2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-24 13:13:57 +08:00
linux-next/drivers/gpu/drm/drm_crtc.c

5542 lines
149 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006-2008 Intel Corporation
* Copyright (c) 2007 Dave Airlie <airlied@linux.ie>
* Copyright (c) 2008 Red Hat Inc.
*
* DRM core CRTC related functions
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that copyright
* notice and this permission notice appear in supporting documentation, and
* that the name of the copyright holders not be used in advertising or
* publicity pertaining to distribution of the software without specific,
* written prior permission. The copyright holders make no representations
* about the suitability of this software for any purpose. It is provided "as
* is" without express or implied warranty.
*
* THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
* EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
* DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THIS SOFTWARE.
*
* Authors:
* Keith Packard
* Eric Anholt <eric@anholt.net>
* Dave Airlie <airlied@linux.ie>
* Jesse Barnes <jesse.barnes@intel.com>
*/
#include <linux/ctype.h>
#include <linux/list.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/export.h>
#include <drm/drmP.h>
#include <drm/drm_crtc.h>
#include <drm/drm_edid.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_modeset_lock.h>
#include <drm/drm_atomic.h>
#include "drm_crtc_internal.h"
#include "drm_internal.h"
static struct drm_framebuffer *add_framebuffer_internal(struct drm_device *dev,
struct drm_mode_fb_cmd2 *r,
struct drm_file *file_priv);
/* Avoid boilerplate. I'm tired of typing. */
#define DRM_ENUM_NAME_FN(fnname, list) \
const char *fnname(int val) \
{ \
int i; \
for (i = 0; i < ARRAY_SIZE(list); i++) { \
if (list[i].type == val) \
return list[i].name; \
} \
return "(unknown)"; \
}
/*
* Global properties
*/
static const struct drm_prop_enum_list drm_dpms_enum_list[] = {
{ DRM_MODE_DPMS_ON, "On" },
{ DRM_MODE_DPMS_STANDBY, "Standby" },
{ DRM_MODE_DPMS_SUSPEND, "Suspend" },
{ DRM_MODE_DPMS_OFF, "Off" }
};
DRM_ENUM_NAME_FN(drm_get_dpms_name, drm_dpms_enum_list)
static const struct drm_prop_enum_list drm_plane_type_enum_list[] = {
{ DRM_PLANE_TYPE_OVERLAY, "Overlay" },
{ DRM_PLANE_TYPE_PRIMARY, "Primary" },
{ DRM_PLANE_TYPE_CURSOR, "Cursor" },
};
/*
* Optional properties
*/
static const struct drm_prop_enum_list drm_scaling_mode_enum_list[] = {
{ DRM_MODE_SCALE_NONE, "None" },
{ DRM_MODE_SCALE_FULLSCREEN, "Full" },
{ DRM_MODE_SCALE_CENTER, "Center" },
{ DRM_MODE_SCALE_ASPECT, "Full aspect" },
};
static const struct drm_prop_enum_list drm_aspect_ratio_enum_list[] = {
{ DRM_MODE_PICTURE_ASPECT_NONE, "Automatic" },
{ DRM_MODE_PICTURE_ASPECT_4_3, "4:3" },
{ DRM_MODE_PICTURE_ASPECT_16_9, "16:9" },
};
/*
* Non-global properties, but "required" for certain connectors.
*/
static const struct drm_prop_enum_list drm_dvi_i_select_enum_list[] = {
{ DRM_MODE_SUBCONNECTOR_Automatic, "Automatic" }, /* DVI-I and TV-out */
{ DRM_MODE_SUBCONNECTOR_DVID, "DVI-D" }, /* DVI-I */
{ DRM_MODE_SUBCONNECTOR_DVIA, "DVI-A" }, /* DVI-I */
};
DRM_ENUM_NAME_FN(drm_get_dvi_i_select_name, drm_dvi_i_select_enum_list)
static const struct drm_prop_enum_list drm_dvi_i_subconnector_enum_list[] = {
{ DRM_MODE_SUBCONNECTOR_Unknown, "Unknown" }, /* DVI-I and TV-out */
{ DRM_MODE_SUBCONNECTOR_DVID, "DVI-D" }, /* DVI-I */
{ DRM_MODE_SUBCONNECTOR_DVIA, "DVI-A" }, /* DVI-I */
};
DRM_ENUM_NAME_FN(drm_get_dvi_i_subconnector_name,
drm_dvi_i_subconnector_enum_list)
static const struct drm_prop_enum_list drm_tv_select_enum_list[] = {
{ DRM_MODE_SUBCONNECTOR_Automatic, "Automatic" }, /* DVI-I and TV-out */
{ DRM_MODE_SUBCONNECTOR_Composite, "Composite" }, /* TV-out */
{ DRM_MODE_SUBCONNECTOR_SVIDEO, "SVIDEO" }, /* TV-out */
{ DRM_MODE_SUBCONNECTOR_Component, "Component" }, /* TV-out */
{ DRM_MODE_SUBCONNECTOR_SCART, "SCART" }, /* TV-out */
};
DRM_ENUM_NAME_FN(drm_get_tv_select_name, drm_tv_select_enum_list)
static const struct drm_prop_enum_list drm_tv_subconnector_enum_list[] = {
{ DRM_MODE_SUBCONNECTOR_Unknown, "Unknown" }, /* DVI-I and TV-out */
{ DRM_MODE_SUBCONNECTOR_Composite, "Composite" }, /* TV-out */
{ DRM_MODE_SUBCONNECTOR_SVIDEO, "SVIDEO" }, /* TV-out */
{ DRM_MODE_SUBCONNECTOR_Component, "Component" }, /* TV-out */
{ DRM_MODE_SUBCONNECTOR_SCART, "SCART" }, /* TV-out */
};
DRM_ENUM_NAME_FN(drm_get_tv_subconnector_name,
drm_tv_subconnector_enum_list)
static const struct drm_prop_enum_list drm_dirty_info_enum_list[] = {
{ DRM_MODE_DIRTY_OFF, "Off" },
{ DRM_MODE_DIRTY_ON, "On" },
{ DRM_MODE_DIRTY_ANNOTATE, "Annotate" },
};
struct drm_conn_prop_enum_list {
int type;
const char *name;
struct ida ida;
};
/*
* Connector and encoder types.
*/
static struct drm_conn_prop_enum_list drm_connector_enum_list[] = {
{ DRM_MODE_CONNECTOR_Unknown, "Unknown" },
{ DRM_MODE_CONNECTOR_VGA, "VGA" },
{ DRM_MODE_CONNECTOR_DVII, "DVI-I" },
{ DRM_MODE_CONNECTOR_DVID, "DVI-D" },
{ DRM_MODE_CONNECTOR_DVIA, "DVI-A" },
{ DRM_MODE_CONNECTOR_Composite, "Composite" },
{ DRM_MODE_CONNECTOR_SVIDEO, "SVIDEO" },
{ DRM_MODE_CONNECTOR_LVDS, "LVDS" },
{ DRM_MODE_CONNECTOR_Component, "Component" },
{ DRM_MODE_CONNECTOR_9PinDIN, "DIN" },
{ DRM_MODE_CONNECTOR_DisplayPort, "DP" },
{ DRM_MODE_CONNECTOR_HDMIA, "HDMI-A" },
{ DRM_MODE_CONNECTOR_HDMIB, "HDMI-B" },
{ DRM_MODE_CONNECTOR_TV, "TV" },
{ DRM_MODE_CONNECTOR_eDP, "eDP" },
{ DRM_MODE_CONNECTOR_VIRTUAL, "Virtual" },
{ DRM_MODE_CONNECTOR_DSI, "DSI" },
};
static const struct drm_prop_enum_list drm_encoder_enum_list[] = {
{ DRM_MODE_ENCODER_NONE, "None" },
{ DRM_MODE_ENCODER_DAC, "DAC" },
{ DRM_MODE_ENCODER_TMDS, "TMDS" },
{ DRM_MODE_ENCODER_LVDS, "LVDS" },
{ DRM_MODE_ENCODER_TVDAC, "TV" },
{ DRM_MODE_ENCODER_VIRTUAL, "Virtual" },
{ DRM_MODE_ENCODER_DSI, "DSI" },
{ DRM_MODE_ENCODER_DPMST, "DP MST" },
};
static const struct drm_prop_enum_list drm_subpixel_enum_list[] = {
{ SubPixelUnknown, "Unknown" },
{ SubPixelHorizontalRGB, "Horizontal RGB" },
{ SubPixelHorizontalBGR, "Horizontal BGR" },
{ SubPixelVerticalRGB, "Vertical RGB" },
{ SubPixelVerticalBGR, "Vertical BGR" },
{ SubPixelNone, "None" },
};
void drm_connector_ida_init(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(drm_connector_enum_list); i++)
ida_init(&drm_connector_enum_list[i].ida);
}
void drm_connector_ida_destroy(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(drm_connector_enum_list); i++)
ida_destroy(&drm_connector_enum_list[i].ida);
}
/**
* drm_get_connector_status_name - return a string for connector status
* @status: connector status to compute name of
*
* In contrast to the other drm_get_*_name functions this one here returns a
* const pointer and hence is threadsafe.
*/
const char *drm_get_connector_status_name(enum drm_connector_status status)
{
if (status == connector_status_connected)
return "connected";
else if (status == connector_status_disconnected)
return "disconnected";
else
return "unknown";
}
EXPORT_SYMBOL(drm_get_connector_status_name);
/**
* drm_get_subpixel_order_name - return a string for a given subpixel enum
* @order: enum of subpixel_order
*
* Note you could abuse this and return something out of bounds, but that
* would be a caller error. No unscrubbed user data should make it here.
*/
const char *drm_get_subpixel_order_name(enum subpixel_order order)
{
return drm_subpixel_enum_list[order].name;
}
EXPORT_SYMBOL(drm_get_subpixel_order_name);
static char printable_char(int c)
{
return isascii(c) && isprint(c) ? c : '?';
}
/**
* drm_get_format_name - return a string for drm fourcc format
* @format: format to compute name of
*
* Note that the buffer used by this function is globally shared and owned by
* the function itself.
*
* FIXME: This isn't really multithreading safe.
*/
const char *drm_get_format_name(uint32_t format)
{
static char buf[32];
snprintf(buf, sizeof(buf),
"%c%c%c%c %s-endian (0x%08x)",
printable_char(format & 0xff),
printable_char((format >> 8) & 0xff),
printable_char((format >> 16) & 0xff),
printable_char((format >> 24) & 0x7f),
format & DRM_FORMAT_BIG_ENDIAN ? "big" : "little",
format);
return buf;
}
EXPORT_SYMBOL(drm_get_format_name);
/*
* Internal function to assign a slot in the object idr and optionally
* register the object into the idr.
*/
static int drm_mode_object_get_reg(struct drm_device *dev,
struct drm_mode_object *obj,
uint32_t obj_type,
bool register_obj)
{
int ret;
mutex_lock(&dev->mode_config.idr_mutex);
ret = idr_alloc(&dev->mode_config.crtc_idr, register_obj ? obj : NULL, 1, 0, GFP_KERNEL);
if (ret >= 0) {
/*
* Set up the object linking under the protection of the idr
* lock so that other users can't see inconsistent state.
*/
obj->id = ret;
obj->type = obj_type;
}
mutex_unlock(&dev->mode_config.idr_mutex);
return ret < 0 ? ret : 0;
}
/**
* drm_mode_object_get - allocate a new modeset identifier
* @dev: DRM device
* @obj: object pointer, used to generate unique ID
* @obj_type: object type
*
* Create a unique identifier based on @ptr in @dev's identifier space. Used
* for tracking modes, CRTCs and connectors. Note that despite the _get postfix
* modeset identifiers are _not_ reference counted. Hence don't use this for
* reference counted modeset objects like framebuffers.
*
* Returns:
* New unique (relative to other objects in @dev) integer identifier for the
* object.
*/
int drm_mode_object_get(struct drm_device *dev,
struct drm_mode_object *obj, uint32_t obj_type)
{
return drm_mode_object_get_reg(dev, obj, obj_type, true);
}
static void drm_mode_object_register(struct drm_device *dev,
struct drm_mode_object *obj)
{
mutex_lock(&dev->mode_config.idr_mutex);
idr_replace(&dev->mode_config.crtc_idr, obj, obj->id);
mutex_unlock(&dev->mode_config.idr_mutex);
}
/**
* drm_mode_object_put - free a modeset identifer
* @dev: DRM device
* @object: object to free
*
* Free @id from @dev's unique identifier pool. Note that despite the _get
* postfix modeset identifiers are _not_ reference counted. Hence don't use this
* for reference counted modeset objects like framebuffers.
*/
void drm_mode_object_put(struct drm_device *dev,
struct drm_mode_object *object)
{
mutex_lock(&dev->mode_config.idr_mutex);
idr_remove(&dev->mode_config.crtc_idr, object->id);
mutex_unlock(&dev->mode_config.idr_mutex);
}
static struct drm_mode_object *_object_find(struct drm_device *dev,
uint32_t id, uint32_t type)
{
struct drm_mode_object *obj = NULL;
mutex_lock(&dev->mode_config.idr_mutex);
obj = idr_find(&dev->mode_config.crtc_idr, id);
if (obj && type != DRM_MODE_OBJECT_ANY && obj->type != type)
obj = NULL;
if (obj && obj->id != id)
obj = NULL;
/* don't leak out unref'd fb's */
if (obj && (obj->type == DRM_MODE_OBJECT_FB))
obj = NULL;
mutex_unlock(&dev->mode_config.idr_mutex);
return obj;
}
/**
* drm_mode_object_find - look up a drm object with static lifetime
* @dev: drm device
* @id: id of the mode object
* @type: type of the mode object
*
* Note that framebuffers cannot be looked up with this functions - since those
* are reference counted, they need special treatment. Even with
* DRM_MODE_OBJECT_ANY (although that will simply return NULL
* rather than WARN_ON()).
*/
struct drm_mode_object *drm_mode_object_find(struct drm_device *dev,
uint32_t id, uint32_t type)
{
struct drm_mode_object *obj = NULL;
/* Framebuffers are reference counted and need their own lookup
* function.*/
WARN_ON(type == DRM_MODE_OBJECT_FB);
obj = _object_find(dev, id, type);
return obj;
}
EXPORT_SYMBOL(drm_mode_object_find);
/**
* drm_framebuffer_init - initialize a framebuffer
* @dev: DRM device
* @fb: framebuffer to be initialized
* @funcs: ... with these functions
*
* Allocates an ID for the framebuffer's parent mode object, sets its mode
* functions & device file and adds it to the master fd list.
*
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
* IMPORTANT:
* This functions publishes the fb and makes it available for concurrent access
* by other users. Which means by this point the fb _must_ be fully set up -
* since all the fb attributes are invariant over its lifetime, no further
* locking but only correct reference counting is required.
*
* Returns:
* Zero on success, error code on failure.
*/
int drm_framebuffer_init(struct drm_device *dev, struct drm_framebuffer *fb,
const struct drm_framebuffer_funcs *funcs)
{
int ret;
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
mutex_lock(&dev->mode_config.fb_lock);
kref_init(&fb->refcount);
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
INIT_LIST_HEAD(&fb->filp_head);
fb->dev = dev;
fb->funcs = funcs;
ret = drm_mode_object_get(dev, &fb->base, DRM_MODE_OBJECT_FB);
if (ret)
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
goto out;
dev->mode_config.num_fb++;
list_add(&fb->head, &dev->mode_config.fb_list);
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
out:
mutex_unlock(&dev->mode_config.fb_lock);
return 0;
}
EXPORT_SYMBOL(drm_framebuffer_init);
drm: Don't grab an fb reference for the idr The current refcounting scheme is that the fb lookup idr also holds a reference. This works out nicely bacause thus far we've always explicitly cleaned up idr entries for framebuffers: - Userspace fbs get removed in the rmfb ioctl or when the drm file gets closed. - Kernel fbs (for fbdev emulation) get cleaned up by the driver code at module unload time. But now i915 also reconstructs the bios fbs for a smooth transition. And that fb is purely transitional and should get removed immmediately once all crtcs stop using it. Of course if the i915 fbdev code decides to reuse it as the main fbdev fb then it shouldn't be cleaned up, but in that case the fbdev code will grab it's own reference. The problem is now that we also want to register that takeover fb in the idr, so that userspace can do a smooth transition (animated maybe even!) itself. But currently we have no one who will clean up the idr reference once that fb isn't useful any more, and so essentially leak it. Fix this by no longer holding a full fb reference for the idr, but instead just have a weak reference using kref_get_unless_zero. But that requires us to synchronize and clean up with the idr and fb_lock in drm_framebuffer_free, so add that. It's a bit ugly that we have to unconditionally grab the fb_lock, but without that someone might creep through a race. This leak was caught by the fb leak check in drm_mode_config_cleanup. Originally the leak was introduced in commit 46f297fb83d4f9a6f6891964beb184664341a28b Author: Jesse Barnes <jbarnes@virtuousgeek.org> Date: Fri Mar 7 08:57:48 2014 -0800 drm/i915: add plane_config fetching infrastructure v2 Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=77511 Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-08-06 15:10:18 +08:00
/* dev->mode_config.fb_lock must be held! */
static void __drm_framebuffer_unregister(struct drm_device *dev,
struct drm_framebuffer *fb)
{
mutex_lock(&dev->mode_config.idr_mutex);
idr_remove(&dev->mode_config.crtc_idr, fb->base.id);
mutex_unlock(&dev->mode_config.idr_mutex);
fb->base.id = 0;
}
static void drm_framebuffer_free(struct kref *kref)
{
struct drm_framebuffer *fb =
container_of(kref, struct drm_framebuffer, refcount);
drm: Don't grab an fb reference for the idr The current refcounting scheme is that the fb lookup idr also holds a reference. This works out nicely bacause thus far we've always explicitly cleaned up idr entries for framebuffers: - Userspace fbs get removed in the rmfb ioctl or when the drm file gets closed. - Kernel fbs (for fbdev emulation) get cleaned up by the driver code at module unload time. But now i915 also reconstructs the bios fbs for a smooth transition. And that fb is purely transitional and should get removed immmediately once all crtcs stop using it. Of course if the i915 fbdev code decides to reuse it as the main fbdev fb then it shouldn't be cleaned up, but in that case the fbdev code will grab it's own reference. The problem is now that we also want to register that takeover fb in the idr, so that userspace can do a smooth transition (animated maybe even!) itself. But currently we have no one who will clean up the idr reference once that fb isn't useful any more, and so essentially leak it. Fix this by no longer holding a full fb reference for the idr, but instead just have a weak reference using kref_get_unless_zero. But that requires us to synchronize and clean up with the idr and fb_lock in drm_framebuffer_free, so add that. It's a bit ugly that we have to unconditionally grab the fb_lock, but without that someone might creep through a race. This leak was caught by the fb leak check in drm_mode_config_cleanup. Originally the leak was introduced in commit 46f297fb83d4f9a6f6891964beb184664341a28b Author: Jesse Barnes <jbarnes@virtuousgeek.org> Date: Fri Mar 7 08:57:48 2014 -0800 drm/i915: add plane_config fetching infrastructure v2 Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=77511 Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-08-06 15:10:18 +08:00
struct drm_device *dev = fb->dev;
/*
* The lookup idr holds a weak reference, which has not necessarily been
* removed at this point. Check for that.
*/
mutex_lock(&dev->mode_config.fb_lock);
if (fb->base.id) {
/* Mark fb as reaped and drop idr ref. */
__drm_framebuffer_unregister(dev, fb);
}
mutex_unlock(&dev->mode_config.fb_lock);
fb->funcs->destroy(fb);
}
drm: reference framebuffers which are on the idr Since otherwise looking and reference-counting around drm_framebuffer_lookup will be an unmanageable mess. With this change, an object can either be found in the idr and will stay around once we incremented the reference counter. Or it will be gone for good and can't be looked up using its id any more. Atomicity is guaranteed by the dev->mode_config.fb_lock. The newly-introduce fpriv->fbs_lock looks a bit redundant, but the next patch will shuffle the locking order between these two locks and all the modeset locks taken in modeset_lock_all, so we'll need it. Also, since userspace could do really funky stuff and race e.g. a getresources with an rmfb, we need to make sure that the kernel doesn't fall over trying to look-up an inexistent fb, or causing confusion by having two fbs around with the same id. Simply reset the framebuffer id to 0, which marks it as reaped. Any lookups of that id will fail, so the object is really gone for good from userspace's pov. Note that we still need to protect the "remove framebuffer from all use-cases" and the final unreference with the modeset-lock, since most framebuffer use-sites don't implement proper reference counting yet. We can only lift this once _all_ users are converted. With this change, two references are held on alife, but unused framebuffers: - The reference for the idr lookup, created in this patch. - For user-created framebuffers the fpriv->fbs reference, for driver-private fbs the driver is supposed to hold it's own last reference. Note that the dev->mode_config.fb_list itself does _not_ hold a reference onto the framebuffers (this list is essentially only used for debugfs files). Hence if there's anything left there when the driver has cleaned up all it's modeset resources, this is a ref-leak. WARN about it. Now we only need to fix up all other places to properly reference count framebuffers. v2: Fix spelling fail in a comment spotted by Rob Clark. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:16:05 +08:00
static struct drm_framebuffer *__drm_framebuffer_lookup(struct drm_device *dev,
uint32_t id)
{
struct drm_mode_object *obj = NULL;
struct drm_framebuffer *fb;
mutex_lock(&dev->mode_config.idr_mutex);
obj = idr_find(&dev->mode_config.crtc_idr, id);
if (!obj || (obj->type != DRM_MODE_OBJECT_FB) || (obj->id != id))
fb = NULL;
else
fb = obj_to_fb(obj);
mutex_unlock(&dev->mode_config.idr_mutex);
return fb;
}
/**
* drm_framebuffer_lookup - look up a drm framebuffer and grab a reference
* @dev: drm device
* @id: id of the fb object
*
* If successful, this grabs an additional reference to the framebuffer -
* callers need to make sure to eventually unreference the returned framebuffer
* again, using @drm_framebuffer_unreference.
*/
struct drm_framebuffer *drm_framebuffer_lookup(struct drm_device *dev,
uint32_t id)
{
struct drm_framebuffer *fb;
mutex_lock(&dev->mode_config.fb_lock);
drm: reference framebuffers which are on the idr Since otherwise looking and reference-counting around drm_framebuffer_lookup will be an unmanageable mess. With this change, an object can either be found in the idr and will stay around once we incremented the reference counter. Or it will be gone for good and can't be looked up using its id any more. Atomicity is guaranteed by the dev->mode_config.fb_lock. The newly-introduce fpriv->fbs_lock looks a bit redundant, but the next patch will shuffle the locking order between these two locks and all the modeset locks taken in modeset_lock_all, so we'll need it. Also, since userspace could do really funky stuff and race e.g. a getresources with an rmfb, we need to make sure that the kernel doesn't fall over trying to look-up an inexistent fb, or causing confusion by having two fbs around with the same id. Simply reset the framebuffer id to 0, which marks it as reaped. Any lookups of that id will fail, so the object is really gone for good from userspace's pov. Note that we still need to protect the "remove framebuffer from all use-cases" and the final unreference with the modeset-lock, since most framebuffer use-sites don't implement proper reference counting yet. We can only lift this once _all_ users are converted. With this change, two references are held on alife, but unused framebuffers: - The reference for the idr lookup, created in this patch. - For user-created framebuffers the fpriv->fbs reference, for driver-private fbs the driver is supposed to hold it's own last reference. Note that the dev->mode_config.fb_list itself does _not_ hold a reference onto the framebuffers (this list is essentially only used for debugfs files). Hence if there's anything left there when the driver has cleaned up all it's modeset resources, this is a ref-leak. WARN about it. Now we only need to fix up all other places to properly reference count framebuffers. v2: Fix spelling fail in a comment spotted by Rob Clark. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:16:05 +08:00
fb = __drm_framebuffer_lookup(dev, id);
drm: Don't grab an fb reference for the idr The current refcounting scheme is that the fb lookup idr also holds a reference. This works out nicely bacause thus far we've always explicitly cleaned up idr entries for framebuffers: - Userspace fbs get removed in the rmfb ioctl or when the drm file gets closed. - Kernel fbs (for fbdev emulation) get cleaned up by the driver code at module unload time. But now i915 also reconstructs the bios fbs for a smooth transition. And that fb is purely transitional and should get removed immmediately once all crtcs stop using it. Of course if the i915 fbdev code decides to reuse it as the main fbdev fb then it shouldn't be cleaned up, but in that case the fbdev code will grab it's own reference. The problem is now that we also want to register that takeover fb in the idr, so that userspace can do a smooth transition (animated maybe even!) itself. But currently we have no one who will clean up the idr reference once that fb isn't useful any more, and so essentially leak it. Fix this by no longer holding a full fb reference for the idr, but instead just have a weak reference using kref_get_unless_zero. But that requires us to synchronize and clean up with the idr and fb_lock in drm_framebuffer_free, so add that. It's a bit ugly that we have to unconditionally grab the fb_lock, but without that someone might creep through a race. This leak was caught by the fb leak check in drm_mode_config_cleanup. Originally the leak was introduced in commit 46f297fb83d4f9a6f6891964beb184664341a28b Author: Jesse Barnes <jbarnes@virtuousgeek.org> Date: Fri Mar 7 08:57:48 2014 -0800 drm/i915: add plane_config fetching infrastructure v2 Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=77511 Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-08-06 15:10:18 +08:00
if (fb) {
if (!kref_get_unless_zero(&fb->refcount))
fb = NULL;
}
mutex_unlock(&dev->mode_config.fb_lock);
return fb;
}
EXPORT_SYMBOL(drm_framebuffer_lookup);
/**
* drm_framebuffer_unreference - unref a framebuffer
* @fb: framebuffer to unref
*
* This functions decrements the fb's refcount and frees it if it drops to zero.
*/
void drm_framebuffer_unreference(struct drm_framebuffer *fb)
{
DRM_DEBUG("%p: FB ID: %d (%d)\n", fb, fb->base.id, atomic_read(&fb->refcount.refcount));
kref_put(&fb->refcount, drm_framebuffer_free);
}
EXPORT_SYMBOL(drm_framebuffer_unreference);
/**
* drm_framebuffer_reference - incr the fb refcnt
* @fb: framebuffer
*
* This functions increments the fb's refcount.
*/
void drm_framebuffer_reference(struct drm_framebuffer *fb)
{
DRM_DEBUG("%p: FB ID: %d (%d)\n", fb, fb->base.id, atomic_read(&fb->refcount.refcount));
kref_get(&fb->refcount);
}
EXPORT_SYMBOL(drm_framebuffer_reference);
drm: reference framebuffers which are on the idr Since otherwise looking and reference-counting around drm_framebuffer_lookup will be an unmanageable mess. With this change, an object can either be found in the idr and will stay around once we incremented the reference counter. Or it will be gone for good and can't be looked up using its id any more. Atomicity is guaranteed by the dev->mode_config.fb_lock. The newly-introduce fpriv->fbs_lock looks a bit redundant, but the next patch will shuffle the locking order between these two locks and all the modeset locks taken in modeset_lock_all, so we'll need it. Also, since userspace could do really funky stuff and race e.g. a getresources with an rmfb, we need to make sure that the kernel doesn't fall over trying to look-up an inexistent fb, or causing confusion by having two fbs around with the same id. Simply reset the framebuffer id to 0, which marks it as reaped. Any lookups of that id will fail, so the object is really gone for good from userspace's pov. Note that we still need to protect the "remove framebuffer from all use-cases" and the final unreference with the modeset-lock, since most framebuffer use-sites don't implement proper reference counting yet. We can only lift this once _all_ users are converted. With this change, two references are held on alife, but unused framebuffers: - The reference for the idr lookup, created in this patch. - For user-created framebuffers the fpriv->fbs reference, for driver-private fbs the driver is supposed to hold it's own last reference. Note that the dev->mode_config.fb_list itself does _not_ hold a reference onto the framebuffers (this list is essentially only used for debugfs files). Hence if there's anything left there when the driver has cleaned up all it's modeset resources, this is a ref-leak. WARN about it. Now we only need to fix up all other places to properly reference count framebuffers. v2: Fix spelling fail in a comment spotted by Rob Clark. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:16:05 +08:00
static void drm_framebuffer_free_bug(struct kref *kref)
{
BUG();
}
static void __drm_framebuffer_unreference(struct drm_framebuffer *fb)
{
DRM_DEBUG("%p: FB ID: %d (%d)\n", fb, fb->base.id, atomic_read(&fb->refcount.refcount));
kref_put(&fb->refcount, drm_framebuffer_free_bug);
}
drm: revamp framebuffer cleanup interfaces We have two classes of framebuffer - Created by the driver (atm only for fbdev), and the driver holds onto the last reference count until destruction. - Created by userspace and associated with a given fd. These framebuffers will be reaped when their assoiciated fb is closed. Now these two cases are set up differently, the framebuffers are on different lists and hence destruction needs to clean up different things. Also, for userspace framebuffers we remove them from any current usage, whereas for internal framebuffers it is assumed that the driver has done this already. Long story short, we need two different ways to cleanup such drivers. Three functions are involved in total: - drm_framebuffer_remove: Convenience function which removes the fb from all active usage and then drops the passed-in reference. - drm_framebuffer_unregister_private: Will remove driver-private framebuffers from relevant lists and drop the corresponding references. Should be called for driver-private framebuffers before dropping the last reference (or like for a lot of the drivers where the fbdev is embedded someplace else, before doing the cleanup manually). - drm_framebuffer_cleanup: Final cleanup for both classes of fbs, should be called by the driver's ->destroy callback once the last reference is gone. This patch just rolls out the new interfaces and updates all drivers (by adding calls to drm_framebuffer_unregister_private at all the right places)- no functional changes yet. Follow-on patches will move drm core code around and update the lifetime management for framebuffers, so that we are no longer required to keep framebuffers alive by locking mode_config.mutex. I've also updated the kerneldoc already. vmwgfx seems to again be a bit special, at least I haven't figured out how the fbdev support in that driver works. It smells like it's external though. v2: The i915 driver creates another private framebuffer in the load-detect code. Adjust its cleanup code, too. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 03:42:17 +08:00
/**
* drm_framebuffer_unregister_private - unregister a private fb from the lookup idr
* @fb: fb to unregister
*
* Drivers need to call this when cleaning up driver-private framebuffers, e.g.
* those used for fbdev. Note that the caller must hold a reference of it's own,
* i.e. the object may not be destroyed through this call (since it'll lead to a
* locking inversion).
*/
void drm_framebuffer_unregister_private(struct drm_framebuffer *fb)
{
drm: reference framebuffers which are on the idr Since otherwise looking and reference-counting around drm_framebuffer_lookup will be an unmanageable mess. With this change, an object can either be found in the idr and will stay around once we incremented the reference counter. Or it will be gone for good and can't be looked up using its id any more. Atomicity is guaranteed by the dev->mode_config.fb_lock. The newly-introduce fpriv->fbs_lock looks a bit redundant, but the next patch will shuffle the locking order between these two locks and all the modeset locks taken in modeset_lock_all, so we'll need it. Also, since userspace could do really funky stuff and race e.g. a getresources with an rmfb, we need to make sure that the kernel doesn't fall over trying to look-up an inexistent fb, or causing confusion by having two fbs around with the same id. Simply reset the framebuffer id to 0, which marks it as reaped. Any lookups of that id will fail, so the object is really gone for good from userspace's pov. Note that we still need to protect the "remove framebuffer from all use-cases" and the final unreference with the modeset-lock, since most framebuffer use-sites don't implement proper reference counting yet. We can only lift this once _all_ users are converted. With this change, two references are held on alife, but unused framebuffers: - The reference for the idr lookup, created in this patch. - For user-created framebuffers the fpriv->fbs reference, for driver-private fbs the driver is supposed to hold it's own last reference. Note that the dev->mode_config.fb_list itself does _not_ hold a reference onto the framebuffers (this list is essentially only used for debugfs files). Hence if there's anything left there when the driver has cleaned up all it's modeset resources, this is a ref-leak. WARN about it. Now we only need to fix up all other places to properly reference count framebuffers. v2: Fix spelling fail in a comment spotted by Rob Clark. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:16:05 +08:00
struct drm_device *dev = fb->dev;
mutex_lock(&dev->mode_config.fb_lock);
/* Mark fb as reaped and drop idr ref. */
__drm_framebuffer_unregister(dev, fb);
mutex_unlock(&dev->mode_config.fb_lock);
drm: revamp framebuffer cleanup interfaces We have two classes of framebuffer - Created by the driver (atm only for fbdev), and the driver holds onto the last reference count until destruction. - Created by userspace and associated with a given fd. These framebuffers will be reaped when their assoiciated fb is closed. Now these two cases are set up differently, the framebuffers are on different lists and hence destruction needs to clean up different things. Also, for userspace framebuffers we remove them from any current usage, whereas for internal framebuffers it is assumed that the driver has done this already. Long story short, we need two different ways to cleanup such drivers. Three functions are involved in total: - drm_framebuffer_remove: Convenience function which removes the fb from all active usage and then drops the passed-in reference. - drm_framebuffer_unregister_private: Will remove driver-private framebuffers from relevant lists and drop the corresponding references. Should be called for driver-private framebuffers before dropping the last reference (or like for a lot of the drivers where the fbdev is embedded someplace else, before doing the cleanup manually). - drm_framebuffer_cleanup: Final cleanup for both classes of fbs, should be called by the driver's ->destroy callback once the last reference is gone. This patch just rolls out the new interfaces and updates all drivers (by adding calls to drm_framebuffer_unregister_private at all the right places)- no functional changes yet. Follow-on patches will move drm core code around and update the lifetime management for framebuffers, so that we are no longer required to keep framebuffers alive by locking mode_config.mutex. I've also updated the kerneldoc already. vmwgfx seems to again be a bit special, at least I haven't figured out how the fbdev support in that driver works. It smells like it's external though. v2: The i915 driver creates another private framebuffer in the load-detect code. Adjust its cleanup code, too. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 03:42:17 +08:00
}
EXPORT_SYMBOL(drm_framebuffer_unregister_private);
/**
* drm_framebuffer_cleanup - remove a framebuffer object
* @fb: framebuffer to remove
*
* Cleanup framebuffer. This function is intended to be used from the drivers
* ->destroy callback. It can also be used to clean up driver private
* framebuffers embedded into a larger structure.
drm: revamp framebuffer cleanup interfaces We have two classes of framebuffer - Created by the driver (atm only for fbdev), and the driver holds onto the last reference count until destruction. - Created by userspace and associated with a given fd. These framebuffers will be reaped when their assoiciated fb is closed. Now these two cases are set up differently, the framebuffers are on different lists and hence destruction needs to clean up different things. Also, for userspace framebuffers we remove them from any current usage, whereas for internal framebuffers it is assumed that the driver has done this already. Long story short, we need two different ways to cleanup such drivers. Three functions are involved in total: - drm_framebuffer_remove: Convenience function which removes the fb from all active usage and then drops the passed-in reference. - drm_framebuffer_unregister_private: Will remove driver-private framebuffers from relevant lists and drop the corresponding references. Should be called for driver-private framebuffers before dropping the last reference (or like for a lot of the drivers where the fbdev is embedded someplace else, before doing the cleanup manually). - drm_framebuffer_cleanup: Final cleanup for both classes of fbs, should be called by the driver's ->destroy callback once the last reference is gone. This patch just rolls out the new interfaces and updates all drivers (by adding calls to drm_framebuffer_unregister_private at all the right places)- no functional changes yet. Follow-on patches will move drm core code around and update the lifetime management for framebuffers, so that we are no longer required to keep framebuffers alive by locking mode_config.mutex. I've also updated the kerneldoc already. vmwgfx seems to again be a bit special, at least I haven't figured out how the fbdev support in that driver works. It smells like it's external though. v2: The i915 driver creates another private framebuffer in the load-detect code. Adjust its cleanup code, too. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 03:42:17 +08:00
*
* Note that this function does not remove the fb from active usuage - if it is
* still used anywhere, hilarity can ensue since userspace could call getfb on
* the id and get back -EINVAL. Obviously no concern at driver unload time.
*
* Also, the framebuffer will not be removed from the lookup idr - for
* user-created framebuffers this will happen in in the rmfb ioctl. For
* driver-private objects (e.g. for fbdev) drivers need to explicitly call
* drm_framebuffer_unregister_private.
*/
void drm_framebuffer_cleanup(struct drm_framebuffer *fb)
{
struct drm_device *dev = fb->dev;
drm: review locking rules in drm_crtc.c - config_cleanup was confused: It claimed that callers need to hold the modeset lock, but the connector|encoder_cleanup helpers grabbed that themselves (note that crtc_cleanup did _not_ grab the modeset lock). Which resulted in all drivers _not_ hodling the lock. Since this is for single-threaded cleanup code, drop the requirement from docs and also drop the lock_grabbing from all _cleanup functions. - Kill the LOCKING section in the doctype, since clearly we're not good enough to keep them up-to-date. And misleading locking documentation is worse than useless (see e.g. the comment in the vmgfx driver about the cleanup mess). And since for most functions the very first line either grabs the lock or has a WARN_ON(!locked) the documentation doesn't really add anything. - Instead put in some effort into explaining the only two special cases a bit better: config_init and config_cleanup are both called from single-threaded setup/teardown code, so don't do any locking. It's the driver's job though to enforce this. - Where lacking, add a WARN_ON(!is_locked). Not many places though, since locking around fbdev setup/teardown is through-roughly screwed up, and so will break almost every single WARN annotation I've tried to add. - Add a drm_modeset_is_locked helper - the Grate Modset Locking Rework will use the compiler to assist in the big reorg by renaming the mode lock, so start encapsulating things. Unfortunately this ended up in the "wrong" header file since it needs the definition of struct drm_device. v2: Drop most WARNS again - we hit them all over the place, mostly in the setup and teardown sequences. And trying to fix it up leads to nice deadlocks, since the locking in the setup code is really inconsistent. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-02 06:43:11 +08:00
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
mutex_lock(&dev->mode_config.fb_lock);
list_del(&fb->head);
dev->mode_config.num_fb--;
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
mutex_unlock(&dev->mode_config.fb_lock);
}
EXPORT_SYMBOL(drm_framebuffer_cleanup);
/**
* drm_framebuffer_remove - remove and unreference a framebuffer object
* @fb: framebuffer to remove
*
* Scans all the CRTCs and planes in @dev's mode_config. If they're
drm: revamp framebuffer cleanup interfaces We have two classes of framebuffer - Created by the driver (atm only for fbdev), and the driver holds onto the last reference count until destruction. - Created by userspace and associated with a given fd. These framebuffers will be reaped when their assoiciated fb is closed. Now these two cases are set up differently, the framebuffers are on different lists and hence destruction needs to clean up different things. Also, for userspace framebuffers we remove them from any current usage, whereas for internal framebuffers it is assumed that the driver has done this already. Long story short, we need two different ways to cleanup such drivers. Three functions are involved in total: - drm_framebuffer_remove: Convenience function which removes the fb from all active usage and then drops the passed-in reference. - drm_framebuffer_unregister_private: Will remove driver-private framebuffers from relevant lists and drop the corresponding references. Should be called for driver-private framebuffers before dropping the last reference (or like for a lot of the drivers where the fbdev is embedded someplace else, before doing the cleanup manually). - drm_framebuffer_cleanup: Final cleanup for both classes of fbs, should be called by the driver's ->destroy callback once the last reference is gone. This patch just rolls out the new interfaces and updates all drivers (by adding calls to drm_framebuffer_unregister_private at all the right places)- no functional changes yet. Follow-on patches will move drm core code around and update the lifetime management for framebuffers, so that we are no longer required to keep framebuffers alive by locking mode_config.mutex. I've also updated the kerneldoc already. vmwgfx seems to again be a bit special, at least I haven't figured out how the fbdev support in that driver works. It smells like it's external though. v2: The i915 driver creates another private framebuffer in the load-detect code. Adjust its cleanup code, too. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 03:42:17 +08:00
* using @fb, removes it, setting it to NULL. Then drops the reference to the
* passed-in framebuffer. Might take the modeset locks.
*
* Note that this function optimizes the cleanup away if the caller holds the
* last reference to the framebuffer. It is also guaranteed to not take the
* modeset locks in this case.
*/
void drm_framebuffer_remove(struct drm_framebuffer *fb)
{
struct drm_device *dev = fb->dev;
struct drm_crtc *crtc;
struct drm_plane *plane;
struct drm_mode_set set;
int ret;
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
WARN_ON(!list_empty(&fb->filp_head));
drm: review locking rules in drm_crtc.c - config_cleanup was confused: It claimed that callers need to hold the modeset lock, but the connector|encoder_cleanup helpers grabbed that themselves (note that crtc_cleanup did _not_ grab the modeset lock). Which resulted in all drivers _not_ hodling the lock. Since this is for single-threaded cleanup code, drop the requirement from docs and also drop the lock_grabbing from all _cleanup functions. - Kill the LOCKING section in the doctype, since clearly we're not good enough to keep them up-to-date. And misleading locking documentation is worse than useless (see e.g. the comment in the vmgfx driver about the cleanup mess). And since for most functions the very first line either grabs the lock or has a WARN_ON(!locked) the documentation doesn't really add anything. - Instead put in some effort into explaining the only two special cases a bit better: config_init and config_cleanup are both called from single-threaded setup/teardown code, so don't do any locking. It's the driver's job though to enforce this. - Where lacking, add a WARN_ON(!is_locked). Not many places though, since locking around fbdev setup/teardown is through-roughly screwed up, and so will break almost every single WARN annotation I've tried to add. - Add a drm_modeset_is_locked helper - the Grate Modset Locking Rework will use the compiler to assist in the big reorg by renaming the mode lock, so start encapsulating things. Unfortunately this ended up in the "wrong" header file since it needs the definition of struct drm_device. v2: Drop most WARNS again - we hit them all over the place, mostly in the setup and teardown sequences. And trying to fix it up leads to nice deadlocks, since the locking in the setup code is really inconsistent. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-02 06:43:11 +08:00
/*
* drm ABI mandates that we remove any deleted framebuffers from active
* useage. But since most sane clients only remove framebuffers they no
* longer need, try to optimize this away.
*
* Since we're holding a reference ourselves, observing a refcount of 1
* means that we're the last holder and can skip it. Also, the refcount
* can never increase from 1 again, so we don't need any barriers or
* locks.
*
* Note that userspace could try to race with use and instate a new
* usage _after_ we've cleared all current ones. End result will be an
* in-use fb with fb-id == 0. Userspace is allowed to shoot its own foot
* in this manner.
*/
if (atomic_read(&fb->refcount.refcount) > 1) {
drm_modeset_lock_all(dev);
/* remove from any CRTC */
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
if (crtc->primary->fb == fb) {
/* should turn off the crtc */
memset(&set, 0, sizeof(struct drm_mode_set));
set.crtc = crtc;
set.fb = NULL;
ret = drm_mode_set_config_internal(&set);
if (ret)
DRM_ERROR("failed to reset crtc %p when fb was deleted\n", crtc);
}
}
list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
if (plane->fb == fb)
drm_plane_force_disable(plane);
}
drm_modeset_unlock_all(dev);
}
drm_framebuffer_unreference(fb);
}
EXPORT_SYMBOL(drm_framebuffer_remove);
DEFINE_WW_CLASS(crtc_ww_class);
/**
* drm_crtc_init_with_planes - Initialise a new CRTC object with
* specified primary and cursor planes.
* @dev: DRM device
* @crtc: CRTC object to init
* @primary: Primary plane for CRTC
* @cursor: Cursor plane for CRTC
* @funcs: callbacks for the new CRTC
*
* Inits a new object created as base part of a driver crtc object.
*
* Returns:
* Zero on success, error code on failure.
*/
int drm_crtc_init_with_planes(struct drm_device *dev, struct drm_crtc *crtc,
struct drm_plane *primary,
struct drm_plane *cursor,
const struct drm_crtc_funcs *funcs)
{
struct drm_mode_config *config = &dev->mode_config;
int ret;
crtc->dev = dev;
crtc->funcs = funcs;
crtc->invert_dimensions = false;
drm_modeset_lock_init(&crtc->mutex);
ret = drm_mode_object_get(dev, &crtc->base, DRM_MODE_OBJECT_CRTC);
if (ret)
return ret;
crtc->base.properties = &crtc->properties;
list_add_tail(&crtc->head, &config->crtc_list);
config->num_crtc++;
crtc->primary = primary;
crtc->cursor = cursor;
if (primary)
primary->possible_crtcs = 1 << drm_crtc_index(crtc);
if (cursor)
cursor->possible_crtcs = 1 << drm_crtc_index(crtc);
return 0;
}
EXPORT_SYMBOL(drm_crtc_init_with_planes);
/**
* drm_crtc_cleanup - Clean up the core crtc usage
* @crtc: CRTC to cleanup
*
* This function cleans up @crtc and removes it from the DRM mode setting
* core. Note that the function does *not* free the crtc structure itself,
* this is the responsibility of the caller.
*/
void drm_crtc_cleanup(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
kfree(crtc->gamma_store);
crtc->gamma_store = NULL;
drm_modeset_lock_fini(&crtc->mutex);
drm_mode_object_put(dev, &crtc->base);
list_del(&crtc->head);
dev->mode_config.num_crtc--;
WARN_ON(crtc->state && !crtc->funcs->atomic_destroy_state);
if (crtc->state && crtc->funcs->atomic_destroy_state)
crtc->funcs->atomic_destroy_state(crtc, crtc->state);
memset(crtc, 0, sizeof(*crtc));
}
EXPORT_SYMBOL(drm_crtc_cleanup);
/**
* drm_crtc_index - find the index of a registered CRTC
* @crtc: CRTC to find index for
*
* Given a registered CRTC, return the index of that CRTC within a DRM
* device's list of CRTCs.
*/
unsigned int drm_crtc_index(struct drm_crtc *crtc)
{
unsigned int index = 0;
struct drm_crtc *tmp;
list_for_each_entry(tmp, &crtc->dev->mode_config.crtc_list, head) {
if (tmp == crtc)
return index;
index++;
}
BUG();
}
EXPORT_SYMBOL(drm_crtc_index);
/*
* drm_mode_remove - remove and free a mode
* @connector: connector list to modify
* @mode: mode to remove
*
* Remove @mode from @connector's mode list, then free it.
*/
static void drm_mode_remove(struct drm_connector *connector,
struct drm_display_mode *mode)
{
list_del(&mode->head);
drm_mode_destroy(connector->dev, mode);
}
drm: Perform cmdline mode parsing during connector initialisation i915.ko has a custom fbdev initialisation routine that aims to preserve the current mode set by the BIOS, unless overruled by the user. The user's wishes are determined by what, if any, mode is specified on the command line (via the video= parameter). However, that command line mode is first parsed by drm_fb_helper_initial_config() which is called after i915.ko's custom initial_config() as a fallback method. So in order for us to honour it, we need to move the cmdline parser earlier. If we perform the connector cmdline parsing as soon as we initialise the connector, that cmdline mode and forced status is then available even if the fbdev helper is not compiled in or never called. We also then expose the cmdline user mode in the connector mode lists. v2: Rebase after connector->name upheaval. v3: Adapt mga200 to look for the cmdline mode in the new place. Nicely simplifies things while at that. v4: Fix checkpatch. v5: Select FB_CMDLINE to adapt to the changed fbdev patch. Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=73154 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> (v2) Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> (v2) Cc: dri-devel@lists.freedesktop.org Cc: Julia Lemire <jlemire@matrox.com> Cc: Dave Airlie <airlied@redhat.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-08-06 16:08:32 +08:00
/**
* drm_connector_get_cmdline_mode - reads the user's cmdline mode
* @connector: connector to quwery
*
* The kernel supports per-connector configration of its consoles through
* use of the video= parameter. This function parses that option and
* extracts the user's specified mode (or enable/disable status) for a
* particular connector. This is typically only used during the early fbdev
* setup.
*/
static void drm_connector_get_cmdline_mode(struct drm_connector *connector)
{
struct drm_cmdline_mode *mode = &connector->cmdline_mode;
char *option = NULL;
if (fb_get_options(connector->name, &option))
return;
if (!drm_mode_parse_command_line_for_connector(option,
connector,
mode))
return;
if (mode->force) {
const char *s;
switch (mode->force) {
case DRM_FORCE_OFF:
s = "OFF";
break;
case DRM_FORCE_ON_DIGITAL:
s = "ON - dig";
break;
default:
case DRM_FORCE_ON:
s = "ON";
break;
}
DRM_INFO("forcing %s connector %s\n", connector->name, s);
connector->force = mode->force;
}
DRM_DEBUG_KMS("cmdline mode for connector %s %dx%d@%dHz%s%s%s\n",
connector->name,
mode->xres, mode->yres,
mode->refresh_specified ? mode->refresh : 60,
mode->rb ? " reduced blanking" : "",
mode->margins ? " with margins" : "",
mode->interlace ? " interlaced" : "");
}
/**
* drm_connector_init - Init a preallocated connector
* @dev: DRM device
* @connector: the connector to init
* @funcs: callbacks for this connector
* @connector_type: user visible type of the connector
*
* Initialises a preallocated connector. Connectors should be
* subclassed as part of driver connector objects.
*
* Returns:
* Zero on success, error code on failure.
*/
int drm_connector_init(struct drm_device *dev,
struct drm_connector *connector,
const struct drm_connector_funcs *funcs,
int connector_type)
{
struct drm_mode_config *config = &dev->mode_config;
int ret;
struct ida *connector_ida =
&drm_connector_enum_list[connector_type].ida;
drm_modeset_lock_all(dev);
ret = drm_mode_object_get_reg(dev, &connector->base, DRM_MODE_OBJECT_CONNECTOR, false);
if (ret)
goto out_unlock;
connector->base.properties = &connector->properties;
connector->dev = dev;
connector->funcs = funcs;
connector->connector_type = connector_type;
connector->connector_type_id =
ida_simple_get(connector_ida, 1, 0, GFP_KERNEL);
if (connector->connector_type_id < 0) {
ret = connector->connector_type_id;
goto out_put;
}
connector->name =
kasprintf(GFP_KERNEL, "%s-%d",
drm_connector_enum_list[connector_type].name,
connector->connector_type_id);
if (!connector->name) {
ret = -ENOMEM;
goto out_put;
}
INIT_LIST_HEAD(&connector->probed_modes);
INIT_LIST_HEAD(&connector->modes);
connector->edid_blob_ptr = NULL;
connector->status = connector_status_unknown;
drm: Perform cmdline mode parsing during connector initialisation i915.ko has a custom fbdev initialisation routine that aims to preserve the current mode set by the BIOS, unless overruled by the user. The user's wishes are determined by what, if any, mode is specified on the command line (via the video= parameter). However, that command line mode is first parsed by drm_fb_helper_initial_config() which is called after i915.ko's custom initial_config() as a fallback method. So in order for us to honour it, we need to move the cmdline parser earlier. If we perform the connector cmdline parsing as soon as we initialise the connector, that cmdline mode and forced status is then available even if the fbdev helper is not compiled in or never called. We also then expose the cmdline user mode in the connector mode lists. v2: Rebase after connector->name upheaval. v3: Adapt mga200 to look for the cmdline mode in the new place. Nicely simplifies things while at that. v4: Fix checkpatch. v5: Select FB_CMDLINE to adapt to the changed fbdev patch. Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=73154 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> (v2) Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> (v2) Cc: dri-devel@lists.freedesktop.org Cc: Julia Lemire <jlemire@matrox.com> Cc: Dave Airlie <airlied@redhat.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-08-06 16:08:32 +08:00
drm_connector_get_cmdline_mode(connector);
/* We should add connectors at the end to avoid upsetting the connector
* index too much. */
list_add_tail(&connector->head, &config->connector_list);
config->num_connector++;
if (connector_type != DRM_MODE_CONNECTOR_VIRTUAL)
drm_object_attach_property(&connector->base,
config->edid_property,
0);
drm_object_attach_property(&connector->base,
config->dpms_property, 0);
if (drm_core_check_feature(dev, DRIVER_ATOMIC)) {
drm_object_attach_property(&connector->base, config->prop_crtc_id, 0);
}
connector->debugfs_entry = NULL;
out_put:
if (ret)
drm_mode_object_put(dev, &connector->base);
out_unlock:
drm_modeset_unlock_all(dev);
return ret;
}
EXPORT_SYMBOL(drm_connector_init);
/**
* drm_connector_cleanup - cleans up an initialised connector
* @connector: connector to cleanup
*
* Cleans up the connector but doesn't free the object.
*/
void drm_connector_cleanup(struct drm_connector *connector)
{
struct drm_device *dev = connector->dev;
struct drm_display_mode *mode, *t;
if (connector->tile_group) {
drm_mode_put_tile_group(dev, connector->tile_group);
connector->tile_group = NULL;
}
list_for_each_entry_safe(mode, t, &connector->probed_modes, head)
drm_mode_remove(connector, mode);
list_for_each_entry_safe(mode, t, &connector->modes, head)
drm_mode_remove(connector, mode);
ida_remove(&drm_connector_enum_list[connector->connector_type].ida,
connector->connector_type_id);
drm_mode_object_put(dev, &connector->base);
kfree(connector->name);
connector->name = NULL;
list_del(&connector->head);
dev->mode_config.num_connector--;
WARN_ON(connector->state && !connector->funcs->atomic_destroy_state);
if (connector->state && connector->funcs->atomic_destroy_state)
connector->funcs->atomic_destroy_state(connector,
connector->state);
memset(connector, 0, sizeof(*connector));
}
EXPORT_SYMBOL(drm_connector_cleanup);
/**
* drm_connector_index - find the index of a registered connector
* @connector: connector to find index for
*
* Given a registered connector, return the index of that connector within a DRM
* device's list of connectors.
*/
unsigned int drm_connector_index(struct drm_connector *connector)
{
unsigned int index = 0;
struct drm_connector *tmp;
struct drm_mode_config *config = &connector->dev->mode_config;
WARN_ON(!drm_modeset_is_locked(&config->connection_mutex));
list_for_each_entry(tmp, &connector->dev->mode_config.connector_list, head) {
if (tmp == connector)
return index;
index++;
}
BUG();
}
EXPORT_SYMBOL(drm_connector_index);
/**
* drm_connector_register - register a connector
* @connector: the connector to register
*
* Register userspace interfaces for a connector
*
* Returns:
* Zero on success, error code on failure.
*/
int drm_connector_register(struct drm_connector *connector)
{
int ret;
drm_mode_object_register(connector->dev, &connector->base);
ret = drm_sysfs_connector_add(connector);
if (ret)
return ret;
ret = drm_debugfs_connector_add(connector);
if (ret) {
drm_sysfs_connector_remove(connector);
return ret;
}
return 0;
}
EXPORT_SYMBOL(drm_connector_register);
/**
* drm_connector_unregister - unregister a connector
* @connector: the connector to unregister
*
* Unregister userspace interfaces for a connector
*/
void drm_connector_unregister(struct drm_connector *connector)
{
drm_sysfs_connector_remove(connector);
drm_debugfs_connector_remove(connector);
}
EXPORT_SYMBOL(drm_connector_unregister);
/**
* drm_connector_unplug_all - unregister connector userspace interfaces
* @dev: drm device
*
* This function unregisters all connector userspace interfaces in sysfs. Should
* be call when the device is disconnected, e.g. from an usb driver's
* ->disconnect callback.
*/
void drm_connector_unplug_all(struct drm_device *dev)
{
struct drm_connector *connector;
/* taking the mode config mutex ends up in a clash with sysfs */
list_for_each_entry(connector, &dev->mode_config.connector_list, head)
drm_connector_unregister(connector);
}
EXPORT_SYMBOL(drm_connector_unplug_all);
/**
* drm_bridge_init - initialize a drm transcoder/bridge
* @dev: drm device
* @bridge: transcoder/bridge to set up
* @funcs: bridge function table
*
* Initialises a preallocated bridge. Bridges should be
* subclassed as part of driver connector objects.
*
* Returns:
* Zero on success, error code on failure.
*/
int drm_bridge_init(struct drm_device *dev, struct drm_bridge *bridge,
const struct drm_bridge_funcs *funcs)
{
int ret;
drm_modeset_lock_all(dev);
ret = drm_mode_object_get(dev, &bridge->base, DRM_MODE_OBJECT_BRIDGE);
if (ret)
goto out;
bridge->dev = dev;
bridge->funcs = funcs;
list_add_tail(&bridge->head, &dev->mode_config.bridge_list);
dev->mode_config.num_bridge++;
out:
drm_modeset_unlock_all(dev);
return ret;
}
EXPORT_SYMBOL(drm_bridge_init);
/**
* drm_bridge_cleanup - cleans up an initialised bridge
* @bridge: bridge to cleanup
*
* Cleans up the bridge but doesn't free the object.
*/
void drm_bridge_cleanup(struct drm_bridge *bridge)
{
struct drm_device *dev = bridge->dev;
drm_modeset_lock_all(dev);
drm_mode_object_put(dev, &bridge->base);
list_del(&bridge->head);
dev->mode_config.num_bridge--;
drm_modeset_unlock_all(dev);
memset(bridge, 0, sizeof(*bridge));
}
EXPORT_SYMBOL(drm_bridge_cleanup);
/**
* drm_encoder_init - Init a preallocated encoder
* @dev: drm device
* @encoder: the encoder to init
* @funcs: callbacks for this encoder
* @encoder_type: user visible type of the encoder
*
* Initialises a preallocated encoder. Encoder should be
* subclassed as part of driver encoder objects.
*
* Returns:
* Zero on success, error code on failure.
*/
int drm_encoder_init(struct drm_device *dev,
struct drm_encoder *encoder,
const struct drm_encoder_funcs *funcs,
int encoder_type)
{
int ret;
drm_modeset_lock_all(dev);
ret = drm_mode_object_get(dev, &encoder->base, DRM_MODE_OBJECT_ENCODER);
if (ret)
goto out_unlock;
encoder->dev = dev;
encoder->encoder_type = encoder_type;
encoder->funcs = funcs;
encoder->name = kasprintf(GFP_KERNEL, "%s-%d",
drm_encoder_enum_list[encoder_type].name,
encoder->base.id);
if (!encoder->name) {
ret = -ENOMEM;
goto out_put;
}
list_add_tail(&encoder->head, &dev->mode_config.encoder_list);
dev->mode_config.num_encoder++;
out_put:
if (ret)
drm_mode_object_put(dev, &encoder->base);
out_unlock:
drm_modeset_unlock_all(dev);
return ret;
}
EXPORT_SYMBOL(drm_encoder_init);
/**
* drm_encoder_cleanup - cleans up an initialised encoder
* @encoder: encoder to cleanup
*
* Cleans up the encoder but doesn't free the object.
*/
void drm_encoder_cleanup(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
drm_modeset_lock_all(dev);
drm_mode_object_put(dev, &encoder->base);
kfree(encoder->name);
list_del(&encoder->head);
dev->mode_config.num_encoder--;
drm_modeset_unlock_all(dev);
memset(encoder, 0, sizeof(*encoder));
}
EXPORT_SYMBOL(drm_encoder_cleanup);
/**
* drm_universal_plane_init - Initialize a new universal plane object
* @dev: DRM device
* @plane: plane object to init
* @possible_crtcs: bitmask of possible CRTCs
* @funcs: callbacks for the new plane
* @formats: array of supported formats (%DRM_FORMAT_*)
* @format_count: number of elements in @formats
* @type: type of plane (overlay, primary, cursor)
*
* Initializes a plane object of type @type.
*
* Returns:
* Zero on success, error code on failure.
*/
int drm_universal_plane_init(struct drm_device *dev, struct drm_plane *plane,
unsigned long possible_crtcs,
const struct drm_plane_funcs *funcs,
const uint32_t *formats, uint32_t format_count,
enum drm_plane_type type)
{
struct drm_mode_config *config = &dev->mode_config;
int ret;
ret = drm_mode_object_get(dev, &plane->base, DRM_MODE_OBJECT_PLANE);
if (ret)
return ret;
drm: Per-plane locking Turned out to be much simpler on top of my latest atomic stuff than what I've feared. Some details: - Drop the modeset_lock_all snakeoil in drm_plane_init. Same justification as for the equivalent change in drm_crtc_init done in commit d0fa1af40e784aaf7ebb7ba8a17b229bb3fa4c21 Author: Daniel Vetter <daniel.vetter@ffwll.ch> Date: Mon Sep 8 09:02:49 2014 +0200 drm: Drop modeset locking from crtc init function Without these the drm_modeset_lock_init would fall over the exact same way. - Since the atomic core code wraps the locking switching it to per-plane locks was a one-line change. - For the legacy ioctls add a plane argument to the locking helper so that we can grab the right plane lock (cursor or primary). Since the universal cursor plane might not be there, or someone really crazy might forgoe the primary plane even accept NULL. - Add some locking WARN_ON to the atomic helpers for good paranoid measure and to check that it all works out. Tested on my exynos atomic hackfest with full lockdep checks and ww backoff injection. v2: I've forgotten about the load-detect code in i915. v3: Thierry reported that in latest 3.18-rc vmwgfx doesn't compile any more due to commit 21e88620aa21b48d4f62d29275e3e2944a5ea2b5 Author: Rob Clark <robdclark@gmail.com> Date: Thu Oct 30 13:39:04 2014 -0400 drm/vmwgfx: fix lock breakage Rebased and fix this up. Cc: Thierry Reding <thierry.reding@gmail.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Reviewed-by: Sean Paul <seanpaul@chromium.org> Signed-off-by: Dave Airlie <airlied@redhat.com>
2014-11-11 17:12:00 +08:00
drm_modeset_lock_init(&plane->mutex);
plane->base.properties = &plane->properties;
plane->dev = dev;
plane->funcs = funcs;
plane->format_types = kmalloc_array(format_count, sizeof(uint32_t),
GFP_KERNEL);
if (!plane->format_types) {
DRM_DEBUG_KMS("out of memory when allocating plane\n");
drm_mode_object_put(dev, &plane->base);
return -ENOMEM;
}
memcpy(plane->format_types, formats, format_count * sizeof(uint32_t));
plane->format_count = format_count;
plane->possible_crtcs = possible_crtcs;
plane->type = type;
list_add_tail(&plane->head, &config->plane_list);
config->num_total_plane++;
if (plane->type == DRM_PLANE_TYPE_OVERLAY)
config->num_overlay_plane++;
drm_object_attach_property(&plane->base,
config->plane_type_property,
plane->type);
if (drm_core_check_feature(dev, DRIVER_ATOMIC)) {
drm_object_attach_property(&plane->base, config->prop_fb_id, 0);
drm_object_attach_property(&plane->base, config->prop_crtc_id, 0);
drm_object_attach_property(&plane->base, config->prop_crtc_x, 0);
drm_object_attach_property(&plane->base, config->prop_crtc_y, 0);
drm_object_attach_property(&plane->base, config->prop_crtc_w, 0);
drm_object_attach_property(&plane->base, config->prop_crtc_h, 0);
drm_object_attach_property(&plane->base, config->prop_src_x, 0);
drm_object_attach_property(&plane->base, config->prop_src_y, 0);
drm_object_attach_property(&plane->base, config->prop_src_w, 0);
drm_object_attach_property(&plane->base, config->prop_src_h, 0);
}
return 0;
}
EXPORT_SYMBOL(drm_universal_plane_init);
/**
* drm_plane_init - Initialize a legacy plane
* @dev: DRM device
* @plane: plane object to init
* @possible_crtcs: bitmask of possible CRTCs
* @funcs: callbacks for the new plane
* @formats: array of supported formats (%DRM_FORMAT_*)
* @format_count: number of elements in @formats
* @is_primary: plane type (primary vs overlay)
*
* Legacy API to initialize a DRM plane.
*
* New drivers should call drm_universal_plane_init() instead.
*
* Returns:
* Zero on success, error code on failure.
*/
int drm_plane_init(struct drm_device *dev, struct drm_plane *plane,
unsigned long possible_crtcs,
const struct drm_plane_funcs *funcs,
const uint32_t *formats, uint32_t format_count,
bool is_primary)
{
enum drm_plane_type type;
type = is_primary ? DRM_PLANE_TYPE_PRIMARY : DRM_PLANE_TYPE_OVERLAY;
return drm_universal_plane_init(dev, plane, possible_crtcs, funcs,
formats, format_count, type);
}
EXPORT_SYMBOL(drm_plane_init);
/**
* drm_plane_cleanup - Clean up the core plane usage
* @plane: plane to cleanup
*
* This function cleans up @plane and removes it from the DRM mode setting
* core. Note that the function does *not* free the plane structure itself,
* this is the responsibility of the caller.
*/
void drm_plane_cleanup(struct drm_plane *plane)
{
struct drm_device *dev = plane->dev;
drm_modeset_lock_all(dev);
kfree(plane->format_types);
drm_mode_object_put(dev, &plane->base);
BUG_ON(list_empty(&plane->head));
list_del(&plane->head);
dev->mode_config.num_total_plane--;
if (plane->type == DRM_PLANE_TYPE_OVERLAY)
dev->mode_config.num_overlay_plane--;
drm_modeset_unlock_all(dev);
WARN_ON(plane->state && !plane->funcs->atomic_destroy_state);
if (plane->state && plane->funcs->atomic_destroy_state)
plane->funcs->atomic_destroy_state(plane, plane->state);
memset(plane, 0, sizeof(*plane));
}
EXPORT_SYMBOL(drm_plane_cleanup);
/**
* drm_plane_index - find the index of a registered plane
* @plane: plane to find index for
*
* Given a registered plane, return the index of that CRTC within a DRM
* device's list of planes.
*/
unsigned int drm_plane_index(struct drm_plane *plane)
{
unsigned int index = 0;
struct drm_plane *tmp;
list_for_each_entry(tmp, &plane->dev->mode_config.plane_list, head) {
if (tmp == plane)
return index;
index++;
}
BUG();
}
EXPORT_SYMBOL(drm_plane_index);
/**
* drm_plane_force_disable - Forcibly disable a plane
* @plane: plane to disable
*
* Forces the plane to be disabled.
*
* Used when the plane's current framebuffer is destroyed,
* and when restoring fbdev mode.
*/
void drm_plane_force_disable(struct drm_plane *plane)
{
int ret;
if (!plane->fb)
return;
plane->old_fb = plane->fb;
ret = plane->funcs->disable_plane(plane);
if (ret) {
DRM_ERROR("failed to disable plane with busy fb\n");
plane->old_fb = NULL;
return;
}
/* disconnect the plane from the fb and crtc: */
__drm_framebuffer_unreference(plane->old_fb);
plane->old_fb = NULL;
plane->fb = NULL;
plane->crtc = NULL;
}
EXPORT_SYMBOL(drm_plane_force_disable);
static int drm_mode_create_standard_properties(struct drm_device *dev)
{
struct drm_property *prop;
/*
* Standard properties (apply to all connectors)
*/
prop = drm_property_create(dev, DRM_MODE_PROP_BLOB |
DRM_MODE_PROP_IMMUTABLE,
"EDID", 0);
if (!prop)
return -ENOMEM;
dev->mode_config.edid_property = prop;
prop = drm_property_create_enum(dev, 0,
"DPMS", drm_dpms_enum_list,
ARRAY_SIZE(drm_dpms_enum_list));
if (!prop)
return -ENOMEM;
dev->mode_config.dpms_property = prop;
prop = drm_property_create(dev,
DRM_MODE_PROP_BLOB |
DRM_MODE_PROP_IMMUTABLE,
"PATH", 0);
if (!prop)
return -ENOMEM;
dev->mode_config.path_property = prop;
prop = drm_property_create(dev,
DRM_MODE_PROP_BLOB |
DRM_MODE_PROP_IMMUTABLE,
"TILE", 0);
if (!prop)
return -ENOMEM;
dev->mode_config.tile_property = prop;
prop = drm_property_create_enum(dev, DRM_MODE_PROP_IMMUTABLE,
"type", drm_plane_type_enum_list,
ARRAY_SIZE(drm_plane_type_enum_list));
if (!prop)
return -ENOMEM;
dev->mode_config.plane_type_property = prop;
prop = drm_property_create_range(dev, DRM_MODE_PROP_ATOMIC,
"SRC_X", 0, UINT_MAX);
if (!prop)
return -ENOMEM;
dev->mode_config.prop_src_x = prop;
prop = drm_property_create_range(dev, DRM_MODE_PROP_ATOMIC,
"SRC_Y", 0, UINT_MAX);
if (!prop)
return -ENOMEM;
dev->mode_config.prop_src_y = prop;
prop = drm_property_create_range(dev, DRM_MODE_PROP_ATOMIC,
"SRC_W", 0, UINT_MAX);
if (!prop)
return -ENOMEM;
dev->mode_config.prop_src_w = prop;
prop = drm_property_create_range(dev, DRM_MODE_PROP_ATOMIC,
"SRC_H", 0, UINT_MAX);
if (!prop)
return -ENOMEM;
dev->mode_config.prop_src_h = prop;
prop = drm_property_create_signed_range(dev, DRM_MODE_PROP_ATOMIC,
"CRTC_X", INT_MIN, INT_MAX);
if (!prop)
return -ENOMEM;
dev->mode_config.prop_crtc_x = prop;
prop = drm_property_create_signed_range(dev, DRM_MODE_PROP_ATOMIC,
"CRTC_Y", INT_MIN, INT_MAX);
if (!prop)
return -ENOMEM;
dev->mode_config.prop_crtc_y = prop;
prop = drm_property_create_range(dev, DRM_MODE_PROP_ATOMIC,
"CRTC_W", 0, INT_MAX);
if (!prop)
return -ENOMEM;
dev->mode_config.prop_crtc_w = prop;
prop = drm_property_create_range(dev, DRM_MODE_PROP_ATOMIC,
"CRTC_H", 0, INT_MAX);
if (!prop)
return -ENOMEM;
dev->mode_config.prop_crtc_h = prop;
prop = drm_property_create_object(dev, DRM_MODE_PROP_ATOMIC,
"FB_ID", DRM_MODE_OBJECT_FB);
if (!prop)
return -ENOMEM;
dev->mode_config.prop_fb_id = prop;
prop = drm_property_create_object(dev, DRM_MODE_PROP_ATOMIC,
"CRTC_ID", DRM_MODE_OBJECT_CRTC);
if (!prop)
return -ENOMEM;
dev->mode_config.prop_crtc_id = prop;
return 0;
}
/**
* drm_mode_create_dvi_i_properties - create DVI-I specific connector properties
* @dev: DRM device
*
* Called by a driver the first time a DVI-I connector is made.
*/
int drm_mode_create_dvi_i_properties(struct drm_device *dev)
{
struct drm_property *dvi_i_selector;
struct drm_property *dvi_i_subconnector;
if (dev->mode_config.dvi_i_select_subconnector_property)
return 0;
dvi_i_selector =
drm_property_create_enum(dev, 0,
"select subconnector",
drm_dvi_i_select_enum_list,
ARRAY_SIZE(drm_dvi_i_select_enum_list));
dev->mode_config.dvi_i_select_subconnector_property = dvi_i_selector;
dvi_i_subconnector = drm_property_create_enum(dev, DRM_MODE_PROP_IMMUTABLE,
"subconnector",
drm_dvi_i_subconnector_enum_list,
ARRAY_SIZE(drm_dvi_i_subconnector_enum_list));
dev->mode_config.dvi_i_subconnector_property = dvi_i_subconnector;
return 0;
}
EXPORT_SYMBOL(drm_mode_create_dvi_i_properties);
/**
* drm_create_tv_properties - create TV specific connector properties
* @dev: DRM device
* @num_modes: number of different TV formats (modes) supported
* @modes: array of pointers to strings containing name of each format
*
* Called by a driver's TV initialization routine, this function creates
* the TV specific connector properties for a given device. Caller is
* responsible for allocating a list of format names and passing them to
* this routine.
*/
int drm_mode_create_tv_properties(struct drm_device *dev,
unsigned int num_modes,
char *modes[])
{
struct drm_property *tv_selector;
struct drm_property *tv_subconnector;
unsigned int i;
if (dev->mode_config.tv_select_subconnector_property)
return 0;
/*
* Basic connector properties
*/
tv_selector = drm_property_create_enum(dev, 0,
"select subconnector",
drm_tv_select_enum_list,
ARRAY_SIZE(drm_tv_select_enum_list));
dev->mode_config.tv_select_subconnector_property = tv_selector;
tv_subconnector =
drm_property_create_enum(dev, DRM_MODE_PROP_IMMUTABLE,
"subconnector",
drm_tv_subconnector_enum_list,
ARRAY_SIZE(drm_tv_subconnector_enum_list));
dev->mode_config.tv_subconnector_property = tv_subconnector;
/*
* Other, TV specific properties: margins & TV modes.
*/
dev->mode_config.tv_left_margin_property =
drm_property_create_range(dev, 0, "left margin", 0, 100);
dev->mode_config.tv_right_margin_property =
drm_property_create_range(dev, 0, "right margin", 0, 100);
dev->mode_config.tv_top_margin_property =
drm_property_create_range(dev, 0, "top margin", 0, 100);
dev->mode_config.tv_bottom_margin_property =
drm_property_create_range(dev, 0, "bottom margin", 0, 100);
dev->mode_config.tv_mode_property =
drm_property_create(dev, DRM_MODE_PROP_ENUM,
"mode", num_modes);
for (i = 0; i < num_modes; i++)
drm_property_add_enum(dev->mode_config.tv_mode_property, i,
i, modes[i]);
dev->mode_config.tv_brightness_property =
drm_property_create_range(dev, 0, "brightness", 0, 100);
dev->mode_config.tv_contrast_property =
drm_property_create_range(dev, 0, "contrast", 0, 100);
dev->mode_config.tv_flicker_reduction_property =
drm_property_create_range(dev, 0, "flicker reduction", 0, 100);
dev->mode_config.tv_overscan_property =
drm_property_create_range(dev, 0, "overscan", 0, 100);
dev->mode_config.tv_saturation_property =
drm_property_create_range(dev, 0, "saturation", 0, 100);
dev->mode_config.tv_hue_property =
drm_property_create_range(dev, 0, "hue", 0, 100);
return 0;
}
EXPORT_SYMBOL(drm_mode_create_tv_properties);
/**
* drm_mode_create_scaling_mode_property - create scaling mode property
* @dev: DRM device
*
* Called by a driver the first time it's needed, must be attached to desired
* connectors.
*/
int drm_mode_create_scaling_mode_property(struct drm_device *dev)
{
struct drm_property *scaling_mode;
if (dev->mode_config.scaling_mode_property)
return 0;
scaling_mode =
drm_property_create_enum(dev, 0, "scaling mode",
drm_scaling_mode_enum_list,
ARRAY_SIZE(drm_scaling_mode_enum_list));
dev->mode_config.scaling_mode_property = scaling_mode;
return 0;
}
EXPORT_SYMBOL(drm_mode_create_scaling_mode_property);
/**
* drm_mode_create_aspect_ratio_property - create aspect ratio property
* @dev: DRM device
*
* Called by a driver the first time it's needed, must be attached to desired
* connectors.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_create_aspect_ratio_property(struct drm_device *dev)
{
if (dev->mode_config.aspect_ratio_property)
return 0;
dev->mode_config.aspect_ratio_property =
drm_property_create_enum(dev, 0, "aspect ratio",
drm_aspect_ratio_enum_list,
ARRAY_SIZE(drm_aspect_ratio_enum_list));
if (dev->mode_config.aspect_ratio_property == NULL)
return -ENOMEM;
return 0;
}
EXPORT_SYMBOL(drm_mode_create_aspect_ratio_property);
/**
* drm_mode_create_dirty_property - create dirty property
* @dev: DRM device
*
* Called by a driver the first time it's needed, must be attached to desired
* connectors.
*/
int drm_mode_create_dirty_info_property(struct drm_device *dev)
{
struct drm_property *dirty_info;
if (dev->mode_config.dirty_info_property)
return 0;
dirty_info =
drm_property_create_enum(dev, DRM_MODE_PROP_IMMUTABLE,
"dirty",
drm_dirty_info_enum_list,
ARRAY_SIZE(drm_dirty_info_enum_list));
dev->mode_config.dirty_info_property = dirty_info;
return 0;
}
EXPORT_SYMBOL(drm_mode_create_dirty_info_property);
/**
* drm_mode_create_suggested_offset_properties - create suggests offset properties
* @dev: DRM device
*
* Create the the suggested x/y offset property for connectors.
*/
int drm_mode_create_suggested_offset_properties(struct drm_device *dev)
{
if (dev->mode_config.suggested_x_property && dev->mode_config.suggested_y_property)
return 0;
dev->mode_config.suggested_x_property =
drm_property_create_range(dev, DRM_MODE_PROP_IMMUTABLE, "suggested X", 0, 0xffffffff);
dev->mode_config.suggested_y_property =
drm_property_create_range(dev, DRM_MODE_PROP_IMMUTABLE, "suggested Y", 0, 0xffffffff);
if (dev->mode_config.suggested_x_property == NULL ||
dev->mode_config.suggested_y_property == NULL)
return -ENOMEM;
return 0;
}
EXPORT_SYMBOL(drm_mode_create_suggested_offset_properties);
static int drm_mode_group_init(struct drm_device *dev, struct drm_mode_group *group)
{
uint32_t total_objects = 0;
total_objects += dev->mode_config.num_crtc;
total_objects += dev->mode_config.num_connector;
total_objects += dev->mode_config.num_encoder;
total_objects += dev->mode_config.num_bridge;
group->id_list = kcalloc(total_objects, sizeof(uint32_t), GFP_KERNEL);
if (!group->id_list)
return -ENOMEM;
group->num_crtcs = 0;
group->num_connectors = 0;
group->num_encoders = 0;
group->num_bridges = 0;
return 0;
}
void drm_mode_group_destroy(struct drm_mode_group *group)
{
kfree(group->id_list);
group->id_list = NULL;
}
/*
* NOTE: Driver's shouldn't ever call drm_mode_group_init_legacy_group - it is
* the drm core's responsibility to set up mode control groups.
*/
int drm_mode_group_init_legacy_group(struct drm_device *dev,
struct drm_mode_group *group)
{
struct drm_crtc *crtc;
struct drm_encoder *encoder;
struct drm_connector *connector;
struct drm_bridge *bridge;
int ret;
ret = drm_mode_group_init(dev, group);
if (ret)
return ret;
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
group->id_list[group->num_crtcs++] = crtc->base.id;
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
group->id_list[group->num_crtcs + group->num_encoders++] =
encoder->base.id;
list_for_each_entry(connector, &dev->mode_config.connector_list, head)
group->id_list[group->num_crtcs + group->num_encoders +
group->num_connectors++] = connector->base.id;
list_for_each_entry(bridge, &dev->mode_config.bridge_list, head)
group->id_list[group->num_crtcs + group->num_encoders +
group->num_connectors + group->num_bridges++] =
bridge->base.id;
return 0;
}
EXPORT_SYMBOL(drm_mode_group_init_legacy_group);
void drm_reinit_primary_mode_group(struct drm_device *dev)
{
drm_modeset_lock_all(dev);
drm_mode_group_destroy(&dev->primary->mode_group);
drm_mode_group_init_legacy_group(dev, &dev->primary->mode_group);
drm_modeset_unlock_all(dev);
}
EXPORT_SYMBOL(drm_reinit_primary_mode_group);
/**
* drm_crtc_convert_to_umode - convert a drm_display_mode into a modeinfo
* @out: drm_mode_modeinfo struct to return to the user
* @in: drm_display_mode to use
*
* Convert a drm_display_mode into a drm_mode_modeinfo structure to return to
* the user.
*/
static void drm_crtc_convert_to_umode(struct drm_mode_modeinfo *out,
const struct drm_display_mode *in)
{
WARN(in->hdisplay > USHRT_MAX || in->hsync_start > USHRT_MAX ||
in->hsync_end > USHRT_MAX || in->htotal > USHRT_MAX ||
in->hskew > USHRT_MAX || in->vdisplay > USHRT_MAX ||
in->vsync_start > USHRT_MAX || in->vsync_end > USHRT_MAX ||
in->vtotal > USHRT_MAX || in->vscan > USHRT_MAX,
"timing values too large for mode info\n");
out->clock = in->clock;
out->hdisplay = in->hdisplay;
out->hsync_start = in->hsync_start;
out->hsync_end = in->hsync_end;
out->htotal = in->htotal;
out->hskew = in->hskew;
out->vdisplay = in->vdisplay;
out->vsync_start = in->vsync_start;
out->vsync_end = in->vsync_end;
out->vtotal = in->vtotal;
out->vscan = in->vscan;
out->vrefresh = in->vrefresh;
out->flags = in->flags;
out->type = in->type;
strncpy(out->name, in->name, DRM_DISPLAY_MODE_LEN);
out->name[DRM_DISPLAY_MODE_LEN-1] = 0;
}
/**
* drm_crtc_convert_umode - convert a modeinfo into a drm_display_mode
* @out: drm_display_mode to return to the user
* @in: drm_mode_modeinfo to use
*
* Convert a drm_mode_modeinfo into a drm_display_mode structure to return to
* the caller.
*
* Returns:
* Zero on success, negative errno on failure.
*/
static int drm_crtc_convert_umode(struct drm_display_mode *out,
const struct drm_mode_modeinfo *in)
{
if (in->clock > INT_MAX || in->vrefresh > INT_MAX)
return -ERANGE;
if ((in->flags & DRM_MODE_FLAG_3D_MASK) > DRM_MODE_FLAG_3D_MAX)
return -EINVAL;
out->clock = in->clock;
out->hdisplay = in->hdisplay;
out->hsync_start = in->hsync_start;
out->hsync_end = in->hsync_end;
out->htotal = in->htotal;
out->hskew = in->hskew;
out->vdisplay = in->vdisplay;
out->vsync_start = in->vsync_start;
out->vsync_end = in->vsync_end;
out->vtotal = in->vtotal;
out->vscan = in->vscan;
out->vrefresh = in->vrefresh;
out->flags = in->flags;
out->type = in->type;
strncpy(out->name, in->name, DRM_DISPLAY_MODE_LEN);
out->name[DRM_DISPLAY_MODE_LEN-1] = 0;
return 0;
}
/**
* drm_mode_getresources - get graphics configuration
* @dev: drm device for the ioctl
* @data: data pointer for the ioctl
* @file_priv: drm file for the ioctl call
*
* Construct a set of configuration description structures and return
* them to the user, including CRTC, connector and framebuffer configuration.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_getresources(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_mode_card_res *card_res = data;
struct list_head *lh;
struct drm_framebuffer *fb;
struct drm_connector *connector;
struct drm_crtc *crtc;
struct drm_encoder *encoder;
int ret = 0;
int connector_count = 0;
int crtc_count = 0;
int fb_count = 0;
int encoder_count = 0;
int copied = 0, i;
uint32_t __user *fb_id;
uint32_t __user *crtc_id;
uint32_t __user *connector_id;
uint32_t __user *encoder_id;
struct drm_mode_group *mode_group;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
mutex_lock(&file_priv->fbs_lock);
/*
* For the non-control nodes we need to limit the list of resources
* by IDs in the group list for this node
*/
list_for_each(lh, &file_priv->fbs)
fb_count++;
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
/* handle this in 4 parts */
/* FBs */
if (card_res->count_fbs >= fb_count) {
copied = 0;
fb_id = (uint32_t __user *)(unsigned long)card_res->fb_id_ptr;
list_for_each_entry(fb, &file_priv->fbs, filp_head) {
if (put_user(fb->base.id, fb_id + copied)) {
mutex_unlock(&file_priv->fbs_lock);
return -EFAULT;
}
copied++;
}
}
card_res->count_fbs = fb_count;
mutex_unlock(&file_priv->fbs_lock);
/* mode_config.mutex protects the connector list against e.g. DP MST
* connector hot-adding. CRTC/Plane lists are invariant. */
mutex_lock(&dev->mode_config.mutex);
if (!drm_is_primary_client(file_priv)) {
mode_group = NULL;
list_for_each(lh, &dev->mode_config.crtc_list)
crtc_count++;
list_for_each(lh, &dev->mode_config.connector_list)
connector_count++;
list_for_each(lh, &dev->mode_config.encoder_list)
encoder_count++;
} else {
mode_group = &file_priv->master->minor->mode_group;
crtc_count = mode_group->num_crtcs;
connector_count = mode_group->num_connectors;
encoder_count = mode_group->num_encoders;
}
card_res->max_height = dev->mode_config.max_height;
card_res->min_height = dev->mode_config.min_height;
card_res->max_width = dev->mode_config.max_width;
card_res->min_width = dev->mode_config.min_width;
/* CRTCs */
if (card_res->count_crtcs >= crtc_count) {
copied = 0;
crtc_id = (uint32_t __user *)(unsigned long)card_res->crtc_id_ptr;
if (!mode_group) {
list_for_each_entry(crtc, &dev->mode_config.crtc_list,
head) {
DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
if (put_user(crtc->base.id, crtc_id + copied)) {
ret = -EFAULT;
goto out;
}
copied++;
}
} else {
for (i = 0; i < mode_group->num_crtcs; i++) {
if (put_user(mode_group->id_list[i],
crtc_id + copied)) {
ret = -EFAULT;
goto out;
}
copied++;
}
}
}
card_res->count_crtcs = crtc_count;
/* Encoders */
if (card_res->count_encoders >= encoder_count) {
copied = 0;
encoder_id = (uint32_t __user *)(unsigned long)card_res->encoder_id_ptr;
if (!mode_group) {
list_for_each_entry(encoder,
&dev->mode_config.encoder_list,
head) {
DRM_DEBUG_KMS("[ENCODER:%d:%s]\n", encoder->base.id,
encoder->name);
if (put_user(encoder->base.id, encoder_id +
copied)) {
ret = -EFAULT;
goto out;
}
copied++;
}
} else {
for (i = mode_group->num_crtcs; i < mode_group->num_crtcs + mode_group->num_encoders; i++) {
if (put_user(mode_group->id_list[i],
encoder_id + copied)) {
ret = -EFAULT;
goto out;
}
copied++;
}
}
}
card_res->count_encoders = encoder_count;
/* Connectors */
if (card_res->count_connectors >= connector_count) {
copied = 0;
connector_id = (uint32_t __user *)(unsigned long)card_res->connector_id_ptr;
if (!mode_group) {
list_for_each_entry(connector,
&dev->mode_config.connector_list,
head) {
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.id,
connector->name);
if (put_user(connector->base.id,
connector_id + copied)) {
ret = -EFAULT;
goto out;
}
copied++;
}
} else {
int start = mode_group->num_crtcs +
mode_group->num_encoders;
for (i = start; i < start + mode_group->num_connectors; i++) {
if (put_user(mode_group->id_list[i],
connector_id + copied)) {
ret = -EFAULT;
goto out;
}
copied++;
}
}
}
card_res->count_connectors = connector_count;
DRM_DEBUG_KMS("CRTC[%d] CONNECTORS[%d] ENCODERS[%d]\n", card_res->count_crtcs,
card_res->count_connectors, card_res->count_encoders);
out:
mutex_unlock(&dev->mode_config.mutex);
return ret;
}
/**
* drm_mode_getcrtc - get CRTC configuration
* @dev: drm device for the ioctl
* @data: data pointer for the ioctl
* @file_priv: drm file for the ioctl call
*
* Construct a CRTC configuration structure to return to the user.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_getcrtc(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_crtc *crtc_resp = data;
struct drm_crtc *crtc;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
crtc = drm_crtc_find(dev, crtc_resp->crtc_id);
if (!crtc)
return -ENOENT;
drm_modeset_lock_crtc(crtc, crtc->primary);
crtc_resp->x = crtc->x;
crtc_resp->y = crtc->y;
crtc_resp->gamma_size = crtc->gamma_size;
if (crtc->primary->fb)
crtc_resp->fb_id = crtc->primary->fb->base.id;
else
crtc_resp->fb_id = 0;
if (crtc->enabled) {
drm_crtc_convert_to_umode(&crtc_resp->mode, &crtc->mode);
crtc_resp->mode_valid = 1;
} else {
crtc_resp->mode_valid = 0;
}
drm_modeset_unlock_crtc(crtc);
return 0;
}
static bool drm_mode_expose_to_userspace(const struct drm_display_mode *mode,
const struct drm_file *file_priv)
{
/*
* If user-space hasn't configured the driver to expose the stereo 3D
* modes, don't expose them.
*/
if (!file_priv->stereo_allowed && drm_mode_is_stereo(mode))
return false;
return true;
}
drm: Handle atomic state properly in kms getfoo ioctl So the problem with async commit (especially async modeset commit) is that the legacy pointers only get updated after the point of no return, in the async part of the modeset sequence. At least as implemented by the current helper functions. This is done in the set_routing_links function in drm_atomic_helper.c. Which also means that access isn't protected by locks but only coordinated by synchronizing with async workers. No problem thus far, until we lock at the getconnector/encoder ioctls. So fix this up by adding special cases for atomic drivers: For those we need to look at state objects. Unfortunately digging out the correct encoder->crtc link is a bit of work, so wrap this up in a helper function. Moving the assignments of connector->encoder and encoder->crtc earlier isn't a good idea because the point of the atomic helpers is that we stage the state updates. That way the disable functions can still inspect the links and rely upon them. v2: Extract full encoder->crtc lookup into helper (Rob). v3: Extract drm_connector_get_encoder too since - we need to always return state->best_encoder when there is a state otherwise we might return stale data if there's a pending async disable (and chase unlocked pointers, too). Same issue with encoder_get_crtc but there it's a bit more tricky to handle. Cc: Rob Clark <robdclark@gmail.com> Cc: Sean Paul <seanpaul@chromium.org> Reviewed-by: Sean Paul <seanpaul@chromium.org> Lightly-Tested-by: Sean Paul <seanpaul@chromium.org> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
2014-11-26 06:50:05 +08:00
static struct drm_encoder *drm_connector_get_encoder(struct drm_connector *connector)
{
/* For atomic drivers only state objects are synchronously updated and
* protected by modeset locks, so check those first. */
if (connector->state)
return connector->state->best_encoder;
return connector->encoder;
}
/* helper for getconnector and getproperties ioctls */
static int get_properties(struct drm_mode_object *obj, bool atomic,
uint32_t __user *prop_ptr, uint64_t __user *prop_values,
uint32_t *arg_count_props)
{
int props_count;
int i, ret, copied;
props_count = obj->properties->count;
if (!atomic)
props_count -= obj->properties->atomic_count;
if ((*arg_count_props >= props_count) && props_count) {
for (i = 0, copied = 0; copied < props_count; i++) {
struct drm_property *prop = obj->properties->properties[i];
uint64_t val;
if ((prop->flags & DRM_MODE_PROP_ATOMIC) && !atomic)
continue;
ret = drm_object_property_get_value(obj, prop, &val);
if (ret)
return ret;
if (put_user(prop->base.id, prop_ptr + copied))
return -EFAULT;
if (put_user(val, prop_values + copied))
return -EFAULT;
copied++;
}
}
*arg_count_props = props_count;
return 0;
}
/**
* drm_mode_getconnector - get connector configuration
* @dev: drm device for the ioctl
* @data: data pointer for the ioctl
* @file_priv: drm file for the ioctl call
*
* Construct a connector configuration structure to return to the user.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_getconnector(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_mode_get_connector *out_resp = data;
struct drm_connector *connector;
drm: Handle atomic state properly in kms getfoo ioctl So the problem with async commit (especially async modeset commit) is that the legacy pointers only get updated after the point of no return, in the async part of the modeset sequence. At least as implemented by the current helper functions. This is done in the set_routing_links function in drm_atomic_helper.c. Which also means that access isn't protected by locks but only coordinated by synchronizing with async workers. No problem thus far, until we lock at the getconnector/encoder ioctls. So fix this up by adding special cases for atomic drivers: For those we need to look at state objects. Unfortunately digging out the correct encoder->crtc link is a bit of work, so wrap this up in a helper function. Moving the assignments of connector->encoder and encoder->crtc earlier isn't a good idea because the point of the atomic helpers is that we stage the state updates. That way the disable functions can still inspect the links and rely upon them. v2: Extract full encoder->crtc lookup into helper (Rob). v3: Extract drm_connector_get_encoder too since - we need to always return state->best_encoder when there is a state otherwise we might return stale data if there's a pending async disable (and chase unlocked pointers, too). Same issue with encoder_get_crtc but there it's a bit more tricky to handle. Cc: Rob Clark <robdclark@gmail.com> Cc: Sean Paul <seanpaul@chromium.org> Reviewed-by: Sean Paul <seanpaul@chromium.org> Lightly-Tested-by: Sean Paul <seanpaul@chromium.org> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
2014-11-26 06:50:05 +08:00
struct drm_encoder *encoder;
struct drm_display_mode *mode;
int mode_count = 0;
int encoders_count = 0;
int ret = 0;
int copied = 0;
int i;
struct drm_mode_modeinfo u_mode;
struct drm_mode_modeinfo __user *mode_ptr;
uint32_t __user *encoder_ptr;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
memset(&u_mode, 0, sizeof(struct drm_mode_modeinfo));
DRM_DEBUG_KMS("[CONNECTOR:%d:?]\n", out_resp->connector_id);
drm: don't hold crtc mutexes for connector ->detect callbacks The coup de grace of the entire journey. No more dropped frames every 10s on my testbox! I've tried to audit all ->detect and ->get_modes callbacks, but things became a bit fuzzy after trying to piece together the umpteenth implemenation. Afaict most drivers just have bog-standard output register frobbing with a notch of i2c edid reading, nothing which could potentially race with the newly concurrent pageflip/set_cursor code. The big exception is load-detection code which requires a running pipe, but radeon/nouveau seem to to this without touching any state which can be observed from page_flip (e.g. disabled crtcs temporarily getting enabled and so a pageflip succeeding). The only special case I could find is the i915 load detect code. That uses the normal modeset interface to enable the load-detect crtc, and so userspace could try to squeeze in a pageflip on the load-detect pipe. So we need to grab the relevant crtc mutex in there, to avoid the temporary crtc enabling to sneak out and be visible to userspace. Note that the sysfs files already stopped grabbing the per-crtc locks, since I didn't want to bother with doing a interruptible modeset_lock_all. But since there's very little in-between breakage (essentially just the ability for userspace to pageflip on load-detect crtcs when it shouldn't on the i915 driver) I figured I don't need to bother. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-12 07:35:33 +08:00
mutex_lock(&dev->mode_config.mutex);
drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
connector = drm_connector_find(dev, out_resp->connector_id);
if (!connector) {
ret = -ENOENT;
goto out;
}
for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++)
if (connector->encoder_ids[i] != 0)
encoders_count++;
if (out_resp->count_modes == 0) {
connector->funcs->fill_modes(connector,
dev->mode_config.max_width,
dev->mode_config.max_height);
}
/* delayed so we get modes regardless of pre-fill_modes state */
list_for_each_entry(mode, &connector->modes, head)
if (drm_mode_expose_to_userspace(mode, file_priv))
mode_count++;
out_resp->connector_id = connector->base.id;
out_resp->connector_type = connector->connector_type;
out_resp->connector_type_id = connector->connector_type_id;
out_resp->mm_width = connector->display_info.width_mm;
out_resp->mm_height = connector->display_info.height_mm;
out_resp->subpixel = connector->display_info.subpixel_order;
out_resp->connection = connector->status;
drm: Handle atomic state properly in kms getfoo ioctl So the problem with async commit (especially async modeset commit) is that the legacy pointers only get updated after the point of no return, in the async part of the modeset sequence. At least as implemented by the current helper functions. This is done in the set_routing_links function in drm_atomic_helper.c. Which also means that access isn't protected by locks but only coordinated by synchronizing with async workers. No problem thus far, until we lock at the getconnector/encoder ioctls. So fix this up by adding special cases for atomic drivers: For those we need to look at state objects. Unfortunately digging out the correct encoder->crtc link is a bit of work, so wrap this up in a helper function. Moving the assignments of connector->encoder and encoder->crtc earlier isn't a good idea because the point of the atomic helpers is that we stage the state updates. That way the disable functions can still inspect the links and rely upon them. v2: Extract full encoder->crtc lookup into helper (Rob). v3: Extract drm_connector_get_encoder too since - we need to always return state->best_encoder when there is a state otherwise we might return stale data if there's a pending async disable (and chase unlocked pointers, too). Same issue with encoder_get_crtc but there it's a bit more tricky to handle. Cc: Rob Clark <robdclark@gmail.com> Cc: Sean Paul <seanpaul@chromium.org> Reviewed-by: Sean Paul <seanpaul@chromium.org> Lightly-Tested-by: Sean Paul <seanpaul@chromium.org> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
2014-11-26 06:50:05 +08:00
encoder = drm_connector_get_encoder(connector);
if (encoder)
out_resp->encoder_id = encoder->base.id;
else
out_resp->encoder_id = 0;
/*
* This ioctl is called twice, once to determine how much space is
* needed, and the 2nd time to fill it.
*/
if ((out_resp->count_modes >= mode_count) && mode_count) {
copied = 0;
mode_ptr = (struct drm_mode_modeinfo __user *)(unsigned long)out_resp->modes_ptr;
list_for_each_entry(mode, &connector->modes, head) {
if (!drm_mode_expose_to_userspace(mode, file_priv))
continue;
drm_crtc_convert_to_umode(&u_mode, mode);
if (copy_to_user(mode_ptr + copied,
&u_mode, sizeof(u_mode))) {
ret = -EFAULT;
goto out;
}
copied++;
}
}
out_resp->count_modes = mode_count;
ret = get_properties(&connector->base, file_priv->atomic,
(uint32_t __user *)(unsigned long)(out_resp->props_ptr),
(uint64_t __user *)(unsigned long)(out_resp->prop_values_ptr),
&out_resp->count_props);
if (ret)
goto out;
if ((out_resp->count_encoders >= encoders_count) && encoders_count) {
copied = 0;
encoder_ptr = (uint32_t __user *)(unsigned long)(out_resp->encoders_ptr);
for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) {
if (connector->encoder_ids[i] != 0) {
if (put_user(connector->encoder_ids[i],
encoder_ptr + copied)) {
ret = -EFAULT;
goto out;
}
copied++;
}
}
}
out_resp->count_encoders = encoders_count;
out:
drm_modeset_unlock(&dev->mode_config.connection_mutex);
drm: don't hold crtc mutexes for connector ->detect callbacks The coup de grace of the entire journey. No more dropped frames every 10s on my testbox! I've tried to audit all ->detect and ->get_modes callbacks, but things became a bit fuzzy after trying to piece together the umpteenth implemenation. Afaict most drivers just have bog-standard output register frobbing with a notch of i2c edid reading, nothing which could potentially race with the newly concurrent pageflip/set_cursor code. The big exception is load-detection code which requires a running pipe, but radeon/nouveau seem to to this without touching any state which can be observed from page_flip (e.g. disabled crtcs temporarily getting enabled and so a pageflip succeeding). The only special case I could find is the i915 load detect code. That uses the normal modeset interface to enable the load-detect crtc, and so userspace could try to squeeze in a pageflip on the load-detect pipe. So we need to grab the relevant crtc mutex in there, to avoid the temporary crtc enabling to sneak out and be visible to userspace. Note that the sysfs files already stopped grabbing the per-crtc locks, since I didn't want to bother with doing a interruptible modeset_lock_all. But since there's very little in-between breakage (essentially just the ability for userspace to pageflip on load-detect crtcs when it shouldn't on the i915 driver) I figured I don't need to bother. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-12 07:35:33 +08:00
mutex_unlock(&dev->mode_config.mutex);
return ret;
}
drm: Handle atomic state properly in kms getfoo ioctl So the problem with async commit (especially async modeset commit) is that the legacy pointers only get updated after the point of no return, in the async part of the modeset sequence. At least as implemented by the current helper functions. This is done in the set_routing_links function in drm_atomic_helper.c. Which also means that access isn't protected by locks but only coordinated by synchronizing with async workers. No problem thus far, until we lock at the getconnector/encoder ioctls. So fix this up by adding special cases for atomic drivers: For those we need to look at state objects. Unfortunately digging out the correct encoder->crtc link is a bit of work, so wrap this up in a helper function. Moving the assignments of connector->encoder and encoder->crtc earlier isn't a good idea because the point of the atomic helpers is that we stage the state updates. That way the disable functions can still inspect the links and rely upon them. v2: Extract full encoder->crtc lookup into helper (Rob). v3: Extract drm_connector_get_encoder too since - we need to always return state->best_encoder when there is a state otherwise we might return stale data if there's a pending async disable (and chase unlocked pointers, too). Same issue with encoder_get_crtc but there it's a bit more tricky to handle. Cc: Rob Clark <robdclark@gmail.com> Cc: Sean Paul <seanpaul@chromium.org> Reviewed-by: Sean Paul <seanpaul@chromium.org> Lightly-Tested-by: Sean Paul <seanpaul@chromium.org> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
2014-11-26 06:50:05 +08:00
static struct drm_crtc *drm_encoder_get_crtc(struct drm_encoder *encoder)
{
struct drm_connector *connector;
struct drm_device *dev = encoder->dev;
bool uses_atomic = false;
/* For atomic drivers only state objects are synchronously updated and
* protected by modeset locks, so check those first. */
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
if (!connector->state)
continue;
uses_atomic = true;
if (connector->state->best_encoder != encoder)
continue;
return connector->state->crtc;
}
/* Don't return stale data (e.g. pending async disable). */
if (uses_atomic)
return NULL;
return encoder->crtc;
}
/**
* drm_mode_getencoder - get encoder configuration
* @dev: drm device for the ioctl
* @data: data pointer for the ioctl
* @file_priv: drm file for the ioctl call
*
* Construct a encoder configuration structure to return to the user.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_getencoder(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_mode_get_encoder *enc_resp = data;
struct drm_encoder *encoder;
drm: Handle atomic state properly in kms getfoo ioctl So the problem with async commit (especially async modeset commit) is that the legacy pointers only get updated after the point of no return, in the async part of the modeset sequence. At least as implemented by the current helper functions. This is done in the set_routing_links function in drm_atomic_helper.c. Which also means that access isn't protected by locks but only coordinated by synchronizing with async workers. No problem thus far, until we lock at the getconnector/encoder ioctls. So fix this up by adding special cases for atomic drivers: For those we need to look at state objects. Unfortunately digging out the correct encoder->crtc link is a bit of work, so wrap this up in a helper function. Moving the assignments of connector->encoder and encoder->crtc earlier isn't a good idea because the point of the atomic helpers is that we stage the state updates. That way the disable functions can still inspect the links and rely upon them. v2: Extract full encoder->crtc lookup into helper (Rob). v3: Extract drm_connector_get_encoder too since - we need to always return state->best_encoder when there is a state otherwise we might return stale data if there's a pending async disable (and chase unlocked pointers, too). Same issue with encoder_get_crtc but there it's a bit more tricky to handle. Cc: Rob Clark <robdclark@gmail.com> Cc: Sean Paul <seanpaul@chromium.org> Reviewed-by: Sean Paul <seanpaul@chromium.org> Lightly-Tested-by: Sean Paul <seanpaul@chromium.org> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
2014-11-26 06:50:05 +08:00
struct drm_crtc *crtc;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
encoder = drm_encoder_find(dev, enc_resp->encoder_id);
if (!encoder)
return -ENOENT;
drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
drm: Handle atomic state properly in kms getfoo ioctl So the problem with async commit (especially async modeset commit) is that the legacy pointers only get updated after the point of no return, in the async part of the modeset sequence. At least as implemented by the current helper functions. This is done in the set_routing_links function in drm_atomic_helper.c. Which also means that access isn't protected by locks but only coordinated by synchronizing with async workers. No problem thus far, until we lock at the getconnector/encoder ioctls. So fix this up by adding special cases for atomic drivers: For those we need to look at state objects. Unfortunately digging out the correct encoder->crtc link is a bit of work, so wrap this up in a helper function. Moving the assignments of connector->encoder and encoder->crtc earlier isn't a good idea because the point of the atomic helpers is that we stage the state updates. That way the disable functions can still inspect the links and rely upon them. v2: Extract full encoder->crtc lookup into helper (Rob). v3: Extract drm_connector_get_encoder too since - we need to always return state->best_encoder when there is a state otherwise we might return stale data if there's a pending async disable (and chase unlocked pointers, too). Same issue with encoder_get_crtc but there it's a bit more tricky to handle. Cc: Rob Clark <robdclark@gmail.com> Cc: Sean Paul <seanpaul@chromium.org> Reviewed-by: Sean Paul <seanpaul@chromium.org> Lightly-Tested-by: Sean Paul <seanpaul@chromium.org> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
2014-11-26 06:50:05 +08:00
crtc = drm_encoder_get_crtc(encoder);
if (crtc)
enc_resp->crtc_id = crtc->base.id;
else if (encoder->crtc)
enc_resp->crtc_id = encoder->crtc->base.id;
else
enc_resp->crtc_id = 0;
drm_modeset_unlock(&dev->mode_config.connection_mutex);
enc_resp->encoder_type = encoder->encoder_type;
enc_resp->encoder_id = encoder->base.id;
enc_resp->possible_crtcs = encoder->possible_crtcs;
enc_resp->possible_clones = encoder->possible_clones;
return 0;
}
/**
* drm_mode_getplane_res - enumerate all plane resources
* @dev: DRM device
* @data: ioctl data
* @file_priv: DRM file info
*
* Construct a list of plane ids to return to the user.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_getplane_res(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_mode_get_plane_res *plane_resp = data;
struct drm_mode_config *config;
struct drm_plane *plane;
uint32_t __user *plane_ptr;
int copied = 0;
unsigned num_planes;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
config = &dev->mode_config;
if (file_priv->universal_planes)
num_planes = config->num_total_plane;
else
num_planes = config->num_overlay_plane;
/*
* This ioctl is called twice, once to determine how much space is
* needed, and the 2nd time to fill it.
*/
if (num_planes &&
(plane_resp->count_planes >= num_planes)) {
plane_ptr = (uint32_t __user *)(unsigned long)plane_resp->plane_id_ptr;
/* Plane lists are invariant, no locking needed. */
list_for_each_entry(plane, &config->plane_list, head) {
/*
* Unless userspace set the 'universal planes'
* capability bit, only advertise overlays.
*/
if (plane->type != DRM_PLANE_TYPE_OVERLAY &&
!file_priv->universal_planes)
continue;
if (put_user(plane->base.id, plane_ptr + copied))
return -EFAULT;
copied++;
}
}
plane_resp->count_planes = num_planes;
return 0;
}
/**
* drm_mode_getplane - get plane configuration
* @dev: DRM device
* @data: ioctl data
* @file_priv: DRM file info
*
* Construct a plane configuration structure to return to the user.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_getplane(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_mode_get_plane *plane_resp = data;
struct drm_plane *plane;
uint32_t __user *format_ptr;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
plane = drm_plane_find(dev, plane_resp->plane_id);
if (!plane)
return -ENOENT;
drm_modeset_lock(&plane->mutex, NULL);
if (plane->crtc)
plane_resp->crtc_id = plane->crtc->base.id;
else
plane_resp->crtc_id = 0;
if (plane->fb)
plane_resp->fb_id = plane->fb->base.id;
else
plane_resp->fb_id = 0;
drm_modeset_unlock(&plane->mutex);
plane_resp->plane_id = plane->base.id;
plane_resp->possible_crtcs = plane->possible_crtcs;
plane_resp->gamma_size = 0;
/*
* This ioctl is called twice, once to determine how much space is
* needed, and the 2nd time to fill it.
*/
if (plane->format_count &&
(plane_resp->count_format_types >= plane->format_count)) {
format_ptr = (uint32_t __user *)(unsigned long)plane_resp->format_type_ptr;
if (copy_to_user(format_ptr,
plane->format_types,
sizeof(uint32_t) * plane->format_count)) {
return -EFAULT;
}
}
plane_resp->count_format_types = plane->format_count;
return 0;
}
/*
* setplane_internal - setplane handler for internal callers
*
* Note that we assume an extra reference has already been taken on fb. If the
* update fails, this reference will be dropped before return; if it succeeds,
* the previous framebuffer (if any) will be unreferenced instead.
*
* src_{x,y,w,h} are provided in 16.16 fixed point format
*/
static int __setplane_internal(struct drm_plane *plane,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
int32_t crtc_x, int32_t crtc_y,
uint32_t crtc_w, uint32_t crtc_h,
/* src_{x,y,w,h} values are 16.16 fixed point */
uint32_t src_x, uint32_t src_y,
uint32_t src_w, uint32_t src_h)
{
int ret = 0;
unsigned int fb_width, fb_height;
unsigned int i;
/* No fb means shut it down */
if (!fb) {
plane->old_fb = plane->fb;
ret = plane->funcs->disable_plane(plane);
if (!ret) {
plane->crtc = NULL;
plane->fb = NULL;
} else {
plane->old_fb = NULL;
}
goto out;
}
/* Check whether this plane is usable on this CRTC */
if (!(plane->possible_crtcs & drm_crtc_mask(crtc))) {
DRM_DEBUG_KMS("Invalid crtc for plane\n");
ret = -EINVAL;
goto out;
}
/* Check whether this plane supports the fb pixel format. */
for (i = 0; i < plane->format_count; i++)
if (fb->pixel_format == plane->format_types[i])
break;
if (i == plane->format_count) {
DRM_DEBUG_KMS("Invalid pixel format %s\n",
drm_get_format_name(fb->pixel_format));
ret = -EINVAL;
goto out;
}
fb_width = fb->width << 16;
fb_height = fb->height << 16;
/* Make sure source coordinates are inside the fb. */
if (src_w > fb_width ||
src_x > fb_width - src_w ||
src_h > fb_height ||
src_y > fb_height - src_h) {
DRM_DEBUG_KMS("Invalid source coordinates "
"%u.%06ux%u.%06u+%u.%06u+%u.%06u\n",
src_w >> 16, ((src_w & 0xffff) * 15625) >> 10,
src_h >> 16, ((src_h & 0xffff) * 15625) >> 10,
src_x >> 16, ((src_x & 0xffff) * 15625) >> 10,
src_y >> 16, ((src_y & 0xffff) * 15625) >> 10);
ret = -ENOSPC;
goto out;
}
plane->old_fb = plane->fb;
ret = plane->funcs->update_plane(plane, crtc, fb,
crtc_x, crtc_y, crtc_w, crtc_h,
src_x, src_y, src_w, src_h);
if (!ret) {
plane->crtc = crtc;
plane->fb = fb;
fb = NULL;
drm: Simplify fb refcounting rules around ->update_plane The introduction of primary planes has apparently caused a bit of fb refcounting fun for people. That makes it a good time to clean up the arcane rules and slight differences between ->update_plane and ->set_config. The new rules are: - The core holds a reference for both the new and the old fb (if they're non-NULL of course) while calling into the driver through either ->update_plane or ->set_config. - Drivers may not clobber plane->fb if their callback fails. If they do that, they need to store a pointer to the old fb in it again. When calling into the driver plane->fb still points at the current (old) framebuffer. - The core will update the plane->fb pointer on success. Drivers can do that themselves too, but aren't required to any more for the primary plane. - The core will update fb refcounts for the plane->fb pointer, presuming the drivers hold up their end of the bargain. v2: Remove now unused tmpfb (Thierry) v3: Drop broken changes from drm_mode_setplane (Ville). Also polish the commit message a bit. v4: Also fix up the handling of ->disable_plane in drm_plane_force_disable. The issue was that we didn't save plane->fb over the ->disable_plane call. Just paranoia, nothing relies on this. v5: Keep still useful comments about directly calling ->set_config, which I should have done for v4 already. Requested by Matt. Cc: Thierry Reding <treding@nvidia.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Matt Roper <matthew.d.roper@intel.com> Reviewed-by: Matt Roper <matthew.d.roper@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-04-23 23:34:06 +08:00
} else {
plane->old_fb = NULL;
}
out:
if (fb)
drm_framebuffer_unreference(fb);
if (plane->old_fb)
drm_framebuffer_unreference(plane->old_fb);
plane->old_fb = NULL;
return ret;
}
static int setplane_internal(struct drm_plane *plane,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
int32_t crtc_x, int32_t crtc_y,
uint32_t crtc_w, uint32_t crtc_h,
/* src_{x,y,w,h} values are 16.16 fixed point */
uint32_t src_x, uint32_t src_y,
uint32_t src_w, uint32_t src_h)
{
int ret;
drm_modeset_lock_all(plane->dev);
ret = __setplane_internal(plane, crtc, fb,
crtc_x, crtc_y, crtc_w, crtc_h,
src_x, src_y, src_w, src_h);
drm_modeset_unlock_all(plane->dev);
return ret;
}
/**
* drm_mode_setplane - configure a plane's configuration
* @dev: DRM device
* @data: ioctl data*
* @file_priv: DRM file info
*
* Set plane configuration, including placement, fb, scaling, and other factors.
* Or pass a NULL fb to disable (planes may be disabled without providing a
* valid crtc).
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_setplane(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_mode_set_plane *plane_req = data;
struct drm_plane *plane;
struct drm_crtc *crtc = NULL;
struct drm_framebuffer *fb = NULL;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
/* Give drivers some help against integer overflows */
if (plane_req->crtc_w > INT_MAX ||
plane_req->crtc_x > INT_MAX - (int32_t) plane_req->crtc_w ||
plane_req->crtc_h > INT_MAX ||
plane_req->crtc_y > INT_MAX - (int32_t) plane_req->crtc_h) {
DRM_DEBUG_KMS("Invalid CRTC coordinates %ux%u+%d+%d\n",
plane_req->crtc_w, plane_req->crtc_h,
plane_req->crtc_x, plane_req->crtc_y);
return -ERANGE;
}
/*
* First, find the plane, crtc, and fb objects. If not available,
* we don't bother to call the driver.
*/
plane = drm_plane_find(dev, plane_req->plane_id);
if (!plane) {
DRM_DEBUG_KMS("Unknown plane ID %d\n",
plane_req->plane_id);
return -ENOENT;
}
if (plane_req->fb_id) {
fb = drm_framebuffer_lookup(dev, plane_req->fb_id);
if (!fb) {
DRM_DEBUG_KMS("Unknown framebuffer ID %d\n",
plane_req->fb_id);
return -ENOENT;
}
crtc = drm_crtc_find(dev, plane_req->crtc_id);
if (!crtc) {
DRM_DEBUG_KMS("Unknown crtc ID %d\n",
plane_req->crtc_id);
return -ENOENT;
}
}
drm: Support legacy cursor ioctls via universal planes when possible (v4) If drivers support universal planes and have registered a cursor plane with the DRM core, we should use that universal plane support when handling legacy cursor ioctls. Drivers that transition to universal planes won't have to maintain separate legacy ioctl handling; drivers that don't transition to universal planes will continue to operate without any change to behavior. Note that there's a bit of a mismatch between the legacy cursor ioctls and the universal plane API's --- legacy ioctl's use driver buffer handles directly whereas the universal plane API takes drm_framebuffers. Since there's no way to recover the driver handle from a drm_framebuffer, we can implement legacy ioctl's in terms of universal plane interfaces, but cannot implement universal plane interfaces in terms of legacy ioctls. Specifically, there's no way to create a general cursor helper in the way we previously created a primary plane helper. It's important to land this patch before any patches that add universal cursor support to individual drivers so that drivers don't have to worry about juggling two different styles of reference counting for cursor buffers when userspace mixes and matches legacy and universal cursor calls. With this patch, a driver that switches to universal cursor support may assume that all cursor buffers are wrapped in a drm_framebuffer and can rely on framebuffer reference counting for all cursor operations. v4: - Add comments pointing out setplane_internal's reference-eating semantics. v3: - Drop drm_mode_rmfb() call that is no longer needed now that we're using setplane_internal(), which takes care of deref'ing the appropriate framebuffer. v2: - Use new add_framebuffer_internal() function to create framebuffer rather than trying to call directly into the ioctl interface and look up the handle returned. - Use new setplane_internal() function to update the cursor plane rather than calling through the ioctl interface. Note that since we're no longer looking up an fb_id, no extra reference will be taken here. - Grab extra reference to fb under lock in !BO case to avoid issues where racing userspace could cause the fb to be destroyed out from under us after we grab the fb pointer. Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: Matt Roper <matthew.d.roper@intel.com> Reviewed-by: Pallavi G<pallavi.g@intel.com> Acked-by: Dave Airlie <airlied@linux.ie> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-06-10 23:28:10 +08:00
/*
* setplane_internal will take care of deref'ing either the old or new
* framebuffer depending on success.
*/
drm: Avoid NULL deference when disabling a plane from userspace To disable a plane, userspace passes in an framebuffer id of 0. This causes us to pass CRTC == NULL to setplane_internal, who promptly deferences it to grab the struct drm_device. Oops. [ 1296.467327] BUG: unable to handle kernel NULL pointer dereference at (null) [ 1296.467332] IP: [<c134dc51>] setplane_internal+0x11/0x280 [ 1296.467338] *pde = 00000000 [ 1296.467341] Oops: 0000 [#1] SMP [ 1296.467344] Modules linked in: ccm bnep bluetooth snd_hda_codec_hdmi snd_hda_codec_idt snd_hda_codec_generic snd_hda_intel arc4 iwldvm snd_hda_controller snd_hda_codec mac80211 snd_hwdep snd_seq snd_seq_device snd_pcm snd_timer iwlwifi sdhci_pci snd cfg80211 x86_pkg_temp_thermal hp_wmi sdhci sparse_keymap mmc_core crc32c_intel rfkill microcode hp_accel lpc_ich lis3lv02d wmi mfd_core serio_raw input_polldev soundcore e1000e ptp pps_core [ 1296.467367] CPU: 1 PID: 672 Comm: Xorg Tainted: G W 3.15.0-rc8+ #351 [ 1296.467369] Hardware name: Hewlett-Packard HP ProBook 6360b/1620, BIOS 68SCF Ver. B.42 12/29/2010 [ 1296.467371] task: f423b5c0 ti: c2332000 task.ti: c2332000 [ 1296.467374] EIP: 0060:[<c134dc51>] EFLAGS: 00013286 CPU: 1 [ 1296.467376] EIP is at setplane_internal+0x11/0x280 [ 1296.467378] EAX: 00000000 EBX: c2333e90 ECX: 00000000 EDX: f3165600 [ 1296.467380] ESI: f430f400 EDI: 00000000 EBP: c2333e14 ESP: c2333dd4 [ 1296.467382] DS: 007b ES: 007b FS: 00d8 GS: 0033 SS: 0068 [ 1296.467384] CR0: 80050033 CR2: 00000000 CR3: 00159000 CR4: 000407d0 [ 1296.467385] Stack: [ 1296.467387] 000200da 00000002 c2333de8 c15dc4a0 f430f400 c2333e00 c134c54f eeeeeeee [ 1296.467391] f430f400 00000007 f416b480 c2333e14 00000000 c2333e90 f430f400 00000000 [ 1296.467396] c2333e4c c1350aed 00000000 00000000 00000000 00000000 00000000 00000000 [ 1296.467400] Call Trace: [ 1296.467406] [<c15dc4a0>] ? mutex_lock+0x10/0x28 [ 1296.467408] [<c134c54f>] ? _object_find+0x5f/0x90 [ 1296.467413] [<c1350aed>] drm_mode_setplane+0x10d/0x1f0 [ 1296.467416] [<c13509e0>] ? drm_mode_getplane+0x100/0x100 [ 1296.467420] [<c1342e4d>] drm_ioctl+0x1bd/0x4f0 [ 1296.467423] [<c13509e0>] ? drm_mode_getplane+0x100/0x100 [ 1296.467427] [<c111c023>] ? handle_mm_fault+0x5d3/0xb30 [ 1296.467431] [<c1118f31>] ? tlb_finish_mmu+0x11/0x40 [ 1296.467435] [<c1342c90>] ? drm_ioctl_flags+0x40/0x40 [ 1296.467438] [<c11593d2>] do_vfs_ioctl+0x2f2/0x4d0 [ 1296.467443] [<c1226512>] ? inode_has_perm.isra.32+0x32/0x40 [ 1296.467446] [<c122662f>] ? file_has_perm+0x7f/0x90 [ 1296.467449] [<c1226fec>] ? selinux_file_ioctl+0x4c/0xf0 [ 1296.467452] [<c1159610>] SyS_ioctl+0x60/0x90 [ 1296.467456] [<c15e578c>] sysenter_do_call+0x12/0x22 [ 1296.467457] Code: 3f cf ff eb dd ba 3f 00 00 00 b8 d9 c9 7f c1 e8 e6 3f cf ff eb d9 8d 74 26 00 55 89 e5 57 56 53 83 ec 34 66 66 66 66 90 89 45 f0 <8b> 00 85 c9 89 d6 89 cb 89 45 ec 0f 84 16 01 00 00 8b 45 f0 e8 [ 1296.467485] EIP: [<c134dc51>] setplane_internal+0x11/0x280 SS:ESP 0068:c2 Fixes regression from commit b02fd7fd8a541c3d590bfdda23365a927b507ceb Author: Matt Roper <matthew.d.roper@intel.com> Date: Tue Jun 10 08:28:10 2014 -0700 drm: Support legacy cursor ioctls via universal planes when possible (v4) While at it move the plane parameter to the first position in setplane_internal since that's the main object we're manipulating. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Pallavi G<pallavi.g@intel.com> Cc: Matt Roper <matthew.d.roper@intel.com> Reviewed-by: Matt Roper <matthew.d.roper@intel.com> [danvet: Add note about parameter reordering.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-06-13 22:22:28 +08:00
return setplane_internal(plane, crtc, fb,
plane_req->crtc_x, plane_req->crtc_y,
plane_req->crtc_w, plane_req->crtc_h,
plane_req->src_x, plane_req->src_y,
plane_req->src_w, plane_req->src_h);
}
/**
* drm_mode_set_config_internal - helper to call ->set_config
* @set: modeset config to set
*
* This is a little helper to wrap internal calls to the ->set_config driver
* interface. The only thing it adds is correct refcounting dance.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_set_config_internal(struct drm_mode_set *set)
{
struct drm_crtc *crtc = set->crtc;
struct drm_framebuffer *fb;
struct drm_crtc *tmp;
int ret;
/*
* NOTE: ->set_config can also disable other crtcs (if we steal all
* connectors from it), hence we need to refcount the fbs across all
* crtcs. Atomic modeset will have saner semantics ...
*/
list_for_each_entry(tmp, &crtc->dev->mode_config.crtc_list, head)
tmp->primary->old_fb = tmp->primary->fb;
fb = set->fb;
ret = crtc->funcs->set_config(set);
if (ret == 0) {
crtc->primary->crtc = crtc;
drm: Simplify fb refcounting rules around ->update_plane The introduction of primary planes has apparently caused a bit of fb refcounting fun for people. That makes it a good time to clean up the arcane rules and slight differences between ->update_plane and ->set_config. The new rules are: - The core holds a reference for both the new and the old fb (if they're non-NULL of course) while calling into the driver through either ->update_plane or ->set_config. - Drivers may not clobber plane->fb if their callback fails. If they do that, they need to store a pointer to the old fb in it again. When calling into the driver plane->fb still points at the current (old) framebuffer. - The core will update the plane->fb pointer on success. Drivers can do that themselves too, but aren't required to any more for the primary plane. - The core will update fb refcounts for the plane->fb pointer, presuming the drivers hold up their end of the bargain. v2: Remove now unused tmpfb (Thierry) v3: Drop broken changes from drm_mode_setplane (Ville). Also polish the commit message a bit. v4: Also fix up the handling of ->disable_plane in drm_plane_force_disable. The issue was that we didn't save plane->fb over the ->disable_plane call. Just paranoia, nothing relies on this. v5: Keep still useful comments about directly calling ->set_config, which I should have done for v4 already. Requested by Matt. Cc: Thierry Reding <treding@nvidia.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Matt Roper <matthew.d.roper@intel.com> Reviewed-by: Matt Roper <matthew.d.roper@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-04-23 23:34:06 +08:00
crtc->primary->fb = fb;
}
list_for_each_entry(tmp, &crtc->dev->mode_config.crtc_list, head) {
if (tmp->primary->fb)
drm_framebuffer_reference(tmp->primary->fb);
if (tmp->primary->old_fb)
drm_framebuffer_unreference(tmp->primary->old_fb);
tmp->primary->old_fb = NULL;
}
return ret;
}
EXPORT_SYMBOL(drm_mode_set_config_internal);
/**
* drm_crtc_check_viewport - Checks that a framebuffer is big enough for the
* CRTC viewport
* @crtc: CRTC that framebuffer will be displayed on
* @x: x panning
* @y: y panning
* @mode: mode that framebuffer will be displayed under
* @fb: framebuffer to check size of
*/
int drm_crtc_check_viewport(const struct drm_crtc *crtc,
int x, int y,
const struct drm_display_mode *mode,
const struct drm_framebuffer *fb)
{
int hdisplay, vdisplay;
hdisplay = mode->hdisplay;
vdisplay = mode->vdisplay;
if (drm_mode_is_stereo(mode)) {
struct drm_display_mode adjusted = *mode;
drm_mode_set_crtcinfo(&adjusted, CRTC_STEREO_DOUBLE);
hdisplay = adjusted.crtc_hdisplay;
vdisplay = adjusted.crtc_vdisplay;
}
if (crtc->invert_dimensions)
swap(hdisplay, vdisplay);
if (hdisplay > fb->width ||
vdisplay > fb->height ||
x > fb->width - hdisplay ||
y > fb->height - vdisplay) {
DRM_DEBUG_KMS("Invalid fb size %ux%u for CRTC viewport %ux%u+%d+%d%s.\n",
fb->width, fb->height, hdisplay, vdisplay, x, y,
crtc->invert_dimensions ? " (inverted)" : "");
return -ENOSPC;
}
return 0;
}
EXPORT_SYMBOL(drm_crtc_check_viewport);
/**
* drm_mode_setcrtc - set CRTC configuration
* @dev: drm device for the ioctl
* @data: data pointer for the ioctl
* @file_priv: drm file for the ioctl call
*
* Build a new CRTC configuration based on user request.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_setcrtc(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_mode_config *config = &dev->mode_config;
struct drm_mode_crtc *crtc_req = data;
struct drm_crtc *crtc;
struct drm_connector **connector_set = NULL, *connector;
struct drm_framebuffer *fb = NULL;
struct drm_display_mode *mode = NULL;
struct drm_mode_set set;
uint32_t __user *set_connectors_ptr;
int ret;
int i;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
/* For some reason crtc x/y offsets are signed internally. */
if (crtc_req->x > INT_MAX || crtc_req->y > INT_MAX)
return -ERANGE;
drm_modeset_lock_all(dev);
crtc = drm_crtc_find(dev, crtc_req->crtc_id);
if (!crtc) {
DRM_DEBUG_KMS("Unknown CRTC ID %d\n", crtc_req->crtc_id);
ret = -ENOENT;
goto out;
}
DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
if (crtc_req->mode_valid) {
/* If we have a mode we need a framebuffer. */
/* If we pass -1, set the mode with the currently bound fb */
if (crtc_req->fb_id == -1) {
if (!crtc->primary->fb) {
DRM_DEBUG_KMS("CRTC doesn't have current FB\n");
ret = -EINVAL;
goto out;
}
fb = crtc->primary->fb;
/* Make refcounting symmetric with the lookup path. */
drm_framebuffer_reference(fb);
} else {
fb = drm_framebuffer_lookup(dev, crtc_req->fb_id);
if (!fb) {
DRM_DEBUG_KMS("Unknown FB ID%d\n",
crtc_req->fb_id);
ret = -ENOENT;
goto out;
}
}
mode = drm_mode_create(dev);
if (!mode) {
ret = -ENOMEM;
goto out;
}
ret = drm_crtc_convert_umode(mode, &crtc_req->mode);
if (ret) {
DRM_DEBUG_KMS("Invalid mode\n");
goto out;
}
drm_mode_set_crtcinfo(mode, CRTC_INTERLACE_HALVE_V);
ret = drm_crtc_check_viewport(crtc, crtc_req->x, crtc_req->y,
mode, fb);
if (ret)
goto out;
}
if (crtc_req->count_connectors == 0 && mode) {
DRM_DEBUG_KMS("Count connectors is 0 but mode set\n");
ret = -EINVAL;
goto out;
}
if (crtc_req->count_connectors > 0 && (!mode || !fb)) {
DRM_DEBUG_KMS("Count connectors is %d but no mode or fb set\n",
crtc_req->count_connectors);
ret = -EINVAL;
goto out;
}
if (crtc_req->count_connectors > 0) {
u32 out_id;
/* Avoid unbounded kernel memory allocation */
if (crtc_req->count_connectors > config->num_connector) {
ret = -EINVAL;
goto out;
}
connector_set = kmalloc_array(crtc_req->count_connectors,
sizeof(struct drm_connector *),
GFP_KERNEL);
if (!connector_set) {
ret = -ENOMEM;
goto out;
}
for (i = 0; i < crtc_req->count_connectors; i++) {
set_connectors_ptr = (uint32_t __user *)(unsigned long)crtc_req->set_connectors_ptr;
if (get_user(out_id, &set_connectors_ptr[i])) {
ret = -EFAULT;
goto out;
}
connector = drm_connector_find(dev, out_id);
if (!connector) {
DRM_DEBUG_KMS("Connector id %d unknown\n",
out_id);
ret = -ENOENT;
goto out;
}
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.id,
connector->name);
connector_set[i] = connector;
}
}
set.crtc = crtc;
set.x = crtc_req->x;
set.y = crtc_req->y;
set.mode = mode;
set.connectors = connector_set;
set.num_connectors = crtc_req->count_connectors;
set.fb = fb;
ret = drm_mode_set_config_internal(&set);
out:
if (fb)
drm_framebuffer_unreference(fb);
kfree(connector_set);
drm_mode_destroy(dev, mode);
drm_modeset_unlock_all(dev);
return ret;
}
drm: Support legacy cursor ioctls via universal planes when possible (v4) If drivers support universal planes and have registered a cursor plane with the DRM core, we should use that universal plane support when handling legacy cursor ioctls. Drivers that transition to universal planes won't have to maintain separate legacy ioctl handling; drivers that don't transition to universal planes will continue to operate without any change to behavior. Note that there's a bit of a mismatch between the legacy cursor ioctls and the universal plane API's --- legacy ioctl's use driver buffer handles directly whereas the universal plane API takes drm_framebuffers. Since there's no way to recover the driver handle from a drm_framebuffer, we can implement legacy ioctl's in terms of universal plane interfaces, but cannot implement universal plane interfaces in terms of legacy ioctls. Specifically, there's no way to create a general cursor helper in the way we previously created a primary plane helper. It's important to land this patch before any patches that add universal cursor support to individual drivers so that drivers don't have to worry about juggling two different styles of reference counting for cursor buffers when userspace mixes and matches legacy and universal cursor calls. With this patch, a driver that switches to universal cursor support may assume that all cursor buffers are wrapped in a drm_framebuffer and can rely on framebuffer reference counting for all cursor operations. v4: - Add comments pointing out setplane_internal's reference-eating semantics. v3: - Drop drm_mode_rmfb() call that is no longer needed now that we're using setplane_internal(), which takes care of deref'ing the appropriate framebuffer. v2: - Use new add_framebuffer_internal() function to create framebuffer rather than trying to call directly into the ioctl interface and look up the handle returned. - Use new setplane_internal() function to update the cursor plane rather than calling through the ioctl interface. Note that since we're no longer looking up an fb_id, no extra reference will be taken here. - Grab extra reference to fb under lock in !BO case to avoid issues where racing userspace could cause the fb to be destroyed out from under us after we grab the fb pointer. Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: Matt Roper <matthew.d.roper@intel.com> Reviewed-by: Pallavi G<pallavi.g@intel.com> Acked-by: Dave Airlie <airlied@linux.ie> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-06-10 23:28:10 +08:00
/**
* drm_mode_cursor_universal - translate legacy cursor ioctl call into a
* universal plane handler call
* @crtc: crtc to update cursor for
* @req: data pointer for the ioctl
* @file_priv: drm file for the ioctl call
*
* Legacy cursor ioctl's work directly with driver buffer handles. To
* translate legacy ioctl calls into universal plane handler calls, we need to
* wrap the native buffer handle in a drm_framebuffer.
*
* Note that we assume any handle passed to the legacy ioctls was a 32-bit ARGB
* buffer with a pitch of 4*width; the universal plane interface should be used
* directly in cases where the hardware can support other buffer settings and
* userspace wants to make use of these capabilities.
*
* Returns:
* Zero on success, negative errno on failure.
drm: Support legacy cursor ioctls via universal planes when possible (v4) If drivers support universal planes and have registered a cursor plane with the DRM core, we should use that universal plane support when handling legacy cursor ioctls. Drivers that transition to universal planes won't have to maintain separate legacy ioctl handling; drivers that don't transition to universal planes will continue to operate without any change to behavior. Note that there's a bit of a mismatch between the legacy cursor ioctls and the universal plane API's --- legacy ioctl's use driver buffer handles directly whereas the universal plane API takes drm_framebuffers. Since there's no way to recover the driver handle from a drm_framebuffer, we can implement legacy ioctl's in terms of universal plane interfaces, but cannot implement universal plane interfaces in terms of legacy ioctls. Specifically, there's no way to create a general cursor helper in the way we previously created a primary plane helper. It's important to land this patch before any patches that add universal cursor support to individual drivers so that drivers don't have to worry about juggling two different styles of reference counting for cursor buffers when userspace mixes and matches legacy and universal cursor calls. With this patch, a driver that switches to universal cursor support may assume that all cursor buffers are wrapped in a drm_framebuffer and can rely on framebuffer reference counting for all cursor operations. v4: - Add comments pointing out setplane_internal's reference-eating semantics. v3: - Drop drm_mode_rmfb() call that is no longer needed now that we're using setplane_internal(), which takes care of deref'ing the appropriate framebuffer. v2: - Use new add_framebuffer_internal() function to create framebuffer rather than trying to call directly into the ioctl interface and look up the handle returned. - Use new setplane_internal() function to update the cursor plane rather than calling through the ioctl interface. Note that since we're no longer looking up an fb_id, no extra reference will be taken here. - Grab extra reference to fb under lock in !BO case to avoid issues where racing userspace could cause the fb to be destroyed out from under us after we grab the fb pointer. Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: Matt Roper <matthew.d.roper@intel.com> Reviewed-by: Pallavi G<pallavi.g@intel.com> Acked-by: Dave Airlie <airlied@linux.ie> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-06-10 23:28:10 +08:00
*/
static int drm_mode_cursor_universal(struct drm_crtc *crtc,
struct drm_mode_cursor2 *req,
struct drm_file *file_priv)
{
struct drm_device *dev = crtc->dev;
struct drm_framebuffer *fb = NULL;
struct drm_mode_fb_cmd2 fbreq = {
.width = req->width,
.height = req->height,
.pixel_format = DRM_FORMAT_ARGB8888,
.pitches = { req->width * 4 },
.handles = { req->handle },
};
int32_t crtc_x, crtc_y;
uint32_t crtc_w = 0, crtc_h = 0;
uint32_t src_w = 0, src_h = 0;
int ret = 0;
BUG_ON(!crtc->cursor);
WARN_ON(crtc->cursor->crtc != crtc && crtc->cursor->crtc != NULL);
drm: Support legacy cursor ioctls via universal planes when possible (v4) If drivers support universal planes and have registered a cursor plane with the DRM core, we should use that universal plane support when handling legacy cursor ioctls. Drivers that transition to universal planes won't have to maintain separate legacy ioctl handling; drivers that don't transition to universal planes will continue to operate without any change to behavior. Note that there's a bit of a mismatch between the legacy cursor ioctls and the universal plane API's --- legacy ioctl's use driver buffer handles directly whereas the universal plane API takes drm_framebuffers. Since there's no way to recover the driver handle from a drm_framebuffer, we can implement legacy ioctl's in terms of universal plane interfaces, but cannot implement universal plane interfaces in terms of legacy ioctls. Specifically, there's no way to create a general cursor helper in the way we previously created a primary plane helper. It's important to land this patch before any patches that add universal cursor support to individual drivers so that drivers don't have to worry about juggling two different styles of reference counting for cursor buffers when userspace mixes and matches legacy and universal cursor calls. With this patch, a driver that switches to universal cursor support may assume that all cursor buffers are wrapped in a drm_framebuffer and can rely on framebuffer reference counting for all cursor operations. v4: - Add comments pointing out setplane_internal's reference-eating semantics. v3: - Drop drm_mode_rmfb() call that is no longer needed now that we're using setplane_internal(), which takes care of deref'ing the appropriate framebuffer. v2: - Use new add_framebuffer_internal() function to create framebuffer rather than trying to call directly into the ioctl interface and look up the handle returned. - Use new setplane_internal() function to update the cursor plane rather than calling through the ioctl interface. Note that since we're no longer looking up an fb_id, no extra reference will be taken here. - Grab extra reference to fb under lock in !BO case to avoid issues where racing userspace could cause the fb to be destroyed out from under us after we grab the fb pointer. Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: Matt Roper <matthew.d.roper@intel.com> Reviewed-by: Pallavi G<pallavi.g@intel.com> Acked-by: Dave Airlie <airlied@linux.ie> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-06-10 23:28:10 +08:00
/*
* Obtain fb we'll be using (either new or existing) and take an extra
* reference to it if fb != null. setplane will take care of dropping
* the reference if the plane update fails.
*/
if (req->flags & DRM_MODE_CURSOR_BO) {
if (req->handle) {
fb = add_framebuffer_internal(dev, &fbreq, file_priv);
if (IS_ERR(fb)) {
DRM_DEBUG_KMS("failed to wrap cursor buffer in drm framebuffer\n");
return PTR_ERR(fb);
}
drm_framebuffer_reference(fb);
} else {
fb = NULL;
}
} else {
fb = crtc->cursor->fb;
if (fb)
drm_framebuffer_reference(fb);
}
if (req->flags & DRM_MODE_CURSOR_MOVE) {
crtc_x = req->x;
crtc_y = req->y;
} else {
crtc_x = crtc->cursor_x;
crtc_y = crtc->cursor_y;
}
if (fb) {
crtc_w = fb->width;
crtc_h = fb->height;
src_w = fb->width << 16;
src_h = fb->height << 16;
}
/*
* setplane_internal will take care of deref'ing either the old or new
* framebuffer depending on success.
*/
ret = __setplane_internal(crtc->cursor, crtc, fb,
drm: Support legacy cursor ioctls via universal planes when possible (v4) If drivers support universal planes and have registered a cursor plane with the DRM core, we should use that universal plane support when handling legacy cursor ioctls. Drivers that transition to universal planes won't have to maintain separate legacy ioctl handling; drivers that don't transition to universal planes will continue to operate without any change to behavior. Note that there's a bit of a mismatch between the legacy cursor ioctls and the universal plane API's --- legacy ioctl's use driver buffer handles directly whereas the universal plane API takes drm_framebuffers. Since there's no way to recover the driver handle from a drm_framebuffer, we can implement legacy ioctl's in terms of universal plane interfaces, but cannot implement universal plane interfaces in terms of legacy ioctls. Specifically, there's no way to create a general cursor helper in the way we previously created a primary plane helper. It's important to land this patch before any patches that add universal cursor support to individual drivers so that drivers don't have to worry about juggling two different styles of reference counting for cursor buffers when userspace mixes and matches legacy and universal cursor calls. With this patch, a driver that switches to universal cursor support may assume that all cursor buffers are wrapped in a drm_framebuffer and can rely on framebuffer reference counting for all cursor operations. v4: - Add comments pointing out setplane_internal's reference-eating semantics. v3: - Drop drm_mode_rmfb() call that is no longer needed now that we're using setplane_internal(), which takes care of deref'ing the appropriate framebuffer. v2: - Use new add_framebuffer_internal() function to create framebuffer rather than trying to call directly into the ioctl interface and look up the handle returned. - Use new setplane_internal() function to update the cursor plane rather than calling through the ioctl interface. Note that since we're no longer looking up an fb_id, no extra reference will be taken here. - Grab extra reference to fb under lock in !BO case to avoid issues where racing userspace could cause the fb to be destroyed out from under us after we grab the fb pointer. Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: Matt Roper <matthew.d.roper@intel.com> Reviewed-by: Pallavi G<pallavi.g@intel.com> Acked-by: Dave Airlie <airlied@linux.ie> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-06-10 23:28:10 +08:00
crtc_x, crtc_y, crtc_w, crtc_h,
0, 0, src_w, src_h);
/* Update successful; save new cursor position, if necessary */
if (ret == 0 && req->flags & DRM_MODE_CURSOR_MOVE) {
crtc->cursor_x = req->x;
crtc->cursor_y = req->y;
}
return ret;
}
static int drm_mode_cursor_common(struct drm_device *dev,
struct drm_mode_cursor2 *req,
struct drm_file *file_priv)
{
struct drm_crtc *crtc;
int ret = 0;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
if (!req->flags || (~DRM_MODE_CURSOR_FLAGS & req->flags))
return -EINVAL;
crtc = drm_crtc_find(dev, req->crtc_id);
if (!crtc) {
DRM_DEBUG_KMS("Unknown CRTC ID %d\n", req->crtc_id);
return -ENOENT;
}
drm: Support legacy cursor ioctls via universal planes when possible (v4) If drivers support universal planes and have registered a cursor plane with the DRM core, we should use that universal plane support when handling legacy cursor ioctls. Drivers that transition to universal planes won't have to maintain separate legacy ioctl handling; drivers that don't transition to universal planes will continue to operate without any change to behavior. Note that there's a bit of a mismatch between the legacy cursor ioctls and the universal plane API's --- legacy ioctl's use driver buffer handles directly whereas the universal plane API takes drm_framebuffers. Since there's no way to recover the driver handle from a drm_framebuffer, we can implement legacy ioctl's in terms of universal plane interfaces, but cannot implement universal plane interfaces in terms of legacy ioctls. Specifically, there's no way to create a general cursor helper in the way we previously created a primary plane helper. It's important to land this patch before any patches that add universal cursor support to individual drivers so that drivers don't have to worry about juggling two different styles of reference counting for cursor buffers when userspace mixes and matches legacy and universal cursor calls. With this patch, a driver that switches to universal cursor support may assume that all cursor buffers are wrapped in a drm_framebuffer and can rely on framebuffer reference counting for all cursor operations. v4: - Add comments pointing out setplane_internal's reference-eating semantics. v3: - Drop drm_mode_rmfb() call that is no longer needed now that we're using setplane_internal(), which takes care of deref'ing the appropriate framebuffer. v2: - Use new add_framebuffer_internal() function to create framebuffer rather than trying to call directly into the ioctl interface and look up the handle returned. - Use new setplane_internal() function to update the cursor plane rather than calling through the ioctl interface. Note that since we're no longer looking up an fb_id, no extra reference will be taken here. - Grab extra reference to fb under lock in !BO case to avoid issues where racing userspace could cause the fb to be destroyed out from under us after we grab the fb pointer. Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: Matt Roper <matthew.d.roper@intel.com> Reviewed-by: Pallavi G<pallavi.g@intel.com> Acked-by: Dave Airlie <airlied@linux.ie> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-06-10 23:28:10 +08:00
/*
* If this crtc has a universal cursor plane, call that plane's update
* handler rather than using legacy cursor handlers.
*/
drm: Per-plane locking Turned out to be much simpler on top of my latest atomic stuff than what I've feared. Some details: - Drop the modeset_lock_all snakeoil in drm_plane_init. Same justification as for the equivalent change in drm_crtc_init done in commit d0fa1af40e784aaf7ebb7ba8a17b229bb3fa4c21 Author: Daniel Vetter <daniel.vetter@ffwll.ch> Date: Mon Sep 8 09:02:49 2014 +0200 drm: Drop modeset locking from crtc init function Without these the drm_modeset_lock_init would fall over the exact same way. - Since the atomic core code wraps the locking switching it to per-plane locks was a one-line change. - For the legacy ioctls add a plane argument to the locking helper so that we can grab the right plane lock (cursor or primary). Since the universal cursor plane might not be there, or someone really crazy might forgoe the primary plane even accept NULL. - Add some locking WARN_ON to the atomic helpers for good paranoid measure and to check that it all works out. Tested on my exynos atomic hackfest with full lockdep checks and ww backoff injection. v2: I've forgotten about the load-detect code in i915. v3: Thierry reported that in latest 3.18-rc vmwgfx doesn't compile any more due to commit 21e88620aa21b48d4f62d29275e3e2944a5ea2b5 Author: Rob Clark <robdclark@gmail.com> Date: Thu Oct 30 13:39:04 2014 -0400 drm/vmwgfx: fix lock breakage Rebased and fix this up. Cc: Thierry Reding <thierry.reding@gmail.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Reviewed-by: Sean Paul <seanpaul@chromium.org> Signed-off-by: Dave Airlie <airlied@redhat.com>
2014-11-11 17:12:00 +08:00
drm_modeset_lock_crtc(crtc, crtc->cursor);
if (crtc->cursor) {
ret = drm_mode_cursor_universal(crtc, req, file_priv);
goto out;
}
if (req->flags & DRM_MODE_CURSOR_BO) {
if (!crtc->funcs->cursor_set && !crtc->funcs->cursor_set2) {
ret = -ENXIO;
goto out;
}
/* Turns off the cursor if handle is 0 */
if (crtc->funcs->cursor_set2)
ret = crtc->funcs->cursor_set2(crtc, file_priv, req->handle,
req->width, req->height, req->hot_x, req->hot_y);
else
ret = crtc->funcs->cursor_set(crtc, file_priv, req->handle,
req->width, req->height);
}
if (req->flags & DRM_MODE_CURSOR_MOVE) {
if (crtc->funcs->cursor_move) {
ret = crtc->funcs->cursor_move(crtc, req->x, req->y);
} else {
ret = -EFAULT;
goto out;
}
}
out:
drm_modeset_unlock_crtc(crtc);
return ret;
}
/**
* drm_mode_cursor_ioctl - set CRTC's cursor configuration
* @dev: drm device for the ioctl
* @data: data pointer for the ioctl
* @file_priv: drm file for the ioctl call
*
* Set the cursor configuration based on user request.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_cursor_ioctl(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_cursor *req = data;
struct drm_mode_cursor2 new_req;
memcpy(&new_req, req, sizeof(struct drm_mode_cursor));
new_req.hot_x = new_req.hot_y = 0;
return drm_mode_cursor_common(dev, &new_req, file_priv);
}
/**
* drm_mode_cursor2_ioctl - set CRTC's cursor configuration
* @dev: drm device for the ioctl
* @data: data pointer for the ioctl
* @file_priv: drm file for the ioctl call
*
* Set the cursor configuration based on user request. This implements the 2nd
* version of the cursor ioctl, which allows userspace to additionally specify
* the hotspot of the pointer.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_cursor2_ioctl(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_cursor2 *req = data;
return drm_mode_cursor_common(dev, req, file_priv);
}
/**
* drm_mode_legacy_fb_format - compute drm fourcc code from legacy description
* @bpp: bits per pixels
* @depth: bit depth per pixel
*
* Computes a drm fourcc pixel format code for the given @bpp/@depth values.
* Useful in fbdev emulation code, since that deals in those values.
*/
uint32_t drm_mode_legacy_fb_format(uint32_t bpp, uint32_t depth)
{
uint32_t fmt;
switch (bpp) {
case 8:
fmt = DRM_FORMAT_C8;
break;
case 16:
if (depth == 15)
fmt = DRM_FORMAT_XRGB1555;
else
fmt = DRM_FORMAT_RGB565;
break;
case 24:
fmt = DRM_FORMAT_RGB888;
break;
case 32:
if (depth == 24)
fmt = DRM_FORMAT_XRGB8888;
else if (depth == 30)
fmt = DRM_FORMAT_XRGB2101010;
else
fmt = DRM_FORMAT_ARGB8888;
break;
default:
DRM_ERROR("bad bpp, assuming x8r8g8b8 pixel format\n");
fmt = DRM_FORMAT_XRGB8888;
break;
}
return fmt;
}
EXPORT_SYMBOL(drm_mode_legacy_fb_format);
/**
* drm_mode_addfb - add an FB to the graphics configuration
* @dev: drm device for the ioctl
* @data: data pointer for the ioctl
* @file_priv: drm file for the ioctl call
*
* Add a new FB to the specified CRTC, given a user request. This is the
* original addfb ioctl which only supported RGB formats.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_addfb(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_fb_cmd *or = data;
struct drm_mode_fb_cmd2 r = {};
int ret;
/* convert to new format and call new ioctl */
r.fb_id = or->fb_id;
r.width = or->width;
r.height = or->height;
r.pitches[0] = or->pitch;
r.pixel_format = drm_mode_legacy_fb_format(or->bpp, or->depth);
r.handles[0] = or->handle;
ret = drm_mode_addfb2(dev, &r, file_priv);
if (ret)
return ret;
or->fb_id = r.fb_id;
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
return 0;
}
static int format_check(const struct drm_mode_fb_cmd2 *r)
{
uint32_t format = r->pixel_format & ~DRM_FORMAT_BIG_ENDIAN;
switch (format) {
case DRM_FORMAT_C8:
case DRM_FORMAT_RGB332:
case DRM_FORMAT_BGR233:
case DRM_FORMAT_XRGB4444:
case DRM_FORMAT_XBGR4444:
case DRM_FORMAT_RGBX4444:
case DRM_FORMAT_BGRX4444:
case DRM_FORMAT_ARGB4444:
case DRM_FORMAT_ABGR4444:
case DRM_FORMAT_RGBA4444:
case DRM_FORMAT_BGRA4444:
case DRM_FORMAT_XRGB1555:
case DRM_FORMAT_XBGR1555:
case DRM_FORMAT_RGBX5551:
case DRM_FORMAT_BGRX5551:
case DRM_FORMAT_ARGB1555:
case DRM_FORMAT_ABGR1555:
case DRM_FORMAT_RGBA5551:
case DRM_FORMAT_BGRA5551:
case DRM_FORMAT_RGB565:
case DRM_FORMAT_BGR565:
case DRM_FORMAT_RGB888:
case DRM_FORMAT_BGR888:
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_RGBX8888:
case DRM_FORMAT_BGRX8888:
case DRM_FORMAT_ARGB8888:
case DRM_FORMAT_ABGR8888:
case DRM_FORMAT_RGBA8888:
case DRM_FORMAT_BGRA8888:
case DRM_FORMAT_XRGB2101010:
case DRM_FORMAT_XBGR2101010:
case DRM_FORMAT_RGBX1010102:
case DRM_FORMAT_BGRX1010102:
case DRM_FORMAT_ARGB2101010:
case DRM_FORMAT_ABGR2101010:
case DRM_FORMAT_RGBA1010102:
case DRM_FORMAT_BGRA1010102:
case DRM_FORMAT_YUYV:
case DRM_FORMAT_YVYU:
case DRM_FORMAT_UYVY:
case DRM_FORMAT_VYUY:
case DRM_FORMAT_AYUV:
case DRM_FORMAT_NV12:
case DRM_FORMAT_NV21:
case DRM_FORMAT_NV16:
case DRM_FORMAT_NV61:
case DRM_FORMAT_NV24:
case DRM_FORMAT_NV42:
case DRM_FORMAT_YUV410:
case DRM_FORMAT_YVU410:
case DRM_FORMAT_YUV411:
case DRM_FORMAT_YVU411:
case DRM_FORMAT_YUV420:
case DRM_FORMAT_YVU420:
case DRM_FORMAT_YUV422:
case DRM_FORMAT_YVU422:
case DRM_FORMAT_YUV444:
case DRM_FORMAT_YVU444:
return 0;
default:
DRM_DEBUG_KMS("invalid pixel format %s\n",
drm_get_format_name(r->pixel_format));
return -EINVAL;
}
}
static int framebuffer_check(const struct drm_mode_fb_cmd2 *r)
{
int ret, hsub, vsub, num_planes, i;
ret = format_check(r);
if (ret) {
DRM_DEBUG_KMS("bad framebuffer format %s\n",
drm_get_format_name(r->pixel_format));
return ret;
}
hsub = drm_format_horz_chroma_subsampling(r->pixel_format);
vsub = drm_format_vert_chroma_subsampling(r->pixel_format);
num_planes = drm_format_num_planes(r->pixel_format);
if (r->width == 0 || r->width % hsub) {
DRM_DEBUG_KMS("bad framebuffer width %u\n", r->width);
return -EINVAL;
}
if (r->height == 0 || r->height % vsub) {
DRM_DEBUG_KMS("bad framebuffer height %u\n", r->height);
return -EINVAL;
}
for (i = 0; i < num_planes; i++) {
unsigned int width = r->width / (i != 0 ? hsub : 1);
unsigned int height = r->height / (i != 0 ? vsub : 1);
unsigned int cpp = drm_format_plane_cpp(r->pixel_format, i);
if (!r->handles[i]) {
DRM_DEBUG_KMS("no buffer object handle for plane %d\n", i);
return -EINVAL;
}
if ((uint64_t) width * cpp > UINT_MAX)
return -ERANGE;
if ((uint64_t) height * r->pitches[i] + r->offsets[i] > UINT_MAX)
return -ERANGE;
if (r->pitches[i] < width * cpp) {
DRM_DEBUG_KMS("bad pitch %u for plane %d\n", r->pitches[i], i);
return -EINVAL;
}
}
return 0;
}
static struct drm_framebuffer *add_framebuffer_internal(struct drm_device *dev,
struct drm_mode_fb_cmd2 *r,
struct drm_file *file_priv)
{
struct drm_mode_config *config = &dev->mode_config;
struct drm_framebuffer *fb;
int ret;
if (r->flags & ~DRM_MODE_FB_INTERLACED) {
DRM_DEBUG_KMS("bad framebuffer flags 0x%08x\n", r->flags);
return ERR_PTR(-EINVAL);
}
if ((config->min_width > r->width) || (r->width > config->max_width)) {
DRM_DEBUG_KMS("bad framebuffer width %d, should be >= %d && <= %d\n",
r->width, config->min_width, config->max_width);
return ERR_PTR(-EINVAL);
}
if ((config->min_height > r->height) || (r->height > config->max_height)) {
DRM_DEBUG_KMS("bad framebuffer height %d, should be >= %d && <= %d\n",
r->height, config->min_height, config->max_height);
return ERR_PTR(-EINVAL);
}
ret = framebuffer_check(r);
if (ret)
return ERR_PTR(ret);
fb = dev->mode_config.funcs->fb_create(dev, file_priv, r);
if (IS_ERR(fb)) {
DRM_DEBUG_KMS("could not create framebuffer\n");
return fb;
}
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
mutex_lock(&file_priv->fbs_lock);
r->fb_id = fb->base.id;
list_add(&fb->filp_head, &file_priv->fbs);
DRM_DEBUG_KMS("[FB:%d]\n", fb->base.id);
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
mutex_unlock(&file_priv->fbs_lock);
return fb;
}
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
/**
* drm_mode_addfb2 - add an FB to the graphics configuration
* @dev: drm device for the ioctl
* @data: data pointer for the ioctl
* @file_priv: drm file for the ioctl call
*
* Add a new FB to the specified CRTC, given a user request with format. This is
* the 2nd version of the addfb ioctl, which supports multi-planar framebuffers
* and uses fourcc codes as pixel format specifiers.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_addfb2(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_framebuffer *fb;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
fb = add_framebuffer_internal(dev, data, file_priv);
if (IS_ERR(fb))
return PTR_ERR(fb);
return 0;
}
/**
* drm_mode_rmfb - remove an FB from the configuration
* @dev: drm device for the ioctl
* @data: data pointer for the ioctl
* @file_priv: drm file for the ioctl call
*
* Remove the FB specified by the user.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_rmfb(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_framebuffer *fb = NULL;
struct drm_framebuffer *fbl = NULL;
uint32_t *id = data;
int found = 0;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
mutex_lock(&file_priv->fbs_lock);
drm: reference framebuffers which are on the idr Since otherwise looking and reference-counting around drm_framebuffer_lookup will be an unmanageable mess. With this change, an object can either be found in the idr and will stay around once we incremented the reference counter. Or it will be gone for good and can't be looked up using its id any more. Atomicity is guaranteed by the dev->mode_config.fb_lock. The newly-introduce fpriv->fbs_lock looks a bit redundant, but the next patch will shuffle the locking order between these two locks and all the modeset locks taken in modeset_lock_all, so we'll need it. Also, since userspace could do really funky stuff and race e.g. a getresources with an rmfb, we need to make sure that the kernel doesn't fall over trying to look-up an inexistent fb, or causing confusion by having two fbs around with the same id. Simply reset the framebuffer id to 0, which marks it as reaped. Any lookups of that id will fail, so the object is really gone for good from userspace's pov. Note that we still need to protect the "remove framebuffer from all use-cases" and the final unreference with the modeset-lock, since most framebuffer use-sites don't implement proper reference counting yet. We can only lift this once _all_ users are converted. With this change, two references are held on alife, but unused framebuffers: - The reference for the idr lookup, created in this patch. - For user-created framebuffers the fpriv->fbs reference, for driver-private fbs the driver is supposed to hold it's own last reference. Note that the dev->mode_config.fb_list itself does _not_ hold a reference onto the framebuffers (this list is essentially only used for debugfs files). Hence if there's anything left there when the driver has cleaned up all it's modeset resources, this is a ref-leak. WARN about it. Now we only need to fix up all other places to properly reference count framebuffers. v2: Fix spelling fail in a comment spotted by Rob Clark. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:16:05 +08:00
mutex_lock(&dev->mode_config.fb_lock);
fb = __drm_framebuffer_lookup(dev, *id);
if (!fb)
goto fail_lookup;
list_for_each_entry(fbl, &file_priv->fbs, filp_head)
if (fb == fbl)
found = 1;
drm: reference framebuffers which are on the idr Since otherwise looking and reference-counting around drm_framebuffer_lookup will be an unmanageable mess. With this change, an object can either be found in the idr and will stay around once we incremented the reference counter. Or it will be gone for good and can't be looked up using its id any more. Atomicity is guaranteed by the dev->mode_config.fb_lock. The newly-introduce fpriv->fbs_lock looks a bit redundant, but the next patch will shuffle the locking order between these two locks and all the modeset locks taken in modeset_lock_all, so we'll need it. Also, since userspace could do really funky stuff and race e.g. a getresources with an rmfb, we need to make sure that the kernel doesn't fall over trying to look-up an inexistent fb, or causing confusion by having two fbs around with the same id. Simply reset the framebuffer id to 0, which marks it as reaped. Any lookups of that id will fail, so the object is really gone for good from userspace's pov. Note that we still need to protect the "remove framebuffer from all use-cases" and the final unreference with the modeset-lock, since most framebuffer use-sites don't implement proper reference counting yet. We can only lift this once _all_ users are converted. With this change, two references are held on alife, but unused framebuffers: - The reference for the idr lookup, created in this patch. - For user-created framebuffers the fpriv->fbs reference, for driver-private fbs the driver is supposed to hold it's own last reference. Note that the dev->mode_config.fb_list itself does _not_ hold a reference onto the framebuffers (this list is essentially only used for debugfs files). Hence if there's anything left there when the driver has cleaned up all it's modeset resources, this is a ref-leak. WARN about it. Now we only need to fix up all other places to properly reference count framebuffers. v2: Fix spelling fail in a comment spotted by Rob Clark. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:16:05 +08:00
if (!found)
goto fail_lookup;
/* Mark fb as reaped, we still have a ref from fpriv->fbs. */
__drm_framebuffer_unregister(dev, fb);
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
list_del_init(&fb->filp_head);
drm: reference framebuffers which are on the idr Since otherwise looking and reference-counting around drm_framebuffer_lookup will be an unmanageable mess. With this change, an object can either be found in the idr and will stay around once we incremented the reference counter. Or it will be gone for good and can't be looked up using its id any more. Atomicity is guaranteed by the dev->mode_config.fb_lock. The newly-introduce fpriv->fbs_lock looks a bit redundant, but the next patch will shuffle the locking order between these two locks and all the modeset locks taken in modeset_lock_all, so we'll need it. Also, since userspace could do really funky stuff and race e.g. a getresources with an rmfb, we need to make sure that the kernel doesn't fall over trying to look-up an inexistent fb, or causing confusion by having two fbs around with the same id. Simply reset the framebuffer id to 0, which marks it as reaped. Any lookups of that id will fail, so the object is really gone for good from userspace's pov. Note that we still need to protect the "remove framebuffer from all use-cases" and the final unreference with the modeset-lock, since most framebuffer use-sites don't implement proper reference counting yet. We can only lift this once _all_ users are converted. With this change, two references are held on alife, but unused framebuffers: - The reference for the idr lookup, created in this patch. - For user-created framebuffers the fpriv->fbs reference, for driver-private fbs the driver is supposed to hold it's own last reference. Note that the dev->mode_config.fb_list itself does _not_ hold a reference onto the framebuffers (this list is essentially only used for debugfs files). Hence if there's anything left there when the driver has cleaned up all it's modeset resources, this is a ref-leak. WARN about it. Now we only need to fix up all other places to properly reference count framebuffers. v2: Fix spelling fail in a comment spotted by Rob Clark. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:16:05 +08:00
mutex_unlock(&dev->mode_config.fb_lock);
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
mutex_unlock(&file_priv->fbs_lock);
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
drm_framebuffer_remove(fb);
drm: reference framebuffers which are on the idr Since otherwise looking and reference-counting around drm_framebuffer_lookup will be an unmanageable mess. With this change, an object can either be found in the idr and will stay around once we incremented the reference counter. Or it will be gone for good and can't be looked up using its id any more. Atomicity is guaranteed by the dev->mode_config.fb_lock. The newly-introduce fpriv->fbs_lock looks a bit redundant, but the next patch will shuffle the locking order between these two locks and all the modeset locks taken in modeset_lock_all, so we'll need it. Also, since userspace could do really funky stuff and race e.g. a getresources with an rmfb, we need to make sure that the kernel doesn't fall over trying to look-up an inexistent fb, or causing confusion by having two fbs around with the same id. Simply reset the framebuffer id to 0, which marks it as reaped. Any lookups of that id will fail, so the object is really gone for good from userspace's pov. Note that we still need to protect the "remove framebuffer from all use-cases" and the final unreference with the modeset-lock, since most framebuffer use-sites don't implement proper reference counting yet. We can only lift this once _all_ users are converted. With this change, two references are held on alife, but unused framebuffers: - The reference for the idr lookup, created in this patch. - For user-created framebuffers the fpriv->fbs reference, for driver-private fbs the driver is supposed to hold it's own last reference. Note that the dev->mode_config.fb_list itself does _not_ hold a reference onto the framebuffers (this list is essentially only used for debugfs files). Hence if there's anything left there when the driver has cleaned up all it's modeset resources, this is a ref-leak. WARN about it. Now we only need to fix up all other places to properly reference count framebuffers. v2: Fix spelling fail in a comment spotted by Rob Clark. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:16:05 +08:00
return 0;
fail_lookup:
mutex_unlock(&dev->mode_config.fb_lock);
mutex_unlock(&file_priv->fbs_lock);
return -ENOENT;
}
/**
* drm_mode_getfb - get FB info
* @dev: drm device for the ioctl
* @data: data pointer for the ioctl
* @file_priv: drm file for the ioctl call
*
* Lookup the FB given its ID and return info about it.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_getfb(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_fb_cmd *r = data;
struct drm_framebuffer *fb;
int ret;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
fb = drm_framebuffer_lookup(dev, r->fb_id);
if (!fb)
return -ENOENT;
r->height = fb->height;
r->width = fb->width;
r->depth = fb->depth;
r->bpp = fb->bits_per_pixel;
r->pitch = fb->pitches[0];
drm: fix DRM_IOCTL_MODE_GETFB handle-leak DRM_IOCTL_MODE_GETFB is used to retrieve information about a given framebuffer ID. It is a read-only helper and was thus declassified for unprivileged access in: commit a14b1b42477c5ef089fcda88cbaae50d979eb8f9 Author: Mandeep Singh Baines <mandeep.baines@gmail.com> Date: Fri Jan 20 12:11:16 2012 -0800 drm: remove master fd restriction on mode setting getters However, alongside width, height and stride information, DRM_IOCTL_MODE_GETFB also passes back a handle to the underlying buffer of the framebuffer. This handle allows users to mmap() it and read or write into it. Obviously, this should be restricted to DRM-Master. With the current setup, *any* process with access to /dev/dri/card0 (which means any process with access to hardware-accelerated rendering) can access the current screen framebuffer and modify it ad libitum. For backwards-compatibility reasons we want to keep the DRM_IOCTL_MODE_GETFB call unprivileged. Besides, it provides quite useful information regarding screen setup. So we simply test whether the caller is the current DRM-Master and if not, we return 0 as handle, which is always invalid. A following DRM_IOCTL_GEM_CLOSE on this handle will fail with EINVAL, but we accept this. Users shouldn't test for errors during GEM_CLOSE, anyway. And it is still better as a failing MODE_GETFB call. v2: add capable(CAP_SYS_ADMIN) check for compatibility with i-g-t Cc: <stable@vger.kernel.org> Signed-off-by: David Herrmann <dh.herrmann@gmail.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Dave Airlie <airlied@redhat.com>
2013-08-26 21:16:49 +08:00
if (fb->funcs->create_handle) {
if (file_priv->is_master || capable(CAP_SYS_ADMIN) ||
drm_is_control_client(file_priv)) {
drm: fix DRM_IOCTL_MODE_GETFB handle-leak DRM_IOCTL_MODE_GETFB is used to retrieve information about a given framebuffer ID. It is a read-only helper and was thus declassified for unprivileged access in: commit a14b1b42477c5ef089fcda88cbaae50d979eb8f9 Author: Mandeep Singh Baines <mandeep.baines@gmail.com> Date: Fri Jan 20 12:11:16 2012 -0800 drm: remove master fd restriction on mode setting getters However, alongside width, height and stride information, DRM_IOCTL_MODE_GETFB also passes back a handle to the underlying buffer of the framebuffer. This handle allows users to mmap() it and read or write into it. Obviously, this should be restricted to DRM-Master. With the current setup, *any* process with access to /dev/dri/card0 (which means any process with access to hardware-accelerated rendering) can access the current screen framebuffer and modify it ad libitum. For backwards-compatibility reasons we want to keep the DRM_IOCTL_MODE_GETFB call unprivileged. Besides, it provides quite useful information regarding screen setup. So we simply test whether the caller is the current DRM-Master and if not, we return 0 as handle, which is always invalid. A following DRM_IOCTL_GEM_CLOSE on this handle will fail with EINVAL, but we accept this. Users shouldn't test for errors during GEM_CLOSE, anyway. And it is still better as a failing MODE_GETFB call. v2: add capable(CAP_SYS_ADMIN) check for compatibility with i-g-t Cc: <stable@vger.kernel.org> Signed-off-by: David Herrmann <dh.herrmann@gmail.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Dave Airlie <airlied@redhat.com>
2013-08-26 21:16:49 +08:00
ret = fb->funcs->create_handle(fb, file_priv,
&r->handle);
} else {
/* GET_FB() is an unprivileged ioctl so we must not
* return a buffer-handle to non-master processes! For
* backwards-compatibility reasons, we cannot make
* GET_FB() privileged, so just return an invalid handle
* for non-masters. */
r->handle = 0;
ret = 0;
}
} else {
ret = -ENODEV;
drm: fix DRM_IOCTL_MODE_GETFB handle-leak DRM_IOCTL_MODE_GETFB is used to retrieve information about a given framebuffer ID. It is a read-only helper and was thus declassified for unprivileged access in: commit a14b1b42477c5ef089fcda88cbaae50d979eb8f9 Author: Mandeep Singh Baines <mandeep.baines@gmail.com> Date: Fri Jan 20 12:11:16 2012 -0800 drm: remove master fd restriction on mode setting getters However, alongside width, height and stride information, DRM_IOCTL_MODE_GETFB also passes back a handle to the underlying buffer of the framebuffer. This handle allows users to mmap() it and read or write into it. Obviously, this should be restricted to DRM-Master. With the current setup, *any* process with access to /dev/dri/card0 (which means any process with access to hardware-accelerated rendering) can access the current screen framebuffer and modify it ad libitum. For backwards-compatibility reasons we want to keep the DRM_IOCTL_MODE_GETFB call unprivileged. Besides, it provides quite useful information regarding screen setup. So we simply test whether the caller is the current DRM-Master and if not, we return 0 as handle, which is always invalid. A following DRM_IOCTL_GEM_CLOSE on this handle will fail with EINVAL, but we accept this. Users shouldn't test for errors during GEM_CLOSE, anyway. And it is still better as a failing MODE_GETFB call. v2: add capable(CAP_SYS_ADMIN) check for compatibility with i-g-t Cc: <stable@vger.kernel.org> Signed-off-by: David Herrmann <dh.herrmann@gmail.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Dave Airlie <airlied@redhat.com>
2013-08-26 21:16:49 +08:00
}
drm_framebuffer_unreference(fb);
return ret;
}
/**
* drm_mode_dirtyfb_ioctl - flush frontbuffer rendering on an FB
* @dev: drm device for the ioctl
* @data: data pointer for the ioctl
* @file_priv: drm file for the ioctl call
*
* Lookup the FB and flush out the damaged area supplied by userspace as a clip
* rectangle list. Generic userspace which does frontbuffer rendering must call
* this ioctl to flush out the changes on manual-update display outputs, e.g.
* usb display-link, mipi manual update panels or edp panel self refresh modes.
*
* Modesetting drivers which always update the frontbuffer do not need to
* implement the corresponding ->dirty framebuffer callback.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_dirtyfb_ioctl(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_clip_rect __user *clips_ptr;
struct drm_clip_rect *clips = NULL;
struct drm_mode_fb_dirty_cmd *r = data;
struct drm_framebuffer *fb;
unsigned flags;
int num_clips;
int ret;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
fb = drm_framebuffer_lookup(dev, r->fb_id);
if (!fb)
return -ENOENT;
num_clips = r->num_clips;
clips_ptr = (struct drm_clip_rect __user *)(unsigned long)r->clips_ptr;
if (!num_clips != !clips_ptr) {
ret = -EINVAL;
goto out_err1;
}
flags = DRM_MODE_FB_DIRTY_FLAGS & r->flags;
/* If userspace annotates copy, clips must come in pairs */
if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY && (num_clips % 2)) {
ret = -EINVAL;
goto out_err1;
}
if (num_clips && clips_ptr) {
if (num_clips < 0 || num_clips > DRM_MODE_FB_DIRTY_MAX_CLIPS) {
ret = -EINVAL;
goto out_err1;
}
clips = kcalloc(num_clips, sizeof(*clips), GFP_KERNEL);
if (!clips) {
ret = -ENOMEM;
goto out_err1;
}
ret = copy_from_user(clips, clips_ptr,
num_clips * sizeof(*clips));
if (ret) {
ret = -EFAULT;
goto out_err2;
}
}
if (fb->funcs->dirty) {
ret = fb->funcs->dirty(fb, file_priv, flags, r->color,
clips, num_clips);
} else {
ret = -ENOSYS;
}
out_err2:
kfree(clips);
out_err1:
drm_framebuffer_unreference(fb);
return ret;
}
/**
* drm_fb_release - remove and free the FBs on this file
* @priv: drm file for the ioctl
*
* Destroy all the FBs associated with @filp.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
void drm_fb_release(struct drm_file *priv)
{
struct drm_device *dev = priv->minor->dev;
struct drm_framebuffer *fb, *tfb;
/*
* When the file gets released that means no one else can access the fb
* list any more, so no need to grab fpriv->fbs_lock. And we need to
* avoid upsetting lockdep since the universal cursor code adds a
* framebuffer while holding mutex locks.
*
* Note that a real deadlock between fpriv->fbs_lock and the modeset
* locks is impossible here since no one else but this function can get
* at it any more.
*/
list_for_each_entry_safe(fb, tfb, &priv->fbs, filp_head) {
drm: reference framebuffers which are on the idr Since otherwise looking and reference-counting around drm_framebuffer_lookup will be an unmanageable mess. With this change, an object can either be found in the idr and will stay around once we incremented the reference counter. Or it will be gone for good and can't be looked up using its id any more. Atomicity is guaranteed by the dev->mode_config.fb_lock. The newly-introduce fpriv->fbs_lock looks a bit redundant, but the next patch will shuffle the locking order between these two locks and all the modeset locks taken in modeset_lock_all, so we'll need it. Also, since userspace could do really funky stuff and race e.g. a getresources with an rmfb, we need to make sure that the kernel doesn't fall over trying to look-up an inexistent fb, or causing confusion by having two fbs around with the same id. Simply reset the framebuffer id to 0, which marks it as reaped. Any lookups of that id will fail, so the object is really gone for good from userspace's pov. Note that we still need to protect the "remove framebuffer from all use-cases" and the final unreference with the modeset-lock, since most framebuffer use-sites don't implement proper reference counting yet. We can only lift this once _all_ users are converted. With this change, two references are held on alife, but unused framebuffers: - The reference for the idr lookup, created in this patch. - For user-created framebuffers the fpriv->fbs reference, for driver-private fbs the driver is supposed to hold it's own last reference. Note that the dev->mode_config.fb_list itself does _not_ hold a reference onto the framebuffers (this list is essentially only used for debugfs files). Hence if there's anything left there when the driver has cleaned up all it's modeset resources, this is a ref-leak. WARN about it. Now we only need to fix up all other places to properly reference count framebuffers. v2: Fix spelling fail in a comment spotted by Rob Clark. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:16:05 +08:00
mutex_lock(&dev->mode_config.fb_lock);
/* Mark fb as reaped, we still have a ref from fpriv->fbs. */
__drm_framebuffer_unregister(dev, fb);
mutex_unlock(&dev->mode_config.fb_lock);
drm: revamp locking around fb creation/destruction Well, at least step 1. The goal here is that framebuffer objects can survive outside of the mode_config lock, with just a reference held as protection. The first step to get there is to introduce a special fb_lock which protects fb lookup, creation and destruction, to make them appear atomic. This new fb_lock can nest within the mode_config lock. But the idea is (once the reference counting part is completed) that we only quickly take that fb_lock to lookup a framebuffer and grab a reference, without any other locks involved. vmwgfx is the only driver which does framebuffer lookups itself, also wrap those calls to drm_mode_object_find with the new lock. Also protect the fb_list walking in i915 and omapdrm with the new lock. As a slight complication there's also the list of user-created fbs attached to the file private. The problem now is that at fclose() time we need to walk that list, eventually do a modeset call to remove the fb from active usage (and are required to be able to take the mode_config lock), but in the end we need to grab the new fb_lock to remove the fb from the list. The easiest solution is to add another mutex to protect this per-file list. Currently that new fbs_lock nests within the modeset locks and so appears redudant. But later patches will switch around this sequence so that taking the modeset locks in the fb destruction path is optional in the fastpath. Ultimately the goal is that addfb and rmfb do not require the mode_config lock, since otherwise they have the potential to introduce stalls in the pageflip sequence of a compositor (if the compositor e.g. switches to a fullscreen client or if it enables a plane). But that requires a few more steps and hoops to jump through. Note that framebuffer creation/destruction is now double-protected - once by the fb_lock and in parts by the idr_lock. The later would be unnecessariy if framebuffers would have their own idr allocator. But that's material for another patch (series). v2: Properly initialize the fb->filp_head list in _init, otherwise the newly added WARN to check whether the fb isn't on a fpriv list any more will fail for driver-private objects. v3: Fixup two error-case unlock bugs spotted by Richard Wilbur. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:19:18 +08:00
list_del_init(&fb->filp_head);
drm: reference framebuffers which are on the idr Since otherwise looking and reference-counting around drm_framebuffer_lookup will be an unmanageable mess. With this change, an object can either be found in the idr and will stay around once we incremented the reference counter. Or it will be gone for good and can't be looked up using its id any more. Atomicity is guaranteed by the dev->mode_config.fb_lock. The newly-introduce fpriv->fbs_lock looks a bit redundant, but the next patch will shuffle the locking order between these two locks and all the modeset locks taken in modeset_lock_all, so we'll need it. Also, since userspace could do really funky stuff and race e.g. a getresources with an rmfb, we need to make sure that the kernel doesn't fall over trying to look-up an inexistent fb, or causing confusion by having two fbs around with the same id. Simply reset the framebuffer id to 0, which marks it as reaped. Any lookups of that id will fail, so the object is really gone for good from userspace's pov. Note that we still need to protect the "remove framebuffer from all use-cases" and the final unreference with the modeset-lock, since most framebuffer use-sites don't implement proper reference counting yet. We can only lift this once _all_ users are converted. With this change, two references are held on alife, but unused framebuffers: - The reference for the idr lookup, created in this patch. - For user-created framebuffers the fpriv->fbs reference, for driver-private fbs the driver is supposed to hold it's own last reference. Note that the dev->mode_config.fb_list itself does _not_ hold a reference onto the framebuffers (this list is essentially only used for debugfs files). Hence if there's anything left there when the driver has cleaned up all it's modeset resources, this is a ref-leak. WARN about it. Now we only need to fix up all other places to properly reference count framebuffers. v2: Fix spelling fail in a comment spotted by Rob Clark. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 04:16:05 +08:00
/* This will also drop the fpriv->fbs reference. */
drm_framebuffer_remove(fb);
}
}
/**
* drm_property_create - create a new property type
* @dev: drm device
* @flags: flags specifying the property type
* @name: name of the property
* @num_values: number of pre-defined values
*
* This creates a new generic drm property which can then be attached to a drm
* object with drm_object_attach_property. The returned property object must be
* freed with drm_property_destroy.
*
* Note that the DRM core keeps a per-device list of properties and that, if
* drm_mode_config_cleanup() is called, it will destroy all properties created
* by the driver.
*
* Returns:
* A pointer to the newly created property on success, NULL on failure.
*/
struct drm_property *drm_property_create(struct drm_device *dev, int flags,
const char *name, int num_values)
{
struct drm_property *property = NULL;
int ret;
property = kzalloc(sizeof(struct drm_property), GFP_KERNEL);
if (!property)
return NULL;
property->dev = dev;
if (num_values) {
property->values = kcalloc(num_values, sizeof(uint64_t),
GFP_KERNEL);
if (!property->values)
goto fail;
}
ret = drm_mode_object_get(dev, &property->base, DRM_MODE_OBJECT_PROPERTY);
if (ret)
goto fail;
property->flags = flags;
property->num_values = num_values;
INIT_LIST_HEAD(&property->enum_list);
if (name) {
strncpy(property->name, name, DRM_PROP_NAME_LEN);
property->name[DRM_PROP_NAME_LEN-1] = '\0';
}
list_add_tail(&property->head, &dev->mode_config.property_list);
WARN_ON(!drm_property_type_valid(property));
return property;
fail:
kfree(property->values);
kfree(property);
return NULL;
}
EXPORT_SYMBOL(drm_property_create);
/**
* drm_property_create_enum - create a new enumeration property type
* @dev: drm device
* @flags: flags specifying the property type
* @name: name of the property
* @props: enumeration lists with property values
* @num_values: number of pre-defined values
*
* This creates a new generic drm property which can then be attached to a drm
* object with drm_object_attach_property. The returned property object must be
* freed with drm_property_destroy.
*
* Userspace is only allowed to set one of the predefined values for enumeration
* properties.
*
* Returns:
* A pointer to the newly created property on success, NULL on failure.
*/
struct drm_property *drm_property_create_enum(struct drm_device *dev, int flags,
const char *name,
const struct drm_prop_enum_list *props,
int num_values)
{
struct drm_property *property;
int i, ret;
flags |= DRM_MODE_PROP_ENUM;
property = drm_property_create(dev, flags, name, num_values);
if (!property)
return NULL;
for (i = 0; i < num_values; i++) {
ret = drm_property_add_enum(property, i,
props[i].type,
props[i].name);
if (ret) {
drm_property_destroy(dev, property);
return NULL;
}
}
return property;
}
EXPORT_SYMBOL(drm_property_create_enum);
/**
* drm_property_create_bitmask - create a new bitmask property type
* @dev: drm device
* @flags: flags specifying the property type
* @name: name of the property
* @props: enumeration lists with property bitflags
* @num_props: size of the @props array
* @supported_bits: bitmask of all supported enumeration values
*
* This creates a new bitmask drm property which can then be attached to a drm
* object with drm_object_attach_property. The returned property object must be
* freed with drm_property_destroy.
*
* Compared to plain enumeration properties userspace is allowed to set any
* or'ed together combination of the predefined property bitflag values
*
* Returns:
* A pointer to the newly created property on success, NULL on failure.
*/
struct drm_property *drm_property_create_bitmask(struct drm_device *dev,
int flags, const char *name,
const struct drm_prop_enum_list *props,
int num_props,
uint64_t supported_bits)
{
struct drm_property *property;
int i, ret, index = 0;
int num_values = hweight64(supported_bits);
flags |= DRM_MODE_PROP_BITMASK;
property = drm_property_create(dev, flags, name, num_values);
if (!property)
return NULL;
for (i = 0; i < num_props; i++) {
if (!(supported_bits & (1ULL << props[i].type)))
continue;
if (WARN_ON(index >= num_values)) {
drm_property_destroy(dev, property);
return NULL;
}
ret = drm_property_add_enum(property, index++,
props[i].type,
props[i].name);
if (ret) {
drm_property_destroy(dev, property);
return NULL;
}
}
return property;
}
EXPORT_SYMBOL(drm_property_create_bitmask);
static struct drm_property *property_create_range(struct drm_device *dev,
int flags, const char *name,
uint64_t min, uint64_t max)
{
struct drm_property *property;
property = drm_property_create(dev, flags, name, 2);
if (!property)
return NULL;
property->values[0] = min;
property->values[1] = max;
return property;
}
/**
* drm_property_create_range - create a new ranged property type
* @dev: drm device
* @flags: flags specifying the property type
* @name: name of the property
* @min: minimum value of the property
* @max: maximum value of the property
*
* This creates a new generic drm property which can then be attached to a drm
* object with drm_object_attach_property. The returned property object must be
* freed with drm_property_destroy.
*
* Userspace is allowed to set any integer value in the (min, max) range
* inclusive.
*
* Returns:
* A pointer to the newly created property on success, NULL on failure.
*/
struct drm_property *drm_property_create_range(struct drm_device *dev, int flags,
const char *name,
uint64_t min, uint64_t max)
{
return property_create_range(dev, DRM_MODE_PROP_RANGE | flags,
name, min, max);
}
EXPORT_SYMBOL(drm_property_create_range);
struct drm_property *drm_property_create_signed_range(struct drm_device *dev,
int flags, const char *name,
int64_t min, int64_t max)
{
return property_create_range(dev, DRM_MODE_PROP_SIGNED_RANGE | flags,
name, I642U64(min), I642U64(max));
}
EXPORT_SYMBOL(drm_property_create_signed_range);
struct drm_property *drm_property_create_object(struct drm_device *dev,
int flags, const char *name, uint32_t type)
{
struct drm_property *property;
flags |= DRM_MODE_PROP_OBJECT;
property = drm_property_create(dev, flags, name, 1);
if (!property)
return NULL;
property->values[0] = type;
return property;
}
EXPORT_SYMBOL(drm_property_create_object);
/**
* drm_property_add_enum - add a possible value to an enumeration property
* @property: enumeration property to change
* @index: index of the new enumeration
* @value: value of the new enumeration
* @name: symbolic name of the new enumeration
*
* This functions adds enumerations to a property.
*
* It's use is deprecated, drivers should use one of the more specific helpers
* to directly create the property with all enumerations already attached.
*
* Returns:
* Zero on success, error code on failure.
*/
int drm_property_add_enum(struct drm_property *property, int index,
uint64_t value, const char *name)
{
struct drm_property_enum *prop_enum;
if (!(drm_property_type_is(property, DRM_MODE_PROP_ENUM) ||
drm_property_type_is(property, DRM_MODE_PROP_BITMASK)))
return -EINVAL;
/*
* Bitmask enum properties have the additional constraint of values
* from 0 to 63
*/
if (drm_property_type_is(property, DRM_MODE_PROP_BITMASK) &&
(value > 63))
return -EINVAL;
if (!list_empty(&property->enum_list)) {
list_for_each_entry(prop_enum, &property->enum_list, head) {
if (prop_enum->value == value) {
strncpy(prop_enum->name, name, DRM_PROP_NAME_LEN);
prop_enum->name[DRM_PROP_NAME_LEN-1] = '\0';
return 0;
}
}
}
prop_enum = kzalloc(sizeof(struct drm_property_enum), GFP_KERNEL);
if (!prop_enum)
return -ENOMEM;
strncpy(prop_enum->name, name, DRM_PROP_NAME_LEN);
prop_enum->name[DRM_PROP_NAME_LEN-1] = '\0';
prop_enum->value = value;
property->values[index] = value;
list_add_tail(&prop_enum->head, &property->enum_list);
return 0;
}
EXPORT_SYMBOL(drm_property_add_enum);
/**
* drm_property_destroy - destroy a drm property
* @dev: drm device
* @property: property to destry
*
* This function frees a property including any attached resources like
* enumeration values.
*/
void drm_property_destroy(struct drm_device *dev, struct drm_property *property)
{
struct drm_property_enum *prop_enum, *pt;
list_for_each_entry_safe(prop_enum, pt, &property->enum_list, head) {
list_del(&prop_enum->head);
kfree(prop_enum);
}
if (property->num_values)
kfree(property->values);
drm_mode_object_put(dev, &property->base);
list_del(&property->head);
kfree(property);
}
EXPORT_SYMBOL(drm_property_destroy);
/**
* drm_object_attach_property - attach a property to a modeset object
* @obj: drm modeset object
* @property: property to attach
* @init_val: initial value of the property
*
* This attaches the given property to the modeset object with the given initial
* value. Currently this function cannot fail since the properties are stored in
* a statically sized array.
*/
void drm_object_attach_property(struct drm_mode_object *obj,
struct drm_property *property,
uint64_t init_val)
{
int count = obj->properties->count;
if (count == DRM_OBJECT_MAX_PROPERTY) {
WARN(1, "Failed to attach object property (type: 0x%x). Please "
"increase DRM_OBJECT_MAX_PROPERTY by 1 for each time "
"you see this message on the same object type.\n",
obj->type);
return;
}
obj->properties->properties[count] = property;
obj->properties->values[count] = init_val;
obj->properties->count++;
if (property->flags & DRM_MODE_PROP_ATOMIC)
obj->properties->atomic_count++;
}
EXPORT_SYMBOL(drm_object_attach_property);
/**
* drm_object_property_set_value - set the value of a property
* @obj: drm mode object to set property value for
* @property: property to set
* @val: value the property should be set to
*
* This functions sets a given property on a given object. This function only
* changes the software state of the property, it does not call into the
* driver's ->set_property callback.
*
* Returns:
* Zero on success, error code on failure.
*/
int drm_object_property_set_value(struct drm_mode_object *obj,
struct drm_property *property, uint64_t val)
{
int i;
for (i = 0; i < obj->properties->count; i++) {
if (obj->properties->properties[i] == property) {
obj->properties->values[i] = val;
return 0;
}
}
return -EINVAL;
}
EXPORT_SYMBOL(drm_object_property_set_value);
/**
* drm_object_property_get_value - retrieve the value of a property
* @obj: drm mode object to get property value from
* @property: property to retrieve
* @val: storage for the property value
*
* This function retrieves the softare state of the given property for the given
* property. Since there is no driver callback to retrieve the current property
* value this might be out of sync with the hardware, depending upon the driver
* and property.
*
* Returns:
* Zero on success, error code on failure.
*/
int drm_object_property_get_value(struct drm_mode_object *obj,
struct drm_property *property, uint64_t *val)
{
int i;
/* read-only properties bypass atomic mechanism and still store
* their value in obj->properties->values[].. mostly to avoid
* having to deal w/ EDID and similar props in atomic paths:
*/
if (drm_core_check_feature(property->dev, DRIVER_ATOMIC) &&
!(property->flags & DRM_MODE_PROP_IMMUTABLE))
return drm_atomic_get_property(obj, property, val);
for (i = 0; i < obj->properties->count; i++) {
if (obj->properties->properties[i] == property) {
*val = obj->properties->values[i];
return 0;
}
}
return -EINVAL;
}
EXPORT_SYMBOL(drm_object_property_get_value);
/**
* drm_mode_getproperty_ioctl - get the property metadata
* @dev: DRM device
* @data: ioctl data
* @file_priv: DRM file info
*
* This function retrieves the metadata for a given property, like the different
* possible values for an enum property or the limits for a range property.
*
* Blob properties are special
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_getproperty_ioctl(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_get_property *out_resp = data;
struct drm_property *property;
int enum_count = 0;
int value_count = 0;
int ret = 0, i;
int copied;
struct drm_property_enum *prop_enum;
struct drm_mode_property_enum __user *enum_ptr;
uint64_t __user *values_ptr;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
drm_modeset_lock_all(dev);
property = drm_property_find(dev, out_resp->prop_id);
if (!property) {
ret = -ENOENT;
goto done;
}
if (drm_property_type_is(property, DRM_MODE_PROP_ENUM) ||
drm_property_type_is(property, DRM_MODE_PROP_BITMASK)) {
list_for_each_entry(prop_enum, &property->enum_list, head)
enum_count++;
}
value_count = property->num_values;
strncpy(out_resp->name, property->name, DRM_PROP_NAME_LEN);
out_resp->name[DRM_PROP_NAME_LEN-1] = 0;
out_resp->flags = property->flags;
if ((out_resp->count_values >= value_count) && value_count) {
values_ptr = (uint64_t __user *)(unsigned long)out_resp->values_ptr;
for (i = 0; i < value_count; i++) {
if (copy_to_user(values_ptr + i, &property->values[i], sizeof(uint64_t))) {
ret = -EFAULT;
goto done;
}
}
}
out_resp->count_values = value_count;
if (drm_property_type_is(property, DRM_MODE_PROP_ENUM) ||
drm_property_type_is(property, DRM_MODE_PROP_BITMASK)) {
if ((out_resp->count_enum_blobs >= enum_count) && enum_count) {
copied = 0;
enum_ptr = (struct drm_mode_property_enum __user *)(unsigned long)out_resp->enum_blob_ptr;
list_for_each_entry(prop_enum, &property->enum_list, head) {
if (copy_to_user(&enum_ptr[copied].value, &prop_enum->value, sizeof(uint64_t))) {
ret = -EFAULT;
goto done;
}
if (copy_to_user(&enum_ptr[copied].name,
&prop_enum->name, DRM_PROP_NAME_LEN)) {
ret = -EFAULT;
goto done;
}
copied++;
}
}
out_resp->count_enum_blobs = enum_count;
}
/*
* NOTE: The idea seems to have been to use this to read all the blob
* property values. But nothing ever added them to the corresponding
* list, userspace always used the special-purpose get_blob ioctl to
* read the value for a blob property. It also doesn't make a lot of
* sense to return values here when everything else is just metadata for
* the property itself.
*/
if (drm_property_type_is(property, DRM_MODE_PROP_BLOB))
out_resp->count_enum_blobs = 0;
done:
drm_modeset_unlock_all(dev);
return ret;
}
static struct drm_property_blob *
drm_property_create_blob(struct drm_device *dev, size_t length,
const void *data)
{
struct drm_property_blob *blob;
int ret;
if (!length || !data)
return NULL;
blob = kzalloc(sizeof(struct drm_property_blob)+length, GFP_KERNEL);
if (!blob)
return NULL;
ret = drm_mode_object_get(dev, &blob->base, DRM_MODE_OBJECT_BLOB);
if (ret) {
kfree(blob);
return NULL;
}
blob->length = length;
memcpy(blob->data, data, length);
list_add_tail(&blob->head, &dev->mode_config.property_blob_list);
return blob;
}
static void drm_property_destroy_blob(struct drm_device *dev,
struct drm_property_blob *blob)
{
drm_mode_object_put(dev, &blob->base);
list_del(&blob->head);
kfree(blob);
}
/**
* drm_mode_getblob_ioctl - get the contents of a blob property value
* @dev: DRM device
* @data: ioctl data
* @file_priv: DRM file info
*
* This function retrieves the contents of a blob property. The value stored in
* an object's blob property is just a normal modeset object id.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_getblob_ioctl(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_get_blob *out_resp = data;
struct drm_property_blob *blob;
int ret = 0;
void __user *blob_ptr;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
drm_modeset_lock_all(dev);
blob = drm_property_blob_find(dev, out_resp->blob_id);
if (!blob) {
ret = -ENOENT;
goto done;
}
if (out_resp->length == blob->length) {
blob_ptr = (void __user *)(unsigned long)out_resp->data;
if (copy_to_user(blob_ptr, blob->data, blob->length)) {
ret = -EFAULT;
goto done;
}
}
out_resp->length = blob->length;
done:
drm_modeset_unlock_all(dev);
return ret;
}
/**
* drm_mode_connector_set_path_property - set tile property on connector
* @connector: connector to set property on.
* @path: path to use for property.
*
* This creates a property to expose to userspace to specify a
* connector path. This is mainly used for DisplayPort MST where
* connectors have a topology and we want to allow userspace to give
* them more meaningful names.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_connector_set_path_property(struct drm_connector *connector,
const char *path)
{
struct drm_device *dev = connector->dev;
size_t size = strlen(path) + 1;
int ret;
connector->path_blob_ptr = drm_property_create_blob(connector->dev,
size, path);
if (!connector->path_blob_ptr)
return -EINVAL;
ret = drm_object_property_set_value(&connector->base,
dev->mode_config.path_property,
connector->path_blob_ptr->base.id);
return ret;
}
EXPORT_SYMBOL(drm_mode_connector_set_path_property);
/**
* drm_mode_connector_set_tile_property - set tile property on connector
* @connector: connector to set property on.
*
* This looks up the tile information for a connector, and creates a
* property for userspace to parse if it exists. The property is of
* the form of 8 integers using ':' as a separator.
*
* Returns:
* Zero on success, errno on failure.
*/
int drm_mode_connector_set_tile_property(struct drm_connector *connector)
{
struct drm_device *dev = connector->dev;
int ret, size;
char tile[256];
if (connector->tile_blob_ptr)
drm_property_destroy_blob(dev, connector->tile_blob_ptr);
if (!connector->has_tile) {
connector->tile_blob_ptr = NULL;
ret = drm_object_property_set_value(&connector->base,
dev->mode_config.tile_property, 0);
return ret;
}
snprintf(tile, 256, "%d:%d:%d:%d:%d:%d:%d:%d",
connector->tile_group->id, connector->tile_is_single_monitor,
connector->num_h_tile, connector->num_v_tile,
connector->tile_h_loc, connector->tile_v_loc,
connector->tile_h_size, connector->tile_v_size);
size = strlen(tile) + 1;
connector->tile_blob_ptr = drm_property_create_blob(connector->dev,
size, tile);
if (!connector->tile_blob_ptr)
return -EINVAL;
ret = drm_object_property_set_value(&connector->base,
dev->mode_config.tile_property,
connector->tile_blob_ptr->base.id);
return ret;
}
EXPORT_SYMBOL(drm_mode_connector_set_tile_property);
/**
* drm_mode_connector_update_edid_property - update the edid property of a connector
* @connector: drm connector
* @edid: new value of the edid property
*
* This function creates a new blob modeset object and assigns its id to the
* connector's edid property.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_connector_update_edid_property(struct drm_connector *connector,
const struct edid *edid)
{
struct drm_device *dev = connector->dev;
size_t size;
int ret;
/* ignore requests to set edid when overridden */
if (connector->override_edid)
return 0;
if (connector->edid_blob_ptr)
drm_property_destroy_blob(dev, connector->edid_blob_ptr);
/* Delete edid, when there is none. */
if (!edid) {
connector->edid_blob_ptr = NULL;
ret = drm_object_property_set_value(&connector->base, dev->mode_config.edid_property, 0);
return ret;
}
size = EDID_LENGTH * (1 + edid->extensions);
connector->edid_blob_ptr = drm_property_create_blob(connector->dev,
size, edid);
if (!connector->edid_blob_ptr)
return -EINVAL;
ret = drm_object_property_set_value(&connector->base,
dev->mode_config.edid_property,
connector->edid_blob_ptr->base.id);
return ret;
}
EXPORT_SYMBOL(drm_mode_connector_update_edid_property);
/* Some properties could refer to dynamic refcnt'd objects, or things that
* need special locking to handle lifetime issues (ie. to ensure the prop
* value doesn't become invalid part way through the property update due to
* race). The value returned by reference via 'obj' should be passed back
* to drm_property_change_valid_put() after the property is set (and the
* object to which the property is attached has a chance to take it's own
* reference).
*/
static bool drm_property_change_valid_get(struct drm_property *property,
uint64_t value, struct drm_mode_object **ref)
{
int i;
if (property->flags & DRM_MODE_PROP_IMMUTABLE)
return false;
*ref = NULL;
if (drm_property_type_is(property, DRM_MODE_PROP_RANGE)) {
if (value < property->values[0] || value > property->values[1])
return false;
return true;
} else if (drm_property_type_is(property, DRM_MODE_PROP_SIGNED_RANGE)) {
int64_t svalue = U642I64(value);
if (svalue < U642I64(property->values[0]) ||
svalue > U642I64(property->values[1]))
return false;
return true;
} else if (drm_property_type_is(property, DRM_MODE_PROP_BITMASK)) {
uint64_t valid_mask = 0;
for (i = 0; i < property->num_values; i++)
valid_mask |= (1ULL << property->values[i]);
return !(value & ~valid_mask);
} else if (drm_property_type_is(property, DRM_MODE_PROP_BLOB)) {
/* Only the driver knows */
return true;
} else if (drm_property_type_is(property, DRM_MODE_PROP_OBJECT)) {
/* a zero value for an object property translates to null: */
if (value == 0)
return true;
/* handle refcnt'd objects specially: */
if (property->values[0] == DRM_MODE_OBJECT_FB) {
struct drm_framebuffer *fb;
fb = drm_framebuffer_lookup(property->dev, value);
if (fb) {
*ref = &fb->base;
return true;
} else {
return false;
}
} else {
return _object_find(property->dev, value, property->values[0]) != NULL;
}
} else {
int i;
for (i = 0; i < property->num_values; i++)
if (property->values[i] == value)
return true;
return false;
}
for (i = 0; i < property->num_values; i++)
if (property->values[i] == value)
return true;
return false;
}
static void drm_property_change_valid_put(struct drm_property *property,
struct drm_mode_object *ref)
{
if (!ref)
return;
if (drm_property_type_is(property, DRM_MODE_PROP_OBJECT)) {
if (property->values[0] == DRM_MODE_OBJECT_FB)
drm_framebuffer_unreference(obj_to_fb(ref));
}
}
/**
* drm_mode_connector_property_set_ioctl - set the current value of a connector property
* @dev: DRM device
* @data: ioctl data
* @file_priv: DRM file info
*
* This function sets the current value for a connectors's property. It also
* calls into a driver's ->set_property callback to update the hardware state
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_connector_property_set_ioctl(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_connector_set_property *conn_set_prop = data;
struct drm_mode_obj_set_property obj_set_prop = {
.value = conn_set_prop->value,
.prop_id = conn_set_prop->prop_id,
.obj_id = conn_set_prop->connector_id,
.obj_type = DRM_MODE_OBJECT_CONNECTOR
};
/* It does all the locking and checking we need */
return drm_mode_obj_set_property_ioctl(dev, &obj_set_prop, file_priv);
}
static int drm_mode_connector_set_obj_prop(struct drm_mode_object *obj,
struct drm_property *property,
uint64_t value)
{
int ret = -EINVAL;
struct drm_connector *connector = obj_to_connector(obj);
/* Do DPMS ourselves */
if (property == connector->dev->mode_config.dpms_property) {
if (connector->funcs->dpms)
(*connector->funcs->dpms)(connector, (int)value);
ret = 0;
} else if (connector->funcs->set_property)
ret = connector->funcs->set_property(connector, property, value);
/* store the property value if successful */
if (!ret)
drm_object_property_set_value(&connector->base, property, value);
return ret;
}
static int drm_mode_crtc_set_obj_prop(struct drm_mode_object *obj,
struct drm_property *property,
uint64_t value)
{
int ret = -EINVAL;
struct drm_crtc *crtc = obj_to_crtc(obj);
if (crtc->funcs->set_property)
ret = crtc->funcs->set_property(crtc, property, value);
if (!ret)
drm_object_property_set_value(obj, property, value);
return ret;
}
/**
* drm_mode_plane_set_obj_prop - set the value of a property
* @plane: drm plane object to set property value for
* @property: property to set
* @value: value the property should be set to
*
* This functions sets a given property on a given plane object. This function
* calls the driver's ->set_property callback and changes the software state of
* the property if the callback succeeds.
*
* Returns:
* Zero on success, error code on failure.
*/
int drm_mode_plane_set_obj_prop(struct drm_plane *plane,
struct drm_property *property,
uint64_t value)
{
int ret = -EINVAL;
struct drm_mode_object *obj = &plane->base;
if (plane->funcs->set_property)
ret = plane->funcs->set_property(plane, property, value);
if (!ret)
drm_object_property_set_value(obj, property, value);
return ret;
}
EXPORT_SYMBOL(drm_mode_plane_set_obj_prop);
/**
* drm_mode_obj_get_properties_ioctl - get the current value of a object's property
* @dev: DRM device
* @data: ioctl data
* @file_priv: DRM file info
*
* This function retrieves the current value for an object's property. Compared
* to the connector specific ioctl this one is extended to also work on crtc and
* plane objects.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_obj_get_properties_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_mode_obj_get_properties *arg = data;
struct drm_mode_object *obj;
int ret = 0;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
drm_modeset_lock_all(dev);
obj = drm_mode_object_find(dev, arg->obj_id, arg->obj_type);
if (!obj) {
ret = -ENOENT;
goto out;
}
if (!obj->properties) {
ret = -EINVAL;
goto out;
}
ret = get_properties(obj, file_priv->atomic,
(uint32_t __user *)(unsigned long)(arg->props_ptr),
(uint64_t __user *)(unsigned long)(arg->prop_values_ptr),
&arg->count_props);
out:
drm_modeset_unlock_all(dev);
return ret;
}
/**
* drm_mode_obj_set_property_ioctl - set the current value of an object's property
* @dev: DRM device
* @data: ioctl data
* @file_priv: DRM file info
*
* This function sets the current value for an object's property. It also calls
* into a driver's ->set_property callback to update the hardware state.
* Compared to the connector specific ioctl this one is extended to also work on
* crtc and plane objects.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_obj_set_property_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_mode_obj_set_property *arg = data;
struct drm_mode_object *arg_obj;
struct drm_mode_object *prop_obj;
struct drm_property *property;
int i, ret = -EINVAL;
struct drm_mode_object *ref;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
drm_modeset_lock_all(dev);
arg_obj = drm_mode_object_find(dev, arg->obj_id, arg->obj_type);
if (!arg_obj) {
ret = -ENOENT;
goto out;
}
if (!arg_obj->properties)
goto out;
for (i = 0; i < arg_obj->properties->count; i++)
if (arg_obj->properties->properties[i]->base.id == arg->prop_id)
break;
if (i == arg_obj->properties->count)
goto out;
prop_obj = drm_mode_object_find(dev, arg->prop_id,
DRM_MODE_OBJECT_PROPERTY);
if (!prop_obj) {
ret = -ENOENT;
goto out;
}
property = obj_to_property(prop_obj);
if (!drm_property_change_valid_get(property, arg->value, &ref))
goto out;
switch (arg_obj->type) {
case DRM_MODE_OBJECT_CONNECTOR:
ret = drm_mode_connector_set_obj_prop(arg_obj, property,
arg->value);
break;
case DRM_MODE_OBJECT_CRTC:
ret = drm_mode_crtc_set_obj_prop(arg_obj, property, arg->value);
break;
case DRM_MODE_OBJECT_PLANE:
ret = drm_mode_plane_set_obj_prop(obj_to_plane(arg_obj),
property, arg->value);
break;
}
drm_property_change_valid_put(property, ref);
out:
drm_modeset_unlock_all(dev);
return ret;
}
/**
* drm_mode_connector_attach_encoder - attach a connector to an encoder
* @connector: connector to attach
* @encoder: encoder to attach @connector to
*
* This function links up a connector to an encoder. Note that the routing
* restrictions between encoders and crtcs are exposed to userspace through the
* possible_clones and possible_crtcs bitmasks.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_connector_attach_encoder(struct drm_connector *connector,
struct drm_encoder *encoder)
{
int i;
for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) {
if (connector->encoder_ids[i] == 0) {
connector->encoder_ids[i] = encoder->base.id;
return 0;
}
}
return -ENOMEM;
}
EXPORT_SYMBOL(drm_mode_connector_attach_encoder);
/**
* drm_mode_crtc_set_gamma_size - set the gamma table size
* @crtc: CRTC to set the gamma table size for
* @gamma_size: size of the gamma table
*
* Drivers which support gamma tables should set this to the supported gamma
* table size when initializing the CRTC. Currently the drm core only supports a
* fixed gamma table size.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_crtc_set_gamma_size(struct drm_crtc *crtc,
int gamma_size)
{
crtc->gamma_size = gamma_size;
crtc->gamma_store = kcalloc(gamma_size, sizeof(uint16_t) * 3,
GFP_KERNEL);
if (!crtc->gamma_store) {
crtc->gamma_size = 0;
return -ENOMEM;
}
return 0;
}
EXPORT_SYMBOL(drm_mode_crtc_set_gamma_size);
/**
* drm_mode_gamma_set_ioctl - set the gamma table
* @dev: DRM device
* @data: ioctl data
* @file_priv: DRM file info
*
* Set the gamma table of a CRTC to the one passed in by the user. Userspace can
* inquire the required gamma table size through drm_mode_gamma_get_ioctl.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_gamma_set_ioctl(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_crtc_lut *crtc_lut = data;
struct drm_crtc *crtc;
void *r_base, *g_base, *b_base;
int size;
int ret = 0;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
drm_modeset_lock_all(dev);
crtc = drm_crtc_find(dev, crtc_lut->crtc_id);
if (!crtc) {
ret = -ENOENT;
goto out;
}
if (crtc->funcs->gamma_set == NULL) {
ret = -ENOSYS;
goto out;
}
/* memcpy into gamma store */
if (crtc_lut->gamma_size != crtc->gamma_size) {
ret = -EINVAL;
goto out;
}
size = crtc_lut->gamma_size * (sizeof(uint16_t));
r_base = crtc->gamma_store;
if (copy_from_user(r_base, (void __user *)(unsigned long)crtc_lut->red, size)) {
ret = -EFAULT;
goto out;
}
g_base = r_base + size;
if (copy_from_user(g_base, (void __user *)(unsigned long)crtc_lut->green, size)) {
ret = -EFAULT;
goto out;
}
b_base = g_base + size;
if (copy_from_user(b_base, (void __user *)(unsigned long)crtc_lut->blue, size)) {
ret = -EFAULT;
goto out;
}
crtc->funcs->gamma_set(crtc, r_base, g_base, b_base, 0, crtc->gamma_size);
out:
drm_modeset_unlock_all(dev);
return ret;
}
/**
* drm_mode_gamma_get_ioctl - get the gamma table
* @dev: DRM device
* @data: ioctl data
* @file_priv: DRM file info
*
* Copy the current gamma table into the storage provided. This also provides
* the gamma table size the driver expects, which can be used to size the
* allocated storage.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_gamma_get_ioctl(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_crtc_lut *crtc_lut = data;
struct drm_crtc *crtc;
void *r_base, *g_base, *b_base;
int size;
int ret = 0;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -EINVAL;
drm_modeset_lock_all(dev);
crtc = drm_crtc_find(dev, crtc_lut->crtc_id);
if (!crtc) {
ret = -ENOENT;
goto out;
}
/* memcpy into gamma store */
if (crtc_lut->gamma_size != crtc->gamma_size) {
ret = -EINVAL;
goto out;
}
size = crtc_lut->gamma_size * (sizeof(uint16_t));
r_base = crtc->gamma_store;
if (copy_to_user((void __user *)(unsigned long)crtc_lut->red, r_base, size)) {
ret = -EFAULT;
goto out;
}
g_base = r_base + size;
if (copy_to_user((void __user *)(unsigned long)crtc_lut->green, g_base, size)) {
ret = -EFAULT;
goto out;
}
b_base = g_base + size;
if (copy_to_user((void __user *)(unsigned long)crtc_lut->blue, b_base, size)) {
ret = -EFAULT;
goto out;
}
out:
drm_modeset_unlock_all(dev);
return ret;
}
/**
* drm_mode_page_flip_ioctl - schedule an asynchronous fb update
* @dev: DRM device
* @data: ioctl data
* @file_priv: DRM file info
*
* This schedules an asynchronous update on a given CRTC, called page flip.
* Optionally a drm event is generated to signal the completion of the event.
* Generic drivers cannot assume that a pageflip with changed framebuffer
* properties (including driver specific metadata like tiling layout) will work,
* but some drivers support e.g. pixel format changes through the pageflip
* ioctl.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_page_flip_ioctl(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_crtc_page_flip *page_flip = data;
struct drm_crtc *crtc;
struct drm_framebuffer *fb = NULL;
struct drm_pending_vblank_event *e = NULL;
unsigned long flags;
int ret = -EINVAL;
if (page_flip->flags & ~DRM_MODE_PAGE_FLIP_FLAGS ||
page_flip->reserved != 0)
return -EINVAL;
if ((page_flip->flags & DRM_MODE_PAGE_FLIP_ASYNC) && !dev->mode_config.async_page_flip)
return -EINVAL;
crtc = drm_crtc_find(dev, page_flip->crtc_id);
if (!crtc)
return -ENOENT;
drm: Per-plane locking Turned out to be much simpler on top of my latest atomic stuff than what I've feared. Some details: - Drop the modeset_lock_all snakeoil in drm_plane_init. Same justification as for the equivalent change in drm_crtc_init done in commit d0fa1af40e784aaf7ebb7ba8a17b229bb3fa4c21 Author: Daniel Vetter <daniel.vetter@ffwll.ch> Date: Mon Sep 8 09:02:49 2014 +0200 drm: Drop modeset locking from crtc init function Without these the drm_modeset_lock_init would fall over the exact same way. - Since the atomic core code wraps the locking switching it to per-plane locks was a one-line change. - For the legacy ioctls add a plane argument to the locking helper so that we can grab the right plane lock (cursor or primary). Since the universal cursor plane might not be there, or someone really crazy might forgoe the primary plane even accept NULL. - Add some locking WARN_ON to the atomic helpers for good paranoid measure and to check that it all works out. Tested on my exynos atomic hackfest with full lockdep checks and ww backoff injection. v2: I've forgotten about the load-detect code in i915. v3: Thierry reported that in latest 3.18-rc vmwgfx doesn't compile any more due to commit 21e88620aa21b48d4f62d29275e3e2944a5ea2b5 Author: Rob Clark <robdclark@gmail.com> Date: Thu Oct 30 13:39:04 2014 -0400 drm/vmwgfx: fix lock breakage Rebased and fix this up. Cc: Thierry Reding <thierry.reding@gmail.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Reviewed-by: Sean Paul <seanpaul@chromium.org> Signed-off-by: Dave Airlie <airlied@redhat.com>
2014-11-11 17:12:00 +08:00
drm_modeset_lock_crtc(crtc, crtc->primary);
if (crtc->primary->fb == NULL) {
drm: Return EBUSY if the framebuffer is unbound when flipping. It looks like there is a race condition between unbinding a framebuffer on a hotplug event and user space trying to flip: BUG: unable to handle kernel NULL pointer dereference at 0000000000000058 IP: [<ffffffffa008c7d3>] intel_crtc_page_flip+0xc9/0x39c [i915] PGD 114724067 PUD 1145bd067 PMD 0 Oops: 0000 [#1] SMP Pid: 10954, comm: X Not tainted 2.6.35-rc5_stable_20100714+ #1 P5Q-EM/P5Q-EM RIP: 0010:[<ffffffffa008c7d3>] [<ffffffffa008c7d3>] intel_crtc_page_flip+0xc9/0x39c [i915] RSP: 0018:ffff880114927cc8 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffff88012df48320 RCX: ffff88010c945600 RDX: ffff880001a109c8 RSI: ffff88010c945840 RDI: ffff88012df48320 RBP: ffff880114927d18 R08: ffff88012df48280 R09: ffff88012df48320 R10: 0000000003c2e0b0 R11: 0000000000003246 R12: ffff88010c945840 R13: ffff88012df48000 R14: 0000000000000060 R15: ffff88012dbb8000 FS: 00007f9e6078e830(0000) GS:ffff880001a00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 0000000000000058 CR3: 00000001177a8000 CR4: 00000000000406f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process X (pid: 10954, threadinfo ffff880114926000, task ffff88012a4a1690) Stack: ffff88010c945600 ffff880115b176c0 ffff88012db10000 0000000000000246 <0> fffffff40006101c ffff88010c945600 00000000ffffffea ffff88010c945600 <0> ffff88012df48320 ffff88011b4b6780 ffff880114927d78 ffffffffa003bd0e Call Trace: [<ffffffffa003bd0e>] drm_mode_page_flip_ioctl+0x1bc/0x214 [drm] [<ffffffffa00311fc>] drm_ioctl+0x25e/0x35e [drm] [<ffffffffa003bb52>] ? drm_mode_page_flip_ioctl+0x0/0x214 [drm] [<ffffffff810f1c3c>] vfs_ioctl+0x2a/0x9e [<ffffffff810f227e>] do_vfs_ioctl+0x531/0x565 [<ffffffff810f2307>] sys_ioctl+0x55/0x77 [<ffffffff810e56d6>] ? sys_read+0x47/0x6f [<ffffffff81002a2b>] system_call_fastpath+0x16/0x1b Code: 45 d4 f4 ff ff ff 0f 84 e0 02 00 00 48 8b 4d b0 49 8d 9d 20 03 00 00 48 89 df 49 89 4c 24 38 49 8b 07 49 89 44 24 20 49 8b 47 20 <48> 8b 40 58 49 c7 04 24 00 00 00 00 49 c7 44 24 18 a9 a5 08 a0 RIP [<ffffffffa008c7d3>] intel_crtc_page_flip+0xc9/0x39c [i915] RSP <ffff880114927cc8> CR2: 0000000000000058 References: Bug 28811 - [page-flipping] GPU hang when modeset after unplugging another monitor (under compiz) https://bugs.freedesktop.org/show_bug.cgi?id=28811 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> Signed-off-by: Dave Airlie <airlied@redhat.com>
2010-07-18 03:23:26 +08:00
/* The framebuffer is currently unbound, presumably
* due to a hotplug event, that userspace has not
* yet discovered.
*/
ret = -EBUSY;
goto out;
}
if (crtc->funcs->page_flip == NULL)
goto out;
fb = drm_framebuffer_lookup(dev, page_flip->fb_id);
if (!fb) {
ret = -ENOENT;
goto out;
}
ret = drm_crtc_check_viewport(crtc, crtc->x, crtc->y, &crtc->mode, fb);
if (ret)
goto out;
if (crtc->primary->fb->pixel_format != fb->pixel_format) {
DRM_DEBUG_KMS("Page flip is not allowed to change frame buffer format.\n");
ret = -EINVAL;
goto out;
}
if (page_flip->flags & DRM_MODE_PAGE_FLIP_EVENT) {
ret = -ENOMEM;
spin_lock_irqsave(&dev->event_lock, flags);
if (file_priv->event_space < sizeof(e->event)) {
spin_unlock_irqrestore(&dev->event_lock, flags);
goto out;
}
file_priv->event_space -= sizeof(e->event);
spin_unlock_irqrestore(&dev->event_lock, flags);
e = kzalloc(sizeof(*e), GFP_KERNEL);
if (e == NULL) {
spin_lock_irqsave(&dev->event_lock, flags);
file_priv->event_space += sizeof(e->event);
spin_unlock_irqrestore(&dev->event_lock, flags);
goto out;
}
e->event.base.type = DRM_EVENT_FLIP_COMPLETE;
e->event.base.length = sizeof(e->event);
e->event.user_data = page_flip->user_data;
e->base.event = &e->event.base;
e->base.file_priv = file_priv;
e->base.destroy =
(void (*) (struct drm_pending_event *)) kfree;
}
crtc->primary->old_fb = crtc->primary->fb;
ret = crtc->funcs->page_flip(crtc, fb, e, page_flip->flags);
if (ret) {
if (page_flip->flags & DRM_MODE_PAGE_FLIP_EVENT) {
spin_lock_irqsave(&dev->event_lock, flags);
file_priv->event_space += sizeof(e->event);
spin_unlock_irqrestore(&dev->event_lock, flags);
kfree(e);
}
/* Keep the old fb, don't unref it. */
crtc->primary->old_fb = NULL;
} else {
/*
* Warn if the driver hasn't properly updated the crtc->fb
* field to reflect that the new framebuffer is now used.
* Failing to do so will screw with the reference counting
* on framebuffers.
*/
WARN_ON(crtc->primary->fb != fb);
/* Unref only the old framebuffer. */
fb = NULL;
}
out:
if (fb)
drm_framebuffer_unreference(fb);
if (crtc->primary->old_fb)
drm_framebuffer_unreference(crtc->primary->old_fb);
crtc->primary->old_fb = NULL;
drm_modeset_unlock_crtc(crtc);
drm: only grab the crtc lock for pageflips The pagelip ioctl itself is rather simply, so the hard work for this patch is auditing all the drivers: - exynos: Pageflip is protect with dev->struct_mutex and ... synchronous. But nothing fancy going on, besides a check whether the crtc is enabled, which should probably be somewhere in the drm core so that we have unified behaviour across all drivers. - i915: hw-state is protected with dev->struct_mutex, the delayed unpin work together with the other stuff the pageflip complete irq handler needs is protected by the event_lock spinlock. - nouveau: With the pin/unpin functions fixed, everything looks safe: A bit of ttm wrestling and refcounting, and a few channel accesses. The later are either already proteced sufficiently, or are now safe with the channel locking introduced to make cursor updates safe. - radeon: The irq_get/put functions look a bit race, since the atomic_inc/dec isn't protect with locks. Otoh they're all per-crtc, so we should be safe with per-crtc locking from the drm core. Then there's tons of per-crtc register access, which could potentially go through the indirect reg acces. But that's fixed to make cursor updates concurrent. Bookeeping for the drm even is also protected with the even_lock, which also protects against the pageflip irq handler since radeon hw seems to have no way to queue these up asynchronously. Otherwise just a bit of ttm-based buffer handling and fencing, which is now safe with the previous patch to hold bdev->fence_lock while grabbing the ttm fence. - shmob: Only one crtc. That's an easy one ... - vmwgfx: As usual a bit special with tons different things: - Flippable check using is_implicit and num_implicit. Changes to those seem to be nicely covered with the global modeset lock, so we should be fine. - Some dirty cliprect handling stuff, or at least that is my guess. Looks like it's fine since either it's per-crtc, invariant or (like the execbuf stuff launched) protected otherwise. - Adding the actual flip to the fence_event list. On a quick look this seems to have solid locking in place, too. ... but generally this is all way over my head. - imx: Impressive display of races between the page_flip implementation and the irq handler. Also, ipu_drm_set_base which gets eventually called from the irq handler to update the display base isn't really protected against concurrent set_config calls from process context. In any case, going for per-crtc locking won't make this worse, so nothing to do. - omap: The new async callback code merged into 3.8 seems to have solid locking in place, and there doesn't seem to be any shared state at risk. Especially since the callbacks still use modeset_lock_all and are so not converted. v2: Update omapdrm analysis to 3.8 code per the discussion with Rob Clark. Reviewed-by: Rob Clark <rob@ti.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-12-11 23:59:31 +08:00
return ret;
}
/**
* drm_mode_config_reset - call ->reset callbacks
* @dev: drm device
*
* This functions calls all the crtc's, encoder's and connector's ->reset
* callback. Drivers can use this in e.g. their driver load or resume code to
* reset hardware and software state.
*/
void drm_mode_config_reset(struct drm_device *dev)
{
struct drm_crtc *crtc;
struct drm_plane *plane;
struct drm_encoder *encoder;
struct drm_connector *connector;
list_for_each_entry(plane, &dev->mode_config.plane_list, head)
if (plane->funcs->reset)
plane->funcs->reset(plane);
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
if (crtc->funcs->reset)
crtc->funcs->reset(crtc);
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
if (encoder->funcs->reset)
encoder->funcs->reset(encoder);
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
connector->status = connector_status_unknown;
if (connector->funcs->reset)
connector->funcs->reset(connector);
}
}
EXPORT_SYMBOL(drm_mode_config_reset);
/**
* drm_mode_create_dumb_ioctl - create a dumb backing storage buffer
* @dev: DRM device
* @data: ioctl data
* @file_priv: DRM file info
*
* This creates a new dumb buffer in the driver's backing storage manager (GEM,
* TTM or something else entirely) and returns the resulting buffer handle. This
* handle can then be wrapped up into a framebuffer modeset object.
*
* Note that userspace is not allowed to use such objects for render
* acceleration - drivers must create their own private ioctls for such a use
* case.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_create_dumb_ioctl(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_create_dumb *args = data;
u32 cpp, stride, size;
if (!dev->driver->dumb_create)
return -ENOSYS;
if (!args->width || !args->height || !args->bpp)
return -EINVAL;
/* overflow checks for 32bit size calculations */
/* NOTE: DIV_ROUND_UP() can overflow */
cpp = DIV_ROUND_UP(args->bpp, 8);
if (!cpp || cpp > 0xffffffffU / args->width)
return -EINVAL;
stride = cpp * args->width;
if (args->height > 0xffffffffU / stride)
return -EINVAL;
/* test for wrap-around */
size = args->height * stride;
if (PAGE_ALIGN(size) == 0)
return -EINVAL;
/*
* handle, pitch and size are output parameters. Zero them out to
* prevent drivers from accidentally using uninitialized data. Since
* not all existing userspace is clearing these fields properly we
* cannot reject IOCTL with garbage in them.
*/
args->handle = 0;
args->pitch = 0;
args->size = 0;
return dev->driver->dumb_create(file_priv, dev, args);
}
/**
* drm_mode_mmap_dumb_ioctl - create an mmap offset for a dumb backing storage buffer
* @dev: DRM device
* @data: ioctl data
* @file_priv: DRM file info
*
* Allocate an offset in the drm device node's address space to be able to
* memory map a dumb buffer.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_mmap_dumb_ioctl(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_map_dumb *args = data;
/* call driver ioctl to get mmap offset */
if (!dev->driver->dumb_map_offset)
return -ENOSYS;
return dev->driver->dumb_map_offset(file_priv, dev, args->handle, &args->offset);
}
/**
* drm_mode_destroy_dumb_ioctl - destroy a dumb backing strage buffer
* @dev: DRM device
* @data: ioctl data
* @file_priv: DRM file info
*
* This destroys the userspace handle for the given dumb backing storage buffer.
* Since buffer objects must be reference counted in the kernel a buffer object
* won't be immediately freed if a framebuffer modeset object still uses it.
*
* Called by the user via ioctl.
*
* Returns:
* Zero on success, negative errno on failure.
*/
int drm_mode_destroy_dumb_ioctl(struct drm_device *dev,
void *data, struct drm_file *file_priv)
{
struct drm_mode_destroy_dumb *args = data;
if (!dev->driver->dumb_destroy)
return -ENOSYS;
return dev->driver->dumb_destroy(file_priv, dev, args->handle);
}
/**
* drm_fb_get_bpp_depth - get the bpp/depth values for format
* @format: pixel format (DRM_FORMAT_*)
* @depth: storage for the depth value
* @bpp: storage for the bpp value
*
* This only supports RGB formats here for compat with code that doesn't use
* pixel formats directly yet.
*/
void drm_fb_get_bpp_depth(uint32_t format, unsigned int *depth,
int *bpp)
{
switch (format) {
case DRM_FORMAT_C8:
case DRM_FORMAT_RGB332:
case DRM_FORMAT_BGR233:
*depth = 8;
*bpp = 8;
break;
case DRM_FORMAT_XRGB1555:
case DRM_FORMAT_XBGR1555:
case DRM_FORMAT_RGBX5551:
case DRM_FORMAT_BGRX5551:
case DRM_FORMAT_ARGB1555:
case DRM_FORMAT_ABGR1555:
case DRM_FORMAT_RGBA5551:
case DRM_FORMAT_BGRA5551:
*depth = 15;
*bpp = 16;
break;
case DRM_FORMAT_RGB565:
case DRM_FORMAT_BGR565:
*depth = 16;
*bpp = 16;
break;
case DRM_FORMAT_RGB888:
case DRM_FORMAT_BGR888:
*depth = 24;
*bpp = 24;
break;
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_RGBX8888:
case DRM_FORMAT_BGRX8888:
*depth = 24;
*bpp = 32;
break;
case DRM_FORMAT_XRGB2101010:
case DRM_FORMAT_XBGR2101010:
case DRM_FORMAT_RGBX1010102:
case DRM_FORMAT_BGRX1010102:
case DRM_FORMAT_ARGB2101010:
case DRM_FORMAT_ABGR2101010:
case DRM_FORMAT_RGBA1010102:
case DRM_FORMAT_BGRA1010102:
*depth = 30;
*bpp = 32;
break;
case DRM_FORMAT_ARGB8888:
case DRM_FORMAT_ABGR8888:
case DRM_FORMAT_RGBA8888:
case DRM_FORMAT_BGRA8888:
*depth = 32;
*bpp = 32;
break;
default:
DRM_DEBUG_KMS("unsupported pixel format %s\n",
drm_get_format_name(format));
*depth = 0;
*bpp = 0;
break;
}
}
EXPORT_SYMBOL(drm_fb_get_bpp_depth);
/**
* drm_format_num_planes - get the number of planes for format
* @format: pixel format (DRM_FORMAT_*)
*
* Returns:
* The number of planes used by the specified pixel format.
*/
int drm_format_num_planes(uint32_t format)
{
switch (format) {
case DRM_FORMAT_YUV410:
case DRM_FORMAT_YVU410:
case DRM_FORMAT_YUV411:
case DRM_FORMAT_YVU411:
case DRM_FORMAT_YUV420:
case DRM_FORMAT_YVU420:
case DRM_FORMAT_YUV422:
case DRM_FORMAT_YVU422:
case DRM_FORMAT_YUV444:
case DRM_FORMAT_YVU444:
return 3;
case DRM_FORMAT_NV12:
case DRM_FORMAT_NV21:
case DRM_FORMAT_NV16:
case DRM_FORMAT_NV61:
case DRM_FORMAT_NV24:
case DRM_FORMAT_NV42:
return 2;
default:
return 1;
}
}
EXPORT_SYMBOL(drm_format_num_planes);
/**
* drm_format_plane_cpp - determine the bytes per pixel value
* @format: pixel format (DRM_FORMAT_*)
* @plane: plane index
*
* Returns:
* The bytes per pixel value for the specified plane.
*/
int drm_format_plane_cpp(uint32_t format, int plane)
{
unsigned int depth;
int bpp;
if (plane >= drm_format_num_planes(format))
return 0;
switch (format) {
case DRM_FORMAT_YUYV:
case DRM_FORMAT_YVYU:
case DRM_FORMAT_UYVY:
case DRM_FORMAT_VYUY:
return 2;
case DRM_FORMAT_NV12:
case DRM_FORMAT_NV21:
case DRM_FORMAT_NV16:
case DRM_FORMAT_NV61:
case DRM_FORMAT_NV24:
case DRM_FORMAT_NV42:
return plane ? 2 : 1;
case DRM_FORMAT_YUV410:
case DRM_FORMAT_YVU410:
case DRM_FORMAT_YUV411:
case DRM_FORMAT_YVU411:
case DRM_FORMAT_YUV420:
case DRM_FORMAT_YVU420:
case DRM_FORMAT_YUV422:
case DRM_FORMAT_YVU422:
case DRM_FORMAT_YUV444:
case DRM_FORMAT_YVU444:
return 1;
default:
drm_fb_get_bpp_depth(format, &depth, &bpp);
return bpp >> 3;
}
}
EXPORT_SYMBOL(drm_format_plane_cpp);
/**
* drm_format_horz_chroma_subsampling - get the horizontal chroma subsampling factor
* @format: pixel format (DRM_FORMAT_*)
*
* Returns:
* The horizontal chroma subsampling factor for the
* specified pixel format.
*/
int drm_format_horz_chroma_subsampling(uint32_t format)
{
switch (format) {
case DRM_FORMAT_YUV411:
case DRM_FORMAT_YVU411:
case DRM_FORMAT_YUV410:
case DRM_FORMAT_YVU410:
return 4;
case DRM_FORMAT_YUYV:
case DRM_FORMAT_YVYU:
case DRM_FORMAT_UYVY:
case DRM_FORMAT_VYUY:
case DRM_FORMAT_NV12:
case DRM_FORMAT_NV21:
case DRM_FORMAT_NV16:
case DRM_FORMAT_NV61:
case DRM_FORMAT_YUV422:
case DRM_FORMAT_YVU422:
case DRM_FORMAT_YUV420:
case DRM_FORMAT_YVU420:
return 2;
default:
return 1;
}
}
EXPORT_SYMBOL(drm_format_horz_chroma_subsampling);
/**
* drm_format_vert_chroma_subsampling - get the vertical chroma subsampling factor
* @format: pixel format (DRM_FORMAT_*)
*
* Returns:
* The vertical chroma subsampling factor for the
* specified pixel format.
*/
int drm_format_vert_chroma_subsampling(uint32_t format)
{
switch (format) {
case DRM_FORMAT_YUV410:
case DRM_FORMAT_YVU410:
return 4;
case DRM_FORMAT_YUV420:
case DRM_FORMAT_YVU420:
case DRM_FORMAT_NV12:
case DRM_FORMAT_NV21:
return 2;
default:
return 1;
}
}
EXPORT_SYMBOL(drm_format_vert_chroma_subsampling);
/**
* drm_rotation_simplify() - Try to simplify the rotation
* @rotation: Rotation to be simplified
* @supported_rotations: Supported rotations
*
* Attempt to simplify the rotation to a form that is supported.
* Eg. if the hardware supports everything except DRM_REFLECT_X
* one could call this function like this:
*
* drm_rotation_simplify(rotation, BIT(DRM_ROTATE_0) |
* BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_180) |
* BIT(DRM_ROTATE_270) | BIT(DRM_REFLECT_Y));
*
* to eliminate the DRM_ROTATE_X flag. Depending on what kind of
* transforms the hardware supports, this function may not
* be able to produce a supported transform, so the caller should
* check the result afterwards.
*/
unsigned int drm_rotation_simplify(unsigned int rotation,
unsigned int supported_rotations)
{
if (rotation & ~supported_rotations) {
rotation ^= BIT(DRM_REFLECT_X) | BIT(DRM_REFLECT_Y);
rotation = (rotation & ~0xf) | BIT((ffs(rotation & 0xf) + 1) % 4);
}
return rotation;
}
EXPORT_SYMBOL(drm_rotation_simplify);
/**
* drm_mode_config_init - initialize DRM mode_configuration structure
* @dev: DRM device
*
* Initialize @dev's mode_config structure, used for tracking the graphics
* configuration of @dev.
*
* Since this initializes the modeset locks, no locking is possible. Which is no
* problem, since this should happen single threaded at init time. It is the
* driver's problem to ensure this guarantee.
*
*/
void drm_mode_config_init(struct drm_device *dev)
{
mutex_init(&dev->mode_config.mutex);
drm_modeset_lock_init(&dev->mode_config.connection_mutex);
mutex_init(&dev->mode_config.idr_mutex);
mutex_init(&dev->mode_config.fb_lock);
INIT_LIST_HEAD(&dev->mode_config.fb_list);
INIT_LIST_HEAD(&dev->mode_config.crtc_list);
INIT_LIST_HEAD(&dev->mode_config.connector_list);
INIT_LIST_HEAD(&dev->mode_config.bridge_list);
INIT_LIST_HEAD(&dev->mode_config.encoder_list);
INIT_LIST_HEAD(&dev->mode_config.property_list);
INIT_LIST_HEAD(&dev->mode_config.property_blob_list);
INIT_LIST_HEAD(&dev->mode_config.plane_list);
idr_init(&dev->mode_config.crtc_idr);
idr_init(&dev->mode_config.tile_idr);
drm_modeset_lock_all(dev);
drm_mode_create_standard_properties(dev);
drm_modeset_unlock_all(dev);
/* Just to be sure */
dev->mode_config.num_fb = 0;
dev->mode_config.num_connector = 0;
dev->mode_config.num_crtc = 0;
dev->mode_config.num_encoder = 0;
dev->mode_config.num_overlay_plane = 0;
dev->mode_config.num_total_plane = 0;
}
EXPORT_SYMBOL(drm_mode_config_init);
/**
* drm_mode_config_cleanup - free up DRM mode_config info
* @dev: DRM device
*
* Free up all the connectors and CRTCs associated with this DRM device, then
* free up the framebuffers and associated buffer objects.
*
* Note that since this /should/ happen single-threaded at driver/device
* teardown time, no locking is required. It's the driver's job to ensure that
* this guarantee actually holds true.
*
* FIXME: cleanup any dangling user buffer objects too
*/
void drm_mode_config_cleanup(struct drm_device *dev)
{
struct drm_connector *connector, *ot;
struct drm_crtc *crtc, *ct;
struct drm_encoder *encoder, *enct;
struct drm_bridge *bridge, *brt;
struct drm_framebuffer *fb, *fbt;
struct drm_property *property, *pt;
struct drm_property_blob *blob, *bt;
struct drm_plane *plane, *plt;
list_for_each_entry_safe(encoder, enct, &dev->mode_config.encoder_list,
head) {
encoder->funcs->destroy(encoder);
}
list_for_each_entry_safe(bridge, brt,
&dev->mode_config.bridge_list, head) {
bridge->funcs->destroy(bridge);
}
list_for_each_entry_safe(connector, ot,
&dev->mode_config.connector_list, head) {
connector->funcs->destroy(connector);
}
list_for_each_entry_safe(property, pt, &dev->mode_config.property_list,
head) {
drm_property_destroy(dev, property);
}
list_for_each_entry_safe(blob, bt, &dev->mode_config.property_blob_list,
head) {
drm_property_destroy_blob(dev, blob);
}
/*
* Single-threaded teardown context, so it's not required to grab the
* fb_lock to protect against concurrent fb_list access. Contrary, it
* would actually deadlock with the drm_framebuffer_cleanup function.
*
* Also, if there are any framebuffers left, that's a driver leak now,
* so politely WARN about this.
*/
WARN_ON(!list_empty(&dev->mode_config.fb_list));
list_for_each_entry_safe(fb, fbt, &dev->mode_config.fb_list, head) {
drm_framebuffer_remove(fb);
}
list_for_each_entry_safe(plane, plt, &dev->mode_config.plane_list,
head) {
plane->funcs->destroy(plane);
}
list_for_each_entry_safe(crtc, ct, &dev->mode_config.crtc_list, head) {
crtc->funcs->destroy(crtc);
}
idr_destroy(&dev->mode_config.tile_idr);
idr_destroy(&dev->mode_config.crtc_idr);
drm_modeset_lock_fini(&dev->mode_config.connection_mutex);
}
EXPORT_SYMBOL(drm_mode_config_cleanup);
struct drm_property *drm_mode_create_rotation_property(struct drm_device *dev,
unsigned int supported_rotations)
{
static const struct drm_prop_enum_list props[] = {
{ DRM_ROTATE_0, "rotate-0" },
{ DRM_ROTATE_90, "rotate-90" },
{ DRM_ROTATE_180, "rotate-180" },
{ DRM_ROTATE_270, "rotate-270" },
{ DRM_REFLECT_X, "reflect-x" },
{ DRM_REFLECT_Y, "reflect-y" },
};
return drm_property_create_bitmask(dev, 0, "rotation",
props, ARRAY_SIZE(props),
supported_rotations);
}
EXPORT_SYMBOL(drm_mode_create_rotation_property);
/**
* DOC: Tile group
*
* Tile groups are used to represent tiled monitors with a unique
* integer identifier. Tiled monitors using DisplayID v1.3 have
* a unique 8-byte handle, we store this in a tile group, so we
* have a common identifier for all tiles in a monitor group.
*/
static void drm_tile_group_free(struct kref *kref)
{
struct drm_tile_group *tg = container_of(kref, struct drm_tile_group, refcount);
struct drm_device *dev = tg->dev;
mutex_lock(&dev->mode_config.idr_mutex);
idr_remove(&dev->mode_config.tile_idr, tg->id);
mutex_unlock(&dev->mode_config.idr_mutex);
kfree(tg);
}
/**
* drm_mode_put_tile_group - drop a reference to a tile group.
* @dev: DRM device
* @tg: tile group to drop reference to.
*
* drop reference to tile group and free if 0.
*/
void drm_mode_put_tile_group(struct drm_device *dev,
struct drm_tile_group *tg)
{
kref_put(&tg->refcount, drm_tile_group_free);
}
/**
* drm_mode_get_tile_group - get a reference to an existing tile group
* @dev: DRM device
* @topology: 8-bytes unique per monitor.
*
* Use the unique bytes to get a reference to an existing tile group.
*
* RETURNS:
* tile group or NULL if not found.
*/
struct drm_tile_group *drm_mode_get_tile_group(struct drm_device *dev,
char topology[8])
{
struct drm_tile_group *tg;
int id;
mutex_lock(&dev->mode_config.idr_mutex);
idr_for_each_entry(&dev->mode_config.tile_idr, tg, id) {
if (!memcmp(tg->group_data, topology, 8)) {
if (!kref_get_unless_zero(&tg->refcount))
tg = NULL;
mutex_unlock(&dev->mode_config.idr_mutex);
return tg;
}
}
mutex_unlock(&dev->mode_config.idr_mutex);
return NULL;
}
/**
* drm_mode_create_tile_group - create a tile group from a displayid description
* @dev: DRM device
* @topology: 8-bytes unique per monitor.
*
* Create a tile group for the unique monitor, and get a unique
* identifier for the tile group.
*
* RETURNS:
* new tile group or error.
*/
struct drm_tile_group *drm_mode_create_tile_group(struct drm_device *dev,
char topology[8])
{
struct drm_tile_group *tg;
int ret;
tg = kzalloc(sizeof(*tg), GFP_KERNEL);
if (!tg)
return ERR_PTR(-ENOMEM);
kref_init(&tg->refcount);
memcpy(tg->group_data, topology, 8);
tg->dev = dev;
mutex_lock(&dev->mode_config.idr_mutex);
ret = idr_alloc(&dev->mode_config.tile_idr, tg, 1, 0, GFP_KERNEL);
if (ret >= 0) {
tg->id = ret;
} else {
kfree(tg);
tg = ERR_PTR(ret);
}
mutex_unlock(&dev->mode_config.idr_mutex);
return tg;
}