, enum tegra_clk_ex_param p, u32 setting)
{
if (p == TEGRA_CLK_DTV_INVERT) {
u32 val = clk_readl(c->reg);
if (setting)
val |= PERIPH_CLK_DTV_POLARITY_INV;
else
val &= ~PERIPH_CLK_DTV_POLARITY_INV;
clk_writel(val, c->reg);
return 0;
}
return -EINVAL;
}
static struct clk_ops tegra_dtv_clk_ops = {
.init = &tegra30_periph_clk_init,
.enable = &tegra30_periph_clk_enable,
.disable = &tegra30_periph_clk_disable,
.set_parent = &tegra30_periph_clk_set_parent,
.set_rate = &tegra30_periph_clk_set_rate,
.round_rate = &tegra30_periph_clk_round_rate,
.clk_cfg_ex = &tegra30_dtv_clk_cfg_ex,
.reset = &tegra30_periph_clk_reset,
};
static int tegra30_dsib_clk_set_parent(struct clk *c, struct clk *p)
{
const struct clk_mux_sel *sel;
struct clk *d = tegra_get_clock_by_name("pll_d");
pr_debug("%s: %s %s\n", __func__, c->name, p->name);
for (sel = c->inputs; sel->input != NULL; sel++) {
if (sel->input == p) {
if (c->refcnt)
clk_enable(p);
/* The DSIB parent selection bit is in PLLD base
register - can not do direct r-m-w, must be
protected by PLLD lock */
tegra_clk_cfg_ex(
d, TEGRA_CLK_PLLD_MIPI_MUX_SEL, sel->value);
if (c->refcnt && c->parent)
clk_disable(c->parent);
clk_reparent(c, p);
return 0;
}
}
return -EINVAL;
}
static struct clk_ops tegra_dsib_clk_ops = {
.init = &tegra30_periph_clk_init,
.enable = &tegra30_periph_clk_enable,
.disable = &tegra30_periph_clk_disable,
.set_parent = &tegra30_dsib_clk_set_parent,
.set_rate = &tegra30_periph_clk_set_rate,
.round_rate = &tegra30_periph_clk_round_rate,
.reset = &tegra30_periph_clk_reset,
};
/* pciex clock support only reset function */
static struct clk_ops tegra_pciex_clk_ops = {
.reset = tegra30_periph_clk_reset,
};
/* Output clock ops */
static DEFINE_SPINLOCK(clk_out_lock);
static void tegra30_clk_out_init(struct clk *c)
{
const struct clk_mux_sel *mux = 0;
const struct clk_mux_sel *sel;
u32 val = pmc_readl(c->reg);
c->state = (val & (0x1 << c->u.periph.clk_num)) ? ON : OFF;
c->mul = 1;
c->div = 1;
for (sel = c->inputs; sel->input != NULL; sel++) {
if (((val & periph_clk_source_mask(c)) >>
periph_clk_source_shift(c)) == sel->value)
mux = sel;
}
BUG_ON(!mux);
c->parent = mux->input;
}
static int tegra30_clk_out_enable(struct clk *c)
{
u32 val;
unsigned long flags;
pr_debug("%s on clock %s\n", __func__, c->name);
spin_lock_irqsave(&clk_out_lock, flags);
val = pmc_readl(c->reg);
val |= (0x1 << c->u.periph.clk_num);
pmc_writel(val, c->reg);
spin_unlock_irqrestore(&clk_out_lock, flags);
return 0;
}
static void tegra30_clk_out_disable(struct clk *c)
{
u32 val;
unsigned long flags;
pr_debug("%s on clock %s\n", __func__, c->name);
spin_lock_irqsave(&clk_out_lock, flags);
val = pmc_readl(c->reg);
val &= ~(0x1 << c->u.periph.clk_num);
pmc_writel(val, c->reg);
spin_unlock_irqrestore(&clk_out_lock, flags);
}
static int tegra30_clk_out_set_parent(struct clk *c, struct clk *p)
{
u32 val;
unsigned long flags;
const struct clk_mux_sel *sel;
pr_debug("%s: %s %s\n", __func__, c->name, p->name);
for (sel = c->inputs; sel->input != NULL; sel++) {
if (sel->input == p) {
if (c->refcnt)
clk_enable(p);
spin_lock_irqsave(&clk_out_lock, flags);
val = pmc_readl(c->reg);
val &= ~periph_clk_source_mask(c);
val |= (sel->value << periph_clk_source_shift(c));
pmc_writel(val, c->reg);
spin_unlock_irqrestore(&clk_out_lock, flags);
if (c->refcnt && c->parent)
clk_disable(c->parent);
clk_reparent(c, p);
return 0;
}
}
return -EINVAL;
}
static struct clk_ops tegra_clk_out_ops = {
.init = &tegra30_clk_out_init,
.enable = &tegra30_clk_out_enable,
.disable = &tegra30_clk_out_disable,
.set_parent = &tegra30_clk_out_set_parent,
};
/* Clock doubler ops */
static void tegra30_clk_double_init(struct clk *c)
{
u32 val = clk_readl(c->reg);
c->mul = val & (0x1 << c->reg_shift) ? 1 : 2;
c->div = 1;
c->state = ON;
if (!(clk_readl(PERIPH_CLK_TO_ENB_REG(c)) & PERIPH_CLK_TO_BIT(c)))
c->state = OFF;
};
static int tegra30_clk_double_set_rate(struct clk *c, unsigned long rate)
{
u32 val;
unsigned long parent_rate = clk_get_rate(c->parent);
if (rate == parent_rate) {
val = clk_readl(c->reg) | (0x1 << c->reg_shift);
clk_writel(val, c->reg);
c->mul = 1;
c->div = 1;
return 0;
} else if (rate == 2 * parent_rate) {
val = clk_readl(c->reg) & (~(0x1 << c->reg_shift));
clk_writel(val, c->reg);
c->mul = 2;
c->div = 1;
return 0;
}
return -EINVAL;
}
static struct clk_ops tegra_clk_double_ops = {
.init = &tegra30_clk_double_init,
.enable = &tegra30_periph_clk_enable,
.disable = &tegra30_periph_clk_disable,
.set_rate = &tegra30_clk_double_set_rate,
};
/* Audio sync clock ops */
static int tegra30_sync_source_set_rate(struct clk *c, unsigned long rate)
{
c->rate = rate;
return 0;
}
static struct clk_ops tegra_sync_source_ops = {
.set_rate = &tegra30_sync_source_set_rate,
};
static void tegra30_audio_sync_clk_init(struct clk *c)
{
int source;
const struct clk_mux_sel *sel;
u32 val = clk_readl(c->reg);
c->state = (val & AUDIO_SYNC_DISABLE_BIT) ? OFF : ON;
source = val & AUDIO_SYNC_SOURCE_MASK;
for (sel = c->inputs; sel->input != NULL; sel++)
if (sel->value == source)
break;
BUG_ON(sel->input == NULL);
c->parent = sel->input;
}
static int tegra30_audio_sync_clk_enable(struct clk *c)
{
u32 val = clk_readl(c->reg);
clk_writel((val & (~AUDIO_SYNC_DISABLE_BIT)), c->reg);
return 0;
}
static void tegra30_audio_sync_clk_disable(struct clk *c)
{
u32 val = clk_readl(c->reg);
clk_writel((val | AUDIO_SYNC_DISABLE_BIT), c->reg);
}
static int tegra30_audio_sync_clk_set_parent(struct clk *c, struct clk *p)
{
u32 val;
const struct clk_mux_sel *sel;
for (sel = c->inputs; sel->input != NULL; sel++) {
if (sel->input == p) {
val = clk_readl(c->reg);
val &= ~AUDIO_SYNC_SOURCE_MASK;
val |= sel->value;
if (c->refcnt)
clk_enable(p);
clk_writel(val, c->reg);
if (c->refcnt && c->parent)
clk_disable(c->parent);
clk_reparent(c, p);
return 0;
}
}
return -EINVAL;
}
static struct clk_ops tegra_audio_sync_clk_ops = {
.init = tegra30_audio_sync_clk_init,
.enable = tegra30_audio_sync_clk_enable,
.disable = tegra30_audio_sync_clk_disable,
.set_parent = tegra30_audio_sync_clk_set_parent,
};
/* cml0 (pcie), and cml1 (sata) clock ops */
static void tegra30_cml_clk_init(struct clk *c)
{
u32 val = clk_readl(c->reg);
c->state = val & (0x1 << c->u.periph.clk_num) ? ON : OFF;
}
static int tegra30_cml_clk_enable(struct clk *c)
{
u32 val = clk_readl(c->reg);
val |= (0x1 << c->u.periph.clk_num);
clk_writel(val, c->reg);
return 0;
}
static void tegra30_cml_clk_disable(struct clk *c)
{
u32 val = clk_readl(c->reg);
val &= ~(0x1 << c->u.periph.clk_num);
clk_writel(val, c->reg);
}
static struct clk_ops tegra_cml_clk_ops = {
.init = &tegra30_cml_clk_init,
.enable = &tegra30_cml_clk_enable,
.disable = &tegra30_cml_clk_disable,
};
/* Clock definitions */
static struct clk tegra_clk_32k = {
.name = "clk_32k",
.rate = 32768,
.ops = NULL,
.max_rate = 32768,
};
static struct clk tegra_clk_m = {
.name = "clk_m",
.flags = ENABLE_ON_INIT,
.ops = &tegra_clk_m_ops,
.reg = 0x1fc,
.reg_shift = 28,
.max_rate = 48000000,
};
static struct clk tegra_clk_m_div2 = {
.name = "clk_m_div2",
.ops = &tegra_clk_m_div_ops,
.parent = &tegra_clk_m,
.mul = 1,
.div = 2,
.state = ON,
.max_rate = 24000000,
};
static struct clk tegra_clk_m_div4 = {
.name = "clk_m_div4",
.ops = &tegra_clk_m_div_ops,
.parent = &tegra_clk_m,
.mul = 1,
.div = 4,
.state = ON,
.max_rate = 12000000,
};
static struct clk tegra_pll_ref = {
.name = "pll_ref",
.flags = ENABLE_ON_INIT,
.ops = &tegra_pll_ref_ops,
.parent = &tegra_clk_m,
.max_rate = 26000000,
};
static struct clk_pll_freq_table tegra_pll_c_freq_table[] = {
{ 12000000, 1040000000, 520, 6, 1, 8},
{ 13000000, 1040000000, 480, 6, 1, 8},
{ 16800000, 1040000000, 495, 8, 1, 8}, /* actual: 1039.5 MHz */
{ 19200000, 1040000000, 325, 6, 1, 6},
{ 26000000, 1040000000, 520, 13, 1, 8},
{ 12000000, 832000000, 416, 6, 1, 8},
{ 13000000, 832000000, 832, 13, 1, 8},
{ 16800000, 832000000, 396, 8, 1, 8}, /* actual: 831.6 MHz */
{ 19200000, 832000000, 260, 6, 1, 8},
{ 26000000, 832000000, 416, 13, 1, 8},
{ 12000000, 624000000, 624, 12, 1, 8},
{ 13000000, 624000000, 624, 13, 1, 8},
{ 16800000, 600000000, 520, 14, 1, 8},
{ 19200000, 624000000, 520, 16, 1, 8},
{ 26000000, 624000000, 624, 26, 1, 8},
{ 12000000, 600000000, 600, 12, 1, 8},
{ 13000000, 600000000, 600, 13, 1, 8},
{ 16800000, 600000000, 500, 14, 1, 8},
{ 19200000, 600000000, 375, 12, 1, 6},
{ 26000000, 600000000, 600, 26, 1, 8},
{ 12000000, 520000000, 520, 12, 1, 8},
{ 13000000, 520000000, 520, 13, 1, 8},
{ 16800000, 520000000, 495, 16, 1, 8}, /* actual: 519.75 MHz */
{ 19200000, 520000000, 325, 12, 1, 6},
{ 26000000, 520000000, 520, 26, 1, 8},
{ 12000000, 416000000, 416, 12, 1, 8},
{ 13000000, 416000000, 416, 13, 1, 8},
{ 16800000, 416000000, 396, 16, 1, 8}, /* actual: 415.8 MHz */
{ 19200000, 416000000, 260, 12, 1, 6},
{ 26000000, 416000000, 416, 26, 1, 8},
{ 0, 0, 0, 0, 0, 0 },
};
static struct clk tegra_pll_c = {
.name = "pll_c",
.flags = PLL_HAS_CPCON,
.ops = &tegra_pll_ops,
.reg = 0x80,
.parent = &tegra_pll_ref,
.max_rate = 1400000000,
.u.pll = {
.input_min = 2000000,
.input_max = 31000000,
.cf_min = 1000000,
.cf_max = 6000000,
.vco_min = 20000000,
.vco_max = 1400000000,
.freq_table = tegra_pll_c_freq_table,
.lock_delay = 300,
},
};
static struct clk tegra_pll_c_out1 = {
.name = "pll_c_out1",
.ops = &tegra_pll_div_ops,
.flags = DIV_U71,
.parent = &tegra_pll_c,
.reg = 0x84,
.reg_shift = 0,
.max_rate = 700000000,
};
static struct clk_pll_freq_table tegra_pll_m_freq_table[] = {
{ 12000000, 666000000, 666, 12, 1, 8},
{ 13000000, 666000000, 666, 13, 1, 8},
{ 16800000, 666000000, 555, 14, 1, 8},
{ 19200000, 666000000, 555, 16, 1, 8},
{ 26000000, 666000000, 666, 26, 1, 8},
{ 12000000, 600000000, 600, 12, 1, 8},
{ 13000000, 600000000, 600, 13, 1, 8},
{ 16800000, 600000000, 500, 14, 1, 8},
{ 19200000, 600000000, 375, 12, 1, 6},
{ 26000000, 600000000, 600, 26, 1, 8},
{ 0, 0, 0, 0, 0, 0 },
};
static struct clk tegra_pll_m = {
.name = "pll_m",
.flags = PLL_HAS_CPCON | PLLM,
.ops = &tegra_pll_ops,
.reg = 0x90,
.parent = &tegra_pll_ref,
.max_rate = 800000000,
.u.pll = {
.input_min = 2000000,
.input_max = 31000000,
.cf_min = 1000000,
.cf_max = 6000000,
.vco_min = 20000000,
.vco_max = 1200000000,
.freq_table = tegra_pll_m_freq_table,
.lock_delay = 300,
},
};
static struct clk tegra_pll_m_out1 = {
.name = "pll_m_out1",
.ops = &tegra_pll_div_ops,
.flags = DIV_U71,
.parent = &tegra_pll_m,
.reg = 0x94,
.reg_shift = 0,
.max_rate = 600000000,
};
static struct clk_pll_freq_table tegra_pll_p_freq_table[] = {
{ 12000000, 216000000, 432, 12, 2, 8},
{ 13000000, 216000000, 432, 13, 2, 8},
{ 16800000, 216000000, 360, 14, 2, 8},
{ 19200000, 216000000, 360, 16, 2, 8},
{ 26000000, 216000000, 432, 26, 2, 8},
{ 0, 0, 0, 0, 0, 0 },
};
static struct clk tegra_pll_p = {
.name = "pll_p",
.flags = ENABLE_ON_INIT | PLL_FIXED | PLL_HAS_CPCON,
.ops = &tegra_pll_ops,
.reg = 0xa0,
.parent = &tegra_pll_ref,
.max_rate = 432000000,
.u.pll = {
.input_min = 2000000,
.input_max = 31000000,
.cf_min = 1000000,
.cf_max = 6000000,
.vco_min = 20000000,
.vco_max = 1400000000,
.freq_table = tegra_pll_p_freq_table,
.lock_delay = 300,
.fixed_rate = 408000000,
},
};
static struct clk tegra_pll_p_out1 = {
.name = "pll_p_out1",
.ops = &tegra_pll_div_ops,
.flags = ENABLE_ON_INIT | DIV_U71 | DIV_U71_FIXED,
.parent = &tegra_pll_p,
.reg = 0xa4,
.reg_shift = 0,
.max_rate = 432000000,
};
static struct clk tegra_pll_p_out2 = {
.name = "pll_p_out2",
.ops = &tegra_pll_div_ops,
.flags = ENABLE_ON_INIT | DIV_U71 | DIV_U71_FIXED,
.parent = &tegra_pll_p,
.reg = 0xa4,
.reg_shift = 16,
.max_rate = 432000000,
};
static struct clk tegra_pll_p_out3 = {
.name = "pll_p_out3",
.ops = &tegra_pll_div_ops,
.flags = ENABLE_ON_INIT | DIV_U71 | DIV_U71_FIXED,
.parent = &tegra_pll_p,
.reg = 0xa8,
.reg_shift = 0,
.max_rate = 432000000,
};
static struct clk tegra_pll_p_out4 = {
.name = "pll_p_out4",
.ops = &tegra_pll_div_ops,
.flags = ENABLE_ON_INIT | DIV_U71 | DIV_U71_FIXED,
.parent = &tegra_pll_p,
.reg = 0xa8,
.reg_shift = 16,
.max_rate = 432000000,
};
static struct clk_pll_freq_table tegra_pll_a_freq_table[] = {
{ 9600000, 564480000, 294, 5, 1, 4},
{ 9600000, 552960000, 288, 5, 1, 4},
{ 9600000, 24000000, 5, 2, 1, 1},
{ 28800000, 56448000, 49, 25, 1, 1},
{ 28800000, 73728000, 64, 25, 1, 1},
{ 28800000, 24000000, 5, 6, 1, 1},
{ 0, 0, 0, 0, 0, 0 },
};
static struct clk tegra_pll_a = {
.name = "pll_a",
.flags = PLL_HAS_CPCON,
.ops = &tegra_pll_ops,
.reg = 0xb0,
.parent = &tegra_pll_p_out1,
.max_rate = 700000000,
.u.pll = {
.input_min = 2000000,
.input_max = 31000000,
.cf_min = 1000000,
.cf_max = 6000000,
.vco_min = 20000000,
.vco_max = 1400000000,
.freq_table = tegra_pll_a_freq_table,
.lock_delay = 300,
},
};
static struct clk tegra_pll_a_out0 = {
.name = "pll_a_out0",
.ops = &tegra_pll_div_ops,
.flags = DIV_U71,
.parent = &tegra_pll_a,
.reg = 0xb4,
.reg_shift = 0,
.max_rate = 100000000,
};
static struct clk_pll_freq_table tegra_pll_d_freq_table[] = {
{ 12000000, 216000000, 216, 12, 1, 4},
{ 13000000, 216000000, 216, 13, 1, 4},
{ 16800000, 216000000, 180, 14, 1, 4},
{ 19200000, 216000000, 180, 16, 1, 4},
{ 26000000, 216000000, 216, 26, 1, 4},
{ 12000000, 594000000, 594, 12, 1, 8},
{ 13000000, 594000000, 594, 13, 1, 8},
{ 16800000, 594000000, 495, 14, 1, 8},
{ 19200000, 594000000, 495, 16, 1, 8},
{ 26000000, 594000000, 594, 26, 1, 8},
{ 12000000, 1000000000, 1000, 12, 1, 12},
{ 13000000, 1000000000, 1000, 13, 1, 12},
{ 19200000, 1000000000, 625, 12, 1, 8},
{ 26000000, 1000000000, 1000, 26, 1, 12},
{ 0, 0, 0, 0, 0, 0 },
};
static struct clk tegra_pll_d = {
.name = "pll_d",
.flags = PLL_HAS_CPCON | PLLD,
.ops = &tegra_plld_ops,
.reg = 0xd0,
.parent = &tegra_pll_ref,
.max_rate = 1000000000,
.u.pll = {
.input_min = 2000000,
.input_max = 40000000,
.cf_min = 1000000,
.cf_max = 6000000,
.vco_min = 40000000,
.vco_max = 1000000000,
.freq_table = tegra_pll_d_freq_table,
.lock_delay = 1000,
},
};
static struct clk tegra_pll_d_out0 = {
.name = "pll_d_out0",
.ops = &tegra_pll_div_ops,
.flags = DIV_2 | PLLD,
.parent = &tegra_pll_d,
.max_rate = 500000000,
};
static struct clk tegra_pll_d2 = {
.name = "pll_d2",
.flags = PLL_HAS_CPCON | PLL_ALT_MISC_REG | PLLD,
.ops = &tegra_plld_ops,
.reg = 0x4b8,
.parent = &tegra_pll_ref,
.max_rate = 1000000000,
.u.pll = {
.input_min = 2000000,
.input_max = 40000000,
.cf_min = 1000000,
.cf_max = 6000000,
.vco_min = 40000000,
.vco_max = 1000000000,
.freq_table = tegra_pll_d_freq_table,
.lock_delay = 1000,
},
};
static struct clk tegra_pll_d2_out0 = {
.name = "pll_d2_out0",
.ops = &tegra_pll_div_ops,
.flags = DIV_2 | PLLD,
.parent = &tegra_pll_d2,
.max_rate = 500000000,
};
static struct clk_pll_freq_table tegra_pll_u_freq_table[] = {
{ 12000000, 480000000, 960, 12, 2, 12},
{ 13000000, 480000000, 960, 13, 2, 12},
{ 16800000, 480000000, 400, 7, 2, 5},
{ 19200000, 480000000, 200, 4, 2, 3},
{ 26000000, 480000000, 960, 26, 2, 12},
{ 0, 0, 0, 0, 0, 0 },
};
static struct clk tegra_pll_u = {
.name = "pll_u",
.flags = PLL_HAS_CPCON | PLLU,
.ops = &tegra_pll_ops,
.reg = 0xc0,
.parent = &tegra_pll_ref,
.max_rate = 480000000,
.u.pll = {
.input_min = 2000000,
.input_max = 40000000,
.cf_min = 1000000,
.cf_max = 6000000,
.vco_min = 480000000,
.vco_max = 960000000,
.freq_table = tegra_pll_u_freq_table,
.lock_delay = 1000,
},
};
static struct clk_pll_freq_table tegra_pll_x_freq_table[] = {
/* 1.7 GHz */
{ 12000000, 1700000000, 850, 6, 1, 8},
{ 13000000, 1700000000, 915, 7, 1, 8}, /* actual: 1699.2 MHz */
{ 16800000, 1700000000, 708, 7, 1, 8}, /* actual: 1699.2 MHz */
{ 19200000, 1700000000, 885, 10, 1, 8}, /* actual: 1699.2 MHz */
{ 26000000, 1700000000, 850, 13, 1, 8},
/* 1.6 GHz */
{ 12000000, 1600000000, 800, 6, 1, 8},
{ 13000000, 1600000000, 738, 6, 1, 8}, /* actual: 1599.0 MHz */
{ 16800000, 1600000000, 857, 9, 1, 8}, /* actual: 1599.7 MHz */
{ 19200000, 1600000000, 500, 6, 1, 8},
{ 26000000, 1600000000, 800, 13, 1, 8},
/* 1.5 GHz */
{ 12000000, 1500000000, 750, 6, 1, 8},
{ 13000000, 1500000000, 923, 8, 1, 8}, /* actual: 1499.8 MHz */
{ 16800000, 1500000000, 625, 7, 1, 8},
{ 19200000, 1500000000, 625, 8, 1, 8},
{ 26000000, 1500000000, 750, 13, 1, 8},
/* 1.4 GHz */
{ 12000000, 1400000000, 700, 6, 1, 8},
{ 13000000, 1400000000, 969, 9, 1, 8}, /* actual: 1399.7 MHz */
{ 16800000, 1400000000, 1000, 12, 1, 8},
{ 19200000, 1400000000, 875, 12, 1, 8},
{ 26000000, 1400000000, 700, 13, 1, 8},
/* 1.3 GHz */
{ 12000000, 1300000000, 975, 9, 1, 8},
{ 13000000, 1300000000, 1000, 10, 1, 8},
{ 16800000, 1300000000, 928, 12, 1, 8}, /* actual: 1299.2 MHz */
{ 19200000, 1300000000, 812, 12, 1, 8}, /* actual: 1299.2 MHz */
{ 26000000, 1300000000, 650, 13, 1, 8},
/* 1.2 GHz */
{ 12000000, 1200000000, 1000, 10, 1, 8},
{ 13000000, 1200000000, 923, 10, 1, 8}, /* actual: 1199.9 MHz */
{ 16800000, 1200000000, 1000, 14, 1, 8},
{ 19200000, 1200000000, 1000, 16, 1, 8},
{ 26000000, 1200000000, 600, 13, 1, 8},
/* 1.1 GHz */
{ 12000000, 1100000000, 825, 9, 1, 8},
{ 13000000, 1100000000, 846, 10, 1, 8}, /* actual: 1099.8 MHz */
{ 16800000, 1100000000, 982, 15, 1, 8}, /* actual: 1099.8 MHz */
{ 19200000, 1100000000, 859, 15, 1, 8}, /* actual: 1099.5 MHz */
{ 26000000, 1100000000, 550, 13, 1, 8},
/* 1 GHz */
{ 12000000, 1000000000, 1000, 12, 1, 8},
{ 13000000, 1000000000, 1000, 13, 1, 8},
{ 16800000, 1000000000, 833, 14, 1, 8}, /* actual: 999.6 MHz */
{ 19200000, 1000000000, 625, 12, 1, 8},
{ 26000000, 1000000000, 1000, 26, 1, 8},
{ 0, 0, 0, 0, 0, 0 },
};
static struct clk tegra_pll_x = {
.name = "pll_x",
.flags = PLL_HAS_CPCON | PLL_ALT_MISC_REG | PLLX,
.ops = &tegra_pll_ops,
.reg = 0xe0,
.parent = &tegra_pll_ref,
.max_rate = 1700000000,
.u.pll = {
.input_min = 2000000,
.input_max = 31000000,
.cf_min = 1000000,
.cf_max = 6000000,
.vco_min = 20000000,
.vco_max = 1700000000,
.freq_table = tegra_pll_x_freq_table,
.lock_delay = 300,
},
};
static struct clk tegra_pll_x_out0 = {
.name = "pll_x_out0",
.ops = &tegra_pll_div_ops,
.flags = DIV_2 | PLLX,
.parent = &tegra_pll_x,
.max_rate = 850000000,
};
static struct clk_pll_freq_table tegra_pll_e_freq_table[] = {
/* PLLE special case: use cpcon field to store cml divider value */
{ 12000000, 100000000, 150, 1, 18, 11},
{ 216000000, 100000000, 200, 18, 24, 13},
{ 0, 0, 0, 0, 0, 0 },
};
static struct clk tegra_pll_e = {
.name = "pll_e",
.flags = PLL_ALT_MISC_REG,
.ops = &tegra_plle_ops,
.reg = 0xe8,
.max_rate = 100000000,
.u.pll = {
.input_min = 12000000,
.input_max = 216000000,
.cf_min = 12000000,
.cf_max = 12000000,
.vco_min = 1200000000,
.vco_max = 2400000000U,
.freq_table = tegra_pll_e_freq_table,
.lock_delay = 300,
.fixed_rate = 100000000,
},
};
static struct clk tegra_cml0_clk = {
.name = "cml0",
.parent = &tegra_pll_e,
.ops = &tegra_cml_clk_ops,
.reg = PLLE_AUX,
.max_rate = 100000000,
.u.periph = {
.clk_num = 0,
},
};
static struct clk tegra_cml1_clk = {
.name = "cml1",
.parent = &tegra_pll_e,
.ops = &tegra_cml_clk_ops,
.reg = PLLE_AUX,
.max_rate = 100000000,
.u.periph = {
.clk_num = 1,
},
};
static struct clk tegra_pciex_clk = {
.name = "pciex",
.parent = &tegra_pll_e,
.ops = &tegra_pciex_clk_ops,
.max_rate = 100000000,
.u.periph = {
.clk_num = 74,
},
};
/* Audio sync clocks */
#define SYNC_SOURCE(_id) \
{ \
.name = #_id "_sync", \
.rate = 24000000, \
.max_rate = 24000000, \
.ops = &tegra_sync_source_ops \
}
static struct clk tegra_sync_source_list[] = {
SYNC_SOURCE(spdif_in),
SYNC_SOURCE(i2s0),
SYNC_SOURCE(i2s1),
SYNC_SOURCE(i2s2),
SYNC_SOURCE(i2s3),
SYNC_SOURCE(i2s4),
SYNC_SOURCE(vimclk),
};
static struct clk_mux_sel mux_audio_sync_clk[] = {
{ .input = &tegra_sync_source_list[0], .value = 0},
{ .input = &tegra_sync_source_list[1], .value = 1},
{ .input = &tegra_sync_source_list[2], .value = 2},
{ .input = &tegra_sync_source_list[3], .value = 3},
{ .input = &tegra_sync_source_list[4], .value = 4},
{ .input = &tegra_sync_source_list[5], .value = 5},
{ .input = &tegra_pll_a_out0, .value = 6},
{ .input = &tegra_sync_source_list[6], .value = 7},
{ 0, 0 }
};
#define AUDIO_SYNC_CLK(_id, _index) \
{ \
.name = #_id, \
.inputs = mux_audio_sync_clk, \
.reg = 0x4A0 + (_index) * 4, \
.max_rate = 24000000, \
.ops = &tegra_audio_sync_clk_ops \
}
static struct clk tegra_clk_audio_list[] = {
AUDIO_SYNC_CLK(audio0, 0),
AUDIO_SYNC_CLK(audio1, 1),
AUDIO_SYNC_CLK(audio2, 2),
AUDIO_SYNC_CLK(audio3, 3),
AUDIO_SYNC_CLK(audio4, 4),
AUDIO_SYNC_CLK(audio, 5), /* SPDIF */
};
#define AUDIO_SYNC_2X_CLK(_id, _index) \
{ \
.name = #_id "_2x", \
.flags = PERIPH_NO_RESET, \
.max_rate = 48000000, \
.ops = &tegra_clk_double_ops, \
.reg = 0x49C, \
.reg_shift = 24 + (_index), \
.parent = &tegra_clk_audio_list[(_index)], \
.u.periph = { \
.clk_num = 113 + (_index), \
}, \
}
static struct clk tegra_clk_audio_2x_list[] = {
AUDIO_SYNC_2X_CLK(audio0, 0),
AUDIO_SYNC_2X_CLK(audio1, 1),
AUDIO_SYNC_2X_CLK(audio2, 2),
AUDIO_SYNC_2X_CLK(audio3, 3),
AUDIO_SYNC_2X_CLK(audio4, 4),
AUDIO_SYNC_2X_CLK(audio, 5), /* SPDIF */
};
#define MUX_I2S_SPDIF(_id, _index) \
static struct clk_mux_sel mux_pllaout0_##_id##_2x_pllp_clkm[] = { \
{.input = &tegra_pll_a_out0, .value = 0}, \
{.input = &tegra_clk_audio_2x_list[(_index)], .value = 1}, \
{.input = &tegra_pll_p, .value = 2}, \
{.input = &tegra_clk_m, .value = 3}, \
{ 0, 0}, \
}
MUX_I2S_SPDIF(audio0, 0);
MUX_I2S_SPDIF(audio1, 1);
MUX_I2S_SPDIF(audio2, 2);
MUX_I2S_SPDIF(audio3, 3);
MUX_I2S_SPDIF(audio4, 4);
MUX_I2S_SPDIF(audio, 5); /* SPDIF */
/* External clock outputs (through PMC) */
#define MUX_EXTERN_OUT(_id) \
static struct clk_mux_sel mux_clkm_clkm2_clkm4_extern##_id[] = { \
{.input = &tegra_clk_m, .value = 0}, \
{.input = &tegra_clk_m_div2, .value = 1}, \
{.input = &tegra_clk_m_div4, .value = 2}, \
{.input = NULL, .value = 3}, /* placeholder */ \
{ 0, 0}, \
}
MUX_EXTERN_OUT(1);
MUX_EXTERN_OUT(2);
MUX_EXTERN_OUT(3);
static struct clk_mux_sel *mux_extern_out_list[] = {
mux_clkm_clkm2_clkm4_extern1,
mux_clkm_clkm2_clkm4_extern2,
mux_clkm_clkm2_clkm4_extern3,
};
#define CLK_OUT_CLK(_id) \
{ \
.name = "clk_out_" #_id, \
.lookup = { \
.dev_id = "clk_out_" #_id, \
.con_id = "extern" #_id, \
}, \
.ops = &tegra_clk_out_ops, \
.reg = 0x1a8, \
.inputs = mux_clkm_clkm2_clkm4_extern##_id, \
.flags = MUX_CLK_OUT, \
.max_rate = 216000000, \
.u.periph = { \
.clk_num = (_id - 1) * 8 + 2, \
}, \
}
static struct clk tegra_clk_out_list[] = {
CLK_OUT_CLK(1),
CLK_OUT_CLK(2),
CLK_OUT_CLK(3),
};
/* called after peripheral external clocks are initialized */
static void init_clk_out_mux(void)
{
int i;
struct clk *c;
/* output clock con_id is the name of peripheral
external clock connected to input 3 of the output mux */
for (i = 0; i < ARRAY_SIZE(tegra_clk_out_list); i++) {
c = tegra_get_clock_by_name(
tegra_clk_out_list[i].lookup.con_id);
if (!c)
pr_err("%s: could not find clk %s\n", __func__,
tegra_clk_out_list[i].lookup.con_id);
mux_extern_out_list[i][3].input = c;
}
}
/* Peripheral muxes */
static struct clk_mux_sel mux_sclk[] = {
{ .input = &tegra_clk_m, .value = 0},
{ .input = &tegra_pll_c_out1, .value = 1},
{ .input = &tegra_pll_p_out4, .value = 2},
{ .input = &tegra_pll_p_out3, .value = 3},
{ .input = &tegra_pll_p_out2, .value = 4},
/* { .input = &tegra_clk_d, .value = 5}, - no use on tegra30 */
{ .input = &tegra_clk_32k, .value = 6},
{ .input = &tegra_pll_m_out1, .value = 7},
{ 0, 0},
};
static struct clk tegra_clk_sclk = {
.name = "sclk",
.inputs = mux_sclk,
.reg = 0x28,
.ops = &tegra_super_ops,
.max_rate = 334000000,
.min_rate = 40000000,
};
static struct clk tegra_clk_blink = {
.name = "blink",
.parent = &tegra_clk_32k,
.reg = 0x40,
.ops = &tegra_blink_clk_ops,
.max_rate = 32768,
};
static struct clk_mux_sel mux_pllm_pllc_pllp_plla[] = {
{ .input = &tegra_pll_m, .value = 0},
{ .input = &tegra_pll_c, .value = 1},
{ .input = &tegra_pll_p, .value = 2},
{ .input = &tegra_pll_a_out0, .value = 3},
{ 0, 0},
};
static struct clk_mux_sel mux_pllp_pllc_pllm_clkm[] = {
{ .input = &tegra_pll_p, .value = 0},
{ .input = &tegra_pll_c, .value = 1},
{ .input = &tegra_pll_m, .value = 2},
{ .input = &tegra_clk_m, .value = 3},
{ 0, 0},
};
static struct clk_mux_sel mux_pllp_clkm[] = {
{ .input = &tegra_pll_p, .value = 0},
{ .input = &tegra_clk_m, .value = 3},
{ 0, 0},
};
static struct clk_mux_sel mux_pllp_plld_pllc_clkm[] = {
{.input = &tegra_pll_p, .value = 0},
{.input = &tegra_pll_d_out0, .value = 1},
{.input = &tegra_pll_c, .value = 2},
{.input = &tegra_clk_m, .value = 3},
{ 0, 0},
};
static struct clk_mux_sel mux_pllp_pllm_plld_plla_pllc_plld2_clkm[] = {
{.input = &tegra_pll_p, .value = 0},
{.input = &tegra_pll_m, .value = 1},
{.input = &tegra_pll_d_out0, .value = 2},
{.input = &tegra_pll_a_out0, .value = 3},
{.input = &tegra_pll_c, .value = 4},
{.input = &tegra_pll_d2_out0, .value = 5},
{.input = &tegra_clk_m, .value = 6},
{ 0, 0},
};
static struct clk_mux_sel mux_plla_pllc_pllp_clkm[] = {
{ .input = &tegra_pll_a_out0, .value = 0},
/* { .input = &tegra_pll_c, .value = 1}, no use on tegra30 */
{ .input = &tegra_pll_p, .value = 2},
{ .input = &tegra_clk_m, .value = 3},
{ 0, 0},
};
static struct clk_mux_sel mux_pllp_pllc_clk32_clkm[] = {
{.input = &tegra_pll_p, .value = 0},
{.input = &tegra_pll_c, .value = 1},
{.input = &tegra_clk_32k, .value = 2},
{.input = &tegra_clk_m, .value = 3},
{ 0, 0},
};
static struct clk_mux_sel mux_pllp_pllc_clkm_clk32[] = {
{.input = &tegra_pll_p, .value = 0},
{.input = &tegra_pll_c, .value = 1},
{.input = &tegra_clk_m, .value = 2},
{.input = &tegra_clk_32k, .value = 3},
{ 0, 0},
};
static struct clk_mux_sel mux_pllp_pllc_pllm[] = {
{.input = &tegra_pll_p, .value = 0},
{.input = &tegra_pll_c, .value = 1},
{.input = &tegra_pll_m, .value = 2},
{ 0, 0},
};
static struct clk_mux_sel mux_clk_m[] = {
{ .input = &tegra_clk_m, .value = 0},
{ 0, 0},
};
static struct clk_mux_sel mux_pllp_out3[] = {
{ .input = &tegra_pll_p_out3, .value = 0},
{ 0, 0},
};
static struct clk_mux_sel mux_plld_out0[] = {
{ .input = &tegra_pll_d_out0, .value = 0},
{ 0, 0},
};
static struct clk_mux_sel mux_plld_out0_plld2_out0[] = {
{ .input = &tegra_pll_d_out0, .value = 0},
{ .input = &tegra_pll_d2_out0, .value = 1},
{ 0, 0},
};
static struct clk_mux_sel mux_clk_32k[] = {
{ .input = &tegra_clk_32k, .value = 0},
{ 0, 0},
};
static struct clk_mux_sel mux_plla_clk32_pllp_clkm_plle[] = {
{ .input = &tegra_pll_a_out0, .value = 0},
{ .input = &tegra_clk_32k, .value = 1},
{ .input = &tegra_pll_p, .value = 2},
{ .input = &tegra_clk_m, .value = 3},
{ .input = &tegra_pll_e, .value = 4},
{ 0, 0},
};
static struct clk_mux_sel mux_cclk_g[] = {
{ .input = &tegra_clk_m, .value = 0},
{ .input = &tegra_pll_c, .value = 1},
{ .input = &tegra_clk_32k, .value = 2},
{ .input = &tegra_pll_m, .value = 3},
{ .input = &tegra_pll_p, .value = 4},
{ .input = &tegra_pll_p_out4, .value = 5},
{ .input = &tegra_pll_p_out3, .value = 6},
{ .input = &tegra_pll_x, .value = 8},
{ 0, 0},
};
static struct clk tegra_clk_cclk_g = {
.name = "cclk_g",
.flags = DIV_U71 | DIV_U71_INT,
.inputs = mux_cclk_g,
.reg = 0x368,
.ops = &tegra_super_ops,
.max_rate = 1700000000,
};
static struct clk tegra30_clk_twd = {
.parent = &tegra_clk_cclk_g,
.name = "twd",
.ops = &tegra30_twd_ops,
.max_rate = 1400000000, /* Same as tegra_clk_cpu_cmplx.max_rate */
.mul = 1,
.div = 2,
};
#define PERIPH_CLK(_name, _dev, _con, _clk_num, _reg, _max, _inputs, _flags) \
{ \
.name = _name, \
.lookup = { \
.dev_id = _dev, \
.con_id = _con, \
}, \
.ops = &tegra_periph_clk_ops, \
.reg = _reg, \
.inputs = _inputs, \
.flags = _flags, \
.max_rate = _max, \
.u.periph = { \
.clk_num = _clk_num, \
}, \
}
#define PERIPH_CLK_EX(_name, _dev, _con, _clk_num, _reg, _max, _inputs, \
_flags, _ops) \
{ \
.name = _name, \
.lookup = { \
.dev_id = _dev, \
.con_id = _con, \
}, \
.ops = _ops, \
.reg = _reg, \
.inputs = _inputs, \
.flags = _flags, \
.max_rate = _max, \
.u.periph = { \
.clk_num = _clk_num, \
}, \
}
#define SHARED_CLK(_name, _dev, _con, _parent, _id, _div, _mode)\
{ \
.name = _name, \
.lookup = { \
.dev_id = _dev, \
.con_id = _con, \
}, \
.ops = &tegra_clk_shared_bus_ops, \
.parent = _parent, \
.u.shared_bus_user = { \
.client_id = _id, \
.client_div = _div, \
.mode = _mode, \
}, \
}
struct clk tegra_list_clks[] = {
PERIPH_CLK("apbdma", "tegra-dma", NULL, 34, 0, 26000000, mux_clk_m, 0),
PERIPH_CLK("rtc", "rtc-tegra", NULL, 4, 0, 32768, mux_clk_32k, PERIPH_NO_RESET | PERIPH_ON_APB),
PERIPH_CLK("kbc", "tegra-kbc", NULL, 36, 0, 32768, mux_clk_32k, PERIPH_NO_RESET | PERIPH_ON_APB),
PERIPH_CLK("timer", "timer", NULL, 5, 0, 26000000, mux_clk_m, 0),
PERIPH_CLK("kfuse", "kfuse-tegra", NULL, 40, 0, 26000000, mux_clk_m, 0),
PERIPH_CLK("fuse", "fuse-tegra", "fuse", 39, 0, 26000000, mux_clk_m, PERIPH_ON_APB),
PERIPH_CLK("fuse_burn", "fuse-tegra", "fuse_burn", 39, 0, 26000000, mux_clk_m, PERIPH_ON_APB),
PERIPH_CLK("apbif", "tegra30-ahub", "apbif", 107, 0, 26000000, mux_clk_m, 0),
PERIPH_CLK("i2s0", "tegra30-i2s.0", NULL, 30, 0x1d8, 26000000, mux_pllaout0_audio0_2x_pllp_clkm, MUX | DIV_U71 | PERIPH_ON_APB),
PERIPH_CLK("i2s1", "tegra30-i2s.1", NULL, 11, 0x100, 26000000, mux_pllaout0_audio1_2x_pllp_clkm, MUX | DIV_U71 | PERIPH_ON_APB),
PERIPH_CLK("i2s2", "tegra30-i2s.2", NULL, 18, 0x104, 26000000, mux_pllaout0_audio2_2x_pllp_clkm, MUX | DIV_U71 | PERIPH_ON_APB),
PERIPH_CLK("i2s3", "tegra30-i2s.3", NULL, 101, 0x3bc, 26000000, mux_pllaout0_audio3_2x_pllp_clkm, MUX | DIV_U71 | PERIPH_ON_APB),
PERIPH_CLK("i2s4", "tegra30-i2s.4", NULL, 102, 0x3c0, 26000000, mux_pllaout0_audio4_2x_pllp_clkm, MUX | DIV_U71 | PERIPH_ON_APB),
PERIPH_CLK("spdif_out", "tegra30-spdif", "spdif_out", 10, 0x108, 100000000, mux_pllaout0_audio_2x_pllp_clkm, MUX | DIV_U71 | PERIPH_ON_APB),
PERIPH_CLK("spdif_in", "tegra30-spdif", "spdif_in", 10, 0x10c, 100000000, mux_pllp_pllc_pllm, MUX | DIV_U71 | PERIPH_ON_APB),
PERIPH_CLK("pwm", "pwm", NULL, 17, 0x110, 432000000, mux_pllp_pllc_clk32_clkm, MUX | MUX_PWM | DIV_U71 | PERIPH_ON_APB),
PERIPH_CLK("d_audio", "tegra30-ahub", "d_audio", 106, 0x3d0, 48000000, mux_plla_pllc_pllp_clkm, MUX | DIV_U71),
PERIPH_CLK("dam0", "tegra30-dam.0", NULL, 108, 0x3d8, 48000000, mux_plla_pllc_pllp_clkm, MUX | DIV_U71),
PERIPH_CLK("dam1", "tegra30-dam.1", NULL, 109, 0x3dc, 48000000, mux_plla_pllc_pllp_clkm, MUX | DIV_U71),
PERIPH_CLK("dam2", "tegra30-dam.2", NULL, 110, 0x3e0, 48000000, mux_plla_pllc_pllp_clkm, MUX | DIV_U71),
PERIPH_CLK("hda", "tegra30-hda", "hda", 125, 0x428, 108000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71),
PERIPH_CLK("hda2codec_2x", "tegra30-hda", "hda2codec", 111, 0x3e4, 48000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71),
PERIPH_CLK("hda2hdmi", "tegra30-hda", "hda2hdmi", 128, 0, 48000000, mux_clk_m, 0),
PERIPH_CLK("sbc1", "spi_tegra.0", NULL, 41, 0x134, 160000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71 | PERIPH_ON_APB),
PERIPH_CLK("sbc2", "spi_tegra.1", NULL, 44, 0x118, 160000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71 | PERIPH_ON_APB),
PERIPH_CLK("sbc3", "spi_tegra.2", NULL, 46, 0x11c, 160000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71 | PERIPH_ON_APB),
PERIPH_CLK("sbc4", "spi_tegra.3", NULL, 68, 0x1b4, 160000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71 | PERIPH_ON_APB),
PERIPH_CLK("sbc5", "spi_tegra.4", NULL, 104, 0x3c8, 160000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71 | PERIPH_ON_APB),
PERIPH_CLK("sbc6", "spi_tegra.5", NULL, 105, 0x3cc, 160000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71 | PERIPH_ON_APB),
PERIPH_CLK("sata_oob", "tegra_sata_oob", NULL, 123, 0x420, 216000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71),
PERIPH_CLK("sata", "tegra_sata", NULL, 124, 0x424, 216000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71),
PERIPH_CLK("sata_cold", "tegra_sata_cold", NULL, 129, 0, 48000000, mux_clk_m, 0),
PERIPH_CLK_EX("ndflash", "tegra_nand", NULL, 13, 0x160, 240000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71, &tegra_nand_clk_ops),
PERIPH_CLK("ndspeed", "tegra_nand_speed", NULL, 80, 0x3f8, 240000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71),
PERIPH_CLK("vfir", "vfir", NULL, 7, 0x168, 72000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71 | PERIPH_ON_APB),
PERIPH_CLK("sdmmc1", "sdhci-tegra.0", NULL, 14, 0x150, 208000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71), /* scales with voltage */
PERIPH_CLK("sdmmc2", "sdhci-tegra.1", NULL, 9, 0x154, 104000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71), /* scales with voltage */
PERIPH_CLK("sdmmc3", "sdhci-tegra.2", NULL, 69, 0x1bc, 208000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71), /* scales with voltage */
PERIPH_CLK("sdmmc4", "sdhci-tegra.3", NULL, 15, 0x164, 104000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71), /* scales with voltage */
PERIPH_CLK("vcp", "tegra-avp", "vcp", 29, 0, 250000000, mux_clk_m, 0),
PERIPH_CLK("bsea", "tegra-avp", "bsea", 62, 0, 250000000, mux_clk_m, 0),
PERIPH_CLK("bsev", "tegra-aes", "bsev", 63, 0, 250000000, mux_clk_m, 0),
PERIPH_CLK("vde", "vde", NULL, 61, 0x1c8, 520000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71 | DIV_U71_INT),
PERIPH_CLK("csite", "csite", NULL, 73, 0x1d4, 144000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71), /* max rate ??? */
PERIPH_CLK("la", "la", NULL, 76, 0x1f8, 26000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71),
PERIPH_CLK("owr", "tegra_w1", NULL, 71, 0x1cc, 26000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71 | PERIPH_ON_APB),
PERIPH_CLK("nor", "nor", NULL, 42, 0x1d0, 127000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71), /* requires min voltage */
PERIPH_CLK("mipi", "mipi", NULL, 50, 0x174, 60000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71 | PERIPH_ON_APB), /* scales with voltage */
PERIPH_CLK("i2c1", "tegra-i2c.0", NULL, 12, 0x124, 26000000, mux_pllp_clkm, MUX | DIV_U16 | PERIPH_ON_APB),
PERIPH_CLK("i2c2", "tegra-i2c.1", NULL, 54, 0x198, 26000000, mux_pllp_clkm, MUX | DIV_U16 | PERIPH_ON_APB),
PERIPH_CLK("i2c3", "tegra-i2c.2", NULL, 67, 0x1b8, 26000000, mux_pllp_clkm, MUX | DIV_U16 | PERIPH_ON_APB),
PERIPH_CLK("i2c4", "tegra-i2c.3", NULL, 103, 0x3c4, 26000000, mux_pllp_clkm, MUX | DIV_U16 | PERIPH_ON_APB),
PERIPH_CLK("i2c5", "tegra-i2c.4", NULL, 47, 0x128, 26000000, mux_pllp_clkm, MUX | DIV_U16 | PERIPH_ON_APB),
PERIPH_CLK("uarta", "tegra_uart.0", NULL, 6, 0x178, 800000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71 | DIV_U71_UART | PERIPH_ON_APB),
PERIPH_CLK("uartb", "tegra_uart.1", NULL, 7, 0x17c, 800000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71 | DIV_U71_UART | PERIPH_ON_APB),
PERIPH_CLK("uartc", "tegra_uart.2", NULL, 55, 0x1a0, 800000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71 | DIV_U71_UART | PERIPH_ON_APB),
PERIPH_CLK("uartd", "tegra_uart.3", NULL, 65, 0x1c0, 800000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71 | DIV_U71_UART | PERIPH_ON_APB),
PERIPH_CLK("uarte", "tegra_uart.4", NULL, 66, 0x1c4, 800000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71 | DIV_U71_UART | PERIPH_ON_APB),
PERIPH_CLK("uarta_dbg", "serial8250.0", "uarta", 6, 0x178, 800000000, mux_pllp_clkm, MUX | DIV_U71 | DIV_U71_UART | PERIPH_ON_APB),
PERIPH_CLK("uartb_dbg", "serial8250.0", "uartb", 7, 0x17c, 800000000, mux_pllp_clkm, MUX | DIV_U71 | DIV_U71_UART | PERIPH_ON_APB),
PERIPH_CLK("uartc_dbg", "serial8250.0", "uartc", 55, 0x1a0, 800000000, mux_pllp_clkm, MUX | DIV_U71 | DIV_U71_UART | PERIPH_ON_APB),
PERIPH_CLK("uartd_dbg", "serial8250.0", "uartd", 65, 0x1c0, 800000000, mux_pllp_clkm, MUX | DIV_U71 | DIV_U71_UART | PERIPH_ON_APB),
PERIPH_CLK("uarte_dbg", "serial8250.0", "uarte", 66, 0x1c4, 800000000, mux_pllp_clkm, MUX | DIV_U71 | DIV_U71_UART | PERIPH_ON_APB),
PERIPH_CLK_EX("vi", "tegra_camera", "vi", 20, 0x148, 425000000, mux_pllm_pllc_pllp_plla, MUX | DIV_U71 | DIV_U71_INT, &tegra_vi_clk_ops),
PERIPH_CLK("3d", "3d", NULL, 24, 0x158, 520000000, mux_pllm_pllc_pllp_plla, MUX | DIV_U71 | DIV_U71_INT | DIV_U71_IDLE | PERIPH_MANUAL_RESET),
PERIPH_CLK("3d2", "3d2", NULL, 98, 0x3b0, 520000000, mux_pllm_pllc_pllp_plla, MUX | DIV_U71 | DIV_U71_INT | DIV_U71_IDLE | PERIPH_MANUAL_RESET),
PERIPH_CLK("2d", "2d", NULL, 21, 0x15c, 520000000, mux_pllm_pllc_pllp_plla, MUX | DIV_U71 | DIV_U71_INT | DIV_U71_IDLE),
PERIPH_CLK("vi_sensor", "tegra_camera", "vi_sensor", 20, 0x1a8, 150000000, mux_pllm_pllc_pllp_plla, MUX | DIV_U71 | PERIPH_NO_RESET),
PERIPH_CLK("epp", "epp", NULL, 19, 0x16c, 520000000, mux_pllm_pllc_pllp_plla, MUX | DIV_U71 | DIV_U71_INT),
PERIPH_CLK("mpe", "mpe", NULL, 60, 0x170, 520000000, mux_pllm_pllc_pllp_plla, MUX | DIV_U71 | DIV_U71_INT),
PERIPH_CLK("host1x", "host1x", NULL, 28, 0x180, 260000000, mux_pllm_pllc_pllp_plla, MUX | DIV_U71 | DIV_U71_INT),
PERIPH_CLK("cve", "cve", NULL, 49, 0x140, 250000000, mux_pllp_plld_pllc_clkm, MUX | DIV_U71), /* requires min voltage */
PERIPH_CLK("tvo", "tvo", NULL, 49, 0x188, 250000000, mux_pllp_plld_pllc_clkm, MUX | DIV_U71), /* requires min voltage */
PERIPH_CLK_EX("dtv", "dtv", NULL, 79, 0x1dc, 250000000, mux_clk_m, 0, &tegra_dtv_clk_ops),
PERIPH_CLK("hdmi", "hdmi", NULL, 51, 0x18c, 148500000, mux_pllp_pllm_plld_plla_pllc_plld2_clkm, MUX | MUX8 | DIV_U71),
PERIPH_CLK("tvdac", "tvdac", NULL, 53, 0x194, 220000000, mux_pllp_plld_pllc_clkm, MUX | DIV_U71), /* requires min voltage */
PERIPH_CLK("disp1", "tegradc.0", NULL, 27, 0x138, 600000000, mux_pllp_pllm_plld_plla_pllc_plld2_clkm, MUX | MUX8),
PERIPH_CLK("disp2", "tegradc.1", NULL, 26, 0x13c, 600000000, mux_pllp_pllm_plld_plla_pllc_plld2_clkm, MUX | MUX8),
PERIPH_CLK("usbd", "fsl-tegra-udc", NULL, 22, 0, 480000000, mux_clk_m, 0), /* requires min voltage */
PERIPH_CLK("usb2", "tegra-ehci.1", NULL, 58, 0, 480000000, mux_clk_m, 0), /* requires min voltage */
PERIPH_CLK("usb3", "tegra-ehci.2", NULL, 59, 0, 480000000, mux_clk_m, 0), /* requires min voltage */
PERIPH_CLK("dsia", "tegradc.0", "dsia", 48, 0, 500000000, mux_plld_out0, 0),
PERIPH_CLK_EX("dsib", "tegradc.1", "dsib", 82, 0xd0, 500000000, mux_plld_out0_plld2_out0, MUX | PLLD, &tegra_dsib_clk_ops),
PERIPH_CLK("csi", "tegra_camera", "csi", 52, 0, 102000000, mux_pllp_out3, 0),
PERIPH_CLK("isp", "tegra_camera", "isp", 23, 0, 150000000, mux_clk_m, 0), /* same frequency as VI */
PERIPH_CLK("csus", "tegra_camera", "csus", 92, 0, 150000000, mux_clk_m, PERIPH_NO_RESET),
PERIPH_CLK("tsensor", "tegra-tsensor", NULL, 100, 0x3b8, 216000000, mux_pllp_pllc_clkm_clk32, MUX | DIV_U71),
PERIPH_CLK("actmon", "actmon", NULL, 119, 0x3e8, 216000000, mux_pllp_pllc_clk32_clkm, MUX | DIV_U71),
PERIPH_CLK("extern1", "extern1", NULL, 120, 0x3ec, 216000000, mux_plla_clk32_pllp_clkm_plle, MUX | MUX8 | DIV_U71),
PERIPH_CLK("extern2", "extern2", NULL, 121, 0x3f0, 216000000, mux_plla_clk32_pllp_clkm_plle, MUX | MUX8 | DIV_U71),
PERIPH_CLK("extern3", "extern3", NULL, 122, 0x3f4, 216000000, mux_plla_clk32_pllp_clkm_plle, MUX | MUX8 | DIV_U71),
PERIPH_CLK("i2cslow", "i2cslow", NULL, 81, 0x3fc, 26000000, mux_pllp_pllc_clk32_clkm, MUX | DIV_U71 | PERIPH_ON_APB),
PERIPH_CLK("pcie", "tegra-pcie", "pcie", 70, 0, 250000000, mux_clk_m, 0),
PERIPH_CLK("afi", "tegra-pcie", "afi", 72, 0, 250000000, mux_clk_m, 0),
PERIPH_CLK("se", "se", NULL, 127, 0x42c, 520000000, mux_pllp_pllc_pllm_clkm, MUX | DIV_U71 | DIV_U71_INT),
};
#define CLK_DUPLICATE(_name, _dev, _con) \
{ \
.name = _name, \
.lookup = { \
.dev_id = _dev, \
.con_id = _con, \
}, \
}
/* Some clocks may be used by different drivers depending on the board
* configuration. List those here to register them twice in the clock lookup
* table under two names.
*/
struct clk_duplicate tegra_clk_duplicates[] = {
CLK_DUPLICATE("usbd", "utmip-pad", NULL),
CLK_DUPLICATE("usbd", "tegra-ehci.0", NULL),
CLK_DUPLICATE("usbd", "tegra-otg", NULL),
CLK_DUPLICATE("hdmi", "tegradc.0", "hdmi"),
CLK_DUPLICATE("hdmi", "tegradc.1", "hdmi"),
CLK_DUPLICATE("dsib", "tegradc.0", "dsib"),
CLK_DUPLICATE("dsia", "tegradc.1", "dsia"),
CLK_DUPLICATE("pwm", "tegra_pwm.0", NULL),
CLK_DUPLICATE("pwm", "tegra_pwm.1", NULL),
CLK_DUPLICATE("pwm", "tegra_pwm.2", NULL),
CLK_DUPLICATE("pwm", "tegra_pwm.3", NULL),
CLK_DUPLICATE("bsev", "tegra-avp", "bsev"),
CLK_DUPLICATE("bsev", "nvavp", "bsev"),
CLK_DUPLICATE("vde", "tegra-aes", "vde"),
CLK_DUPLICATE("bsea", "tegra-aes", "bsea"),
CLK_DUPLICATE("bsea", "nvavp", "bsea"),
CLK_DUPLICATE("cml1", "tegra_sata_cml", NULL),
CLK_DUPLICATE("cml0", "tegra_pcie", "cml"),
CLK_DUPLICATE("pciex", "tegra_pcie", "pciex"),
CLK_DUPLICATE("i2c1", "tegra-i2c-slave.0", NULL),
CLK_DUPLICATE("i2c2", "tegra-i2c-slave.1", NULL),
CLK_DUPLICATE("i2c3", "tegra-i2c-slave.2", NULL),
CLK_DUPLICATE("i2c4", "tegra-i2c-slave.3", NULL),
CLK_DUPLICATE("i2c5", "tegra-i2c-slave.4", NULL),
CLK_DUPLICATE("sbc1", "spi_slave_tegra.0", NULL),
CLK_DUPLICATE("sbc2", "spi_slave_tegra.1", NULL),
CLK_DUPLICATE("sbc3", "spi_slave_tegra.2", NULL),
CLK_DUPLICATE("sbc4", "spi_slave_tegra.3", NULL),
CLK_DUPLICATE("sbc5", "spi_slave_tegra.4", NULL),
CLK_DUPLICATE("sbc6", "spi_slave_tegra.5", NULL),
CLK_DUPLICATE("twd", "smp_twd", NULL),
CLK_DUPLICATE("vcp", "nvavp", "vcp"),
};
struct clk *tegra_ptr_clks[] = {
&tegra_clk_32k,
&tegra_clk_m,
&tegra_clk_m_div2,
&tegra_clk_m_div4,
&tegra_pll_ref,
&tegra_pll_m,
&tegra_pll_m_out1,
&tegra_pll_c,
&tegra_pll_c_out1,
&tegra_pll_p,
&tegra_pll_p_out1,
&tegra_pll_p_out2,
&tegra_pll_p_out3,
&tegra_pll_p_out4,
&tegra_pll_a,
&tegra_pll_a_out0,
&tegra_pll_d,
&tegra_pll_d_out0,
&tegra_pll_d2,
&tegra_pll_d2_out0,
&tegra_pll_u,
&tegra_pll_x,
&tegra_pll_x_out0,
&tegra_pll_e,
&tegra_clk_cclk_g,
&tegra_cml0_clk,
&tegra_cml1_clk,
&tegra_pciex_clk,
&tegra_clk_sclk,
&tegra_clk_blink,
&tegra30_clk_twd,
};
static void tegra30_init_one_clock(struct clk *c)
{
clk_init(c);
INIT_LIST_HEAD(&c->shared_bus_list);
if (!c->lookup.dev_id && !c->lookup.con_id)
c->lookup.con_id = c->name;
c->lookup.clk = c;
clkdev_add(&c->lookup);
}
void __init tegra30_init_clocks(void)
{
int i;
struct clk *c;
for (i = 0; i < ARRAY_SIZE(tegra_ptr_clks); i++)
tegra30_init_one_clock(tegra_ptr_clks[i]);
for (i = 0; i < ARRAY_SIZE(tegra_list_clks); i++)
tegra30_init_one_clock(&tegra_list_clks[i]);
for (i = 0; i < ARRAY_SIZE(tegra_clk_duplicates); i++) {
c = tegra_get_clock_by_name(tegra_clk_duplicates[i].name);
if (!c) {
pr_err("%s: Unknown duplicate clock %s\n", __func__,
tegra_clk_duplicates[i].name);
continue;
}
tegra_clk_duplicates[i].lookup.clk = c;
clkdev_add(&tegra_clk_duplicates[i].lookup);
}
for (i = 0; i < ARRAY_SIZE(tegra_sync_source_list); i++)
tegra30_init_one_clock(&tegra_sync_source_list[i]);
for (i = 0; i < ARRAY_SIZE(tegra_clk_audio_list); i++)
tegra30_init_one_clock(&tegra_clk_audio_list[i]);
for (i = 0; i < ARRAY_SIZE(tegra_clk_audio_2x_list); i++)
tegra30_init_one_clock(&tegra_clk_audio_2x_list[i]);
init_clk_out_mux();
for (i = 0; i < ARRAY_SIZE(tegra_clk_out_list); i++)
tegra30_init_one_clock(&tegra_clk_out_list[i]);
}