2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-22 20:23:57 +08:00
linux-next/crypto/async_tx/async_raid6_recov.c

532 lines
15 KiB
C
Raw Normal View History

/*
* Asynchronous RAID-6 recovery calculations ASYNC_TX API.
* Copyright(c) 2009 Intel Corporation
*
* based on raid6recov.c:
* Copyright 2002 H. Peter Anvin
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*
*/
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/raid/pq.h>
#include <linux/async_tx.h>
#include <linux/dmaengine.h>
static struct dma_async_tx_descriptor *
async_sum_product(struct page *dest, struct page **srcs, unsigned char *coef,
size_t len, struct async_submit_ctl *submit)
{
struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
&dest, 1, srcs, 2, len);
struct dma_device *dma = chan ? chan->device : NULL;
struct dmaengine_unmap_data *unmap = NULL;
const u8 *amul, *bmul;
u8 ax, bx;
u8 *a, *b, *c;
if (dma)
unmap = dmaengine_get_unmap_data(dma->dev, 3, GFP_NOWAIT);
if (unmap) {
struct device *dev = dma->dev;
dma_addr_t pq[2];
struct dma_async_tx_descriptor *tx;
enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
if (submit->flags & ASYNC_TX_FENCE)
dma_flags |= DMA_PREP_FENCE;
unmap->addr[0] = dma_map_page(dev, srcs[0], 0, len, DMA_TO_DEVICE);
unmap->addr[1] = dma_map_page(dev, srcs[1], 0, len, DMA_TO_DEVICE);
unmap->to_cnt = 2;
unmap->addr[2] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
unmap->bidi_cnt = 1;
/* engine only looks at Q, but expects it to follow P */
pq[1] = unmap->addr[2];
unmap->len = len;
tx = dma->device_prep_dma_pq(chan, pq, unmap->addr, 2, coef,
len, dma_flags);
if (tx) {
dma_set_unmap(tx, unmap);
async_tx_submit(chan, tx, submit);
dmaengine_unmap_put(unmap);
return tx;
}
/* could not get a descriptor, unmap and fall through to
* the synchronous path
*/
dmaengine_unmap_put(unmap);
}
/* run the operation synchronously */
async_tx_quiesce(&submit->depend_tx);
amul = raid6_gfmul[coef[0]];
bmul = raid6_gfmul[coef[1]];
a = page_address(srcs[0]);
b = page_address(srcs[1]);
c = page_address(dest);
while (len--) {
ax = amul[*a++];
bx = bmul[*b++];
*c++ = ax ^ bx;
}
return NULL;
}
static struct dma_async_tx_descriptor *
async_mult(struct page *dest, struct page *src, u8 coef, size_t len,
struct async_submit_ctl *submit)
{
struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
&dest, 1, &src, 1, len);
struct dma_device *dma = chan ? chan->device : NULL;
struct dmaengine_unmap_data *unmap = NULL;
const u8 *qmul; /* Q multiplier table */
u8 *d, *s;
if (dma)
unmap = dmaengine_get_unmap_data(dma->dev, 3, GFP_NOWAIT);
if (unmap) {
dma_addr_t dma_dest[2];
struct device *dev = dma->dev;
struct dma_async_tx_descriptor *tx;
enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
if (submit->flags & ASYNC_TX_FENCE)
dma_flags |= DMA_PREP_FENCE;
unmap->addr[0] = dma_map_page(dev, src, 0, len, DMA_TO_DEVICE);
unmap->to_cnt++;
unmap->addr[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
dma_dest[1] = unmap->addr[1];
unmap->bidi_cnt++;
unmap->len = len;
/* this looks funny, but the engine looks for Q at
* dma_dest[1] and ignores dma_dest[0] as a dest
* due to DMA_PREP_PQ_DISABLE_P
*/
tx = dma->device_prep_dma_pq(chan, dma_dest, unmap->addr,
1, &coef, len, dma_flags);
if (tx) {
dma_set_unmap(tx, unmap);
dmaengine_unmap_put(unmap);
async_tx_submit(chan, tx, submit);
return tx;
}
/* could not get a descriptor, unmap and fall through to
* the synchronous path
*/
dmaengine_unmap_put(unmap);
}
/* no channel available, or failed to allocate a descriptor, so
* perform the operation synchronously
*/
async_tx_quiesce(&submit->depend_tx);
qmul = raid6_gfmul[coef];
d = page_address(dest);
s = page_address(src);
while (len--)
*d++ = qmul[*s++];
return NULL;
}
static struct dma_async_tx_descriptor *
__2data_recov_4(int disks, size_t bytes, int faila, int failb,
struct page **blocks, struct async_submit_ctl *submit)
{
struct dma_async_tx_descriptor *tx = NULL;
struct page *p, *q, *a, *b;
struct page *srcs[2];
unsigned char coef[2];
enum async_tx_flags flags = submit->flags;
dma_async_tx_callback cb_fn = submit->cb_fn;
void *cb_param = submit->cb_param;
void *scribble = submit->scribble;
p = blocks[disks-2];
q = blocks[disks-1];
a = blocks[faila];
b = blocks[failb];
/* in the 4 disk case P + Pxy == P and Q + Qxy == Q */
/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
srcs[0] = p;
srcs[1] = q;
coef[0] = raid6_gfexi[failb-faila];
coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
tx = async_sum_product(b, srcs, coef, bytes, submit);
/* Dy = P+Pxy+Dx */
srcs[0] = p;
srcs[1] = b;
init_async_submit(submit, flags | ASYNC_TX_XOR_ZERO_DST, tx, cb_fn,
cb_param, scribble);
tx = async_xor(a, srcs, 0, 2, bytes, submit);
return tx;
}
static struct dma_async_tx_descriptor *
__2data_recov_5(int disks, size_t bytes, int faila, int failb,
struct page **blocks, struct async_submit_ctl *submit)
{
struct dma_async_tx_descriptor *tx = NULL;
struct page *p, *q, *g, *dp, *dq;
struct page *srcs[2];
unsigned char coef[2];
enum async_tx_flags flags = submit->flags;
dma_async_tx_callback cb_fn = submit->cb_fn;
void *cb_param = submit->cb_param;
void *scribble = submit->scribble;
int good_srcs, good, i;
good_srcs = 0;
good = -1;
for (i = 0; i < disks-2; i++) {
if (blocks[i] == NULL)
continue;
if (i == faila || i == failb)
continue;
good = i;
good_srcs++;
}
BUG_ON(good_srcs > 1);
p = blocks[disks-2];
q = blocks[disks-1];
g = blocks[good];
/* Compute syndrome with zero for the missing data pages
* Use the dead data pages as temporary storage for delta p and
* delta q
*/
dp = blocks[faila];
dq = blocks[failb];
init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
tx = async_memcpy(dp, g, 0, 0, bytes, submit);
init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
/* compute P + Pxy */
srcs[0] = dp;
srcs[1] = p;
init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
NULL, NULL, scribble);
tx = async_xor(dp, srcs, 0, 2, bytes, submit);
/* compute Q + Qxy */
srcs[0] = dq;
srcs[1] = q;
init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
NULL, NULL, scribble);
tx = async_xor(dq, srcs, 0, 2, bytes, submit);
/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
srcs[0] = dp;
srcs[1] = dq;
coef[0] = raid6_gfexi[failb-faila];
coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
tx = async_sum_product(dq, srcs, coef, bytes, submit);
/* Dy = P+Pxy+Dx */
srcs[0] = dp;
srcs[1] = dq;
init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
cb_param, scribble);
tx = async_xor(dp, srcs, 0, 2, bytes, submit);
return tx;
}
static struct dma_async_tx_descriptor *
__2data_recov_n(int disks, size_t bytes, int faila, int failb,
struct page **blocks, struct async_submit_ctl *submit)
{
struct dma_async_tx_descriptor *tx = NULL;
struct page *p, *q, *dp, *dq;
struct page *srcs[2];
unsigned char coef[2];
enum async_tx_flags flags = submit->flags;
dma_async_tx_callback cb_fn = submit->cb_fn;
void *cb_param = submit->cb_param;
void *scribble = submit->scribble;
p = blocks[disks-2];
q = blocks[disks-1];
/* Compute syndrome with zero for the missing data pages
* Use the dead data pages as temporary storage for
* delta p and delta q
*/
dp = blocks[faila];
blocks[faila] = NULL;
blocks[disks-2] = dp;
dq = blocks[failb];
blocks[failb] = NULL;
blocks[disks-1] = dq;
init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
/* Restore pointer table */
blocks[faila] = dp;
blocks[failb] = dq;
blocks[disks-2] = p;
blocks[disks-1] = q;
/* compute P + Pxy */
srcs[0] = dp;
srcs[1] = p;
init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
NULL, NULL, scribble);
tx = async_xor(dp, srcs, 0, 2, bytes, submit);
/* compute Q + Qxy */
srcs[0] = dq;
srcs[1] = q;
init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
NULL, NULL, scribble);
tx = async_xor(dq, srcs, 0, 2, bytes, submit);
/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
srcs[0] = dp;
srcs[1] = dq;
coef[0] = raid6_gfexi[failb-faila];
coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
tx = async_sum_product(dq, srcs, coef, bytes, submit);
/* Dy = P+Pxy+Dx */
srcs[0] = dp;
srcs[1] = dq;
init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
cb_param, scribble);
tx = async_xor(dp, srcs, 0, 2, bytes, submit);
return tx;
}
/**
* async_raid6_2data_recov - asynchronously calculate two missing data blocks
* @disks: number of disks in the RAID-6 array
* @bytes: block size
* @faila: first failed drive index
* @failb: second failed drive index
* @blocks: array of source pointers where the last two entries are p and q
* @submit: submission/completion modifiers
*/
struct dma_async_tx_descriptor *
async_raid6_2data_recov(int disks, size_t bytes, int faila, int failb,
struct page **blocks, struct async_submit_ctl *submit)
{
void *scribble = submit->scribble;
int non_zero_srcs, i;
BUG_ON(faila == failb);
if (failb < faila)
swap(faila, failb);
pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
/* if a dma resource is not available or a scribble buffer is not
* available punt to the synchronous path. In the 'dma not
* available' case be sure to use the scribble buffer to
* preserve the content of 'blocks' as the caller intended.
*/
if (!async_dma_find_channel(DMA_PQ) || !scribble) {
void **ptrs = scribble ? scribble : (void **) blocks;
async_tx_quiesce(&submit->depend_tx);
for (i = 0; i < disks; i++)
if (blocks[i] == NULL)
ptrs[i] = (void *) raid6_empty_zero_page;
else
ptrs[i] = page_address(blocks[i]);
raid6_2data_recov(disks, bytes, faila, failb, ptrs);
async_tx_sync_epilog(submit);
return NULL;
}
non_zero_srcs = 0;
for (i = 0; i < disks-2 && non_zero_srcs < 4; i++)
if (blocks[i])
non_zero_srcs++;
switch (non_zero_srcs) {
case 0:
case 1:
/* There must be at least 2 sources - the failed devices. */
BUG();
case 2:
/* dma devices do not uniformly understand a zero source pq
* operation (in contrast to the synchronous case), so
* explicitly handle the special case of a 4 disk array with
* both data disks missing.
*/
return __2data_recov_4(disks, bytes, faila, failb, blocks, submit);
case 3:
/* dma devices do not uniformly understand a single
* source pq operation (in contrast to the synchronous
* case), so explicitly handle the special case of a 5 disk
* array with 2 of 3 data disks missing.
*/
return __2data_recov_5(disks, bytes, faila, failb, blocks, submit);
default:
return __2data_recov_n(disks, bytes, faila, failb, blocks, submit);
}
}
EXPORT_SYMBOL_GPL(async_raid6_2data_recov);
/**
* async_raid6_datap_recov - asynchronously calculate a data and the 'p' block
* @disks: number of disks in the RAID-6 array
* @bytes: block size
* @faila: failed drive index
* @blocks: array of source pointers where the last two entries are p and q
* @submit: submission/completion modifiers
*/
struct dma_async_tx_descriptor *
async_raid6_datap_recov(int disks, size_t bytes, int faila,
struct page **blocks, struct async_submit_ctl *submit)
{
struct dma_async_tx_descriptor *tx = NULL;
struct page *p, *q, *dq;
u8 coef;
enum async_tx_flags flags = submit->flags;
dma_async_tx_callback cb_fn = submit->cb_fn;
void *cb_param = submit->cb_param;
void *scribble = submit->scribble;
int good_srcs, good, i;
struct page *srcs[2];
pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
/* if a dma resource is not available or a scribble buffer is not
* available punt to the synchronous path. In the 'dma not
* available' case be sure to use the scribble buffer to
* preserve the content of 'blocks' as the caller intended.
*/
if (!async_dma_find_channel(DMA_PQ) || !scribble) {
void **ptrs = scribble ? scribble : (void **) blocks;
async_tx_quiesce(&submit->depend_tx);
for (i = 0; i < disks; i++)
if (blocks[i] == NULL)
ptrs[i] = (void*)raid6_empty_zero_page;
else
ptrs[i] = page_address(blocks[i]);
raid6_datap_recov(disks, bytes, faila, ptrs);
async_tx_sync_epilog(submit);
return NULL;
}
good_srcs = 0;
good = -1;
for (i = 0; i < disks-2; i++) {
if (i == faila)
continue;
if (blocks[i]) {
good = i;
good_srcs++;
if (good_srcs > 1)
break;
}
}
BUG_ON(good_srcs == 0);
p = blocks[disks-2];
q = blocks[disks-1];
/* Compute syndrome with zero for the missing data page
* Use the dead data page as temporary storage for delta q
*/
dq = blocks[faila];
blocks[faila] = NULL;
blocks[disks-1] = dq;
/* in the 4-disk case we only need to perform a single source
* multiplication with the one good data block.
*/
if (good_srcs == 1) {
struct page *g = blocks[good];
init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
scribble);
tx = async_memcpy(p, g, 0, 0, bytes, submit);
init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
scribble);
tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
} else {
init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
scribble);
tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
}
/* Restore pointer table */
blocks[faila] = dq;
blocks[disks-1] = q;
/* calculate g^{-faila} */
coef = raid6_gfinv[raid6_gfexp[faila]];
srcs[0] = dq;
srcs[1] = q;
init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
NULL, NULL, scribble);
tx = async_xor(dq, srcs, 0, 2, bytes, submit);
init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
tx = async_mult(dq, dq, coef, bytes, submit);
srcs[0] = p;
srcs[1] = dq;
init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
cb_param, scribble);
tx = async_xor(p, srcs, 0, 2, bytes, submit);
return tx;
}
EXPORT_SYMBOL_GPL(async_raid6_datap_recov);
MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>");
MODULE_DESCRIPTION("asynchronous RAID-6 recovery api");
MODULE_LICENSE("GPL");