2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-28 23:23:55 +08:00
linux-next/drivers/acpi/arm64/iort.c

940 lines
22 KiB
C
Raw Normal View History

ACPI: I/O Remapping Table (IORT) initial support IORT shows representation of IO topology for ARM based systems. It describes how various components are connected together on parent-child basis e.g. PCI RC -> SMMU -> ITS. Also see IORT spec. http://infocenter.arm.com/help/topic/com.arm.doc.den0049b/DEN0049B_IO_Remapping_Table.pdf Initial support allows to detect IORT table presence and save its root pointer obtained through acpi_get_table(). The pointer validity depends on acpi_gbl_permanent_mmap because if acpi_gbl_permanent_mmap is not set while using IORT nodes we would dereference unmapped pointers. For the aforementioned reason call acpi_iort_init() from acpi_init() which guarantees acpi_gbl_permanent_mmap to be set at that point. Add generic helpers which are helpful for scanning and retrieving information from IORT table content. List of the most important helpers: - iort_find_dev_node() finds IORT node for a given device - iort_node_map_rid() maps device RID and returns IORT node which provides final translation IORT support is placed under drivers/acpi/arm64/ new directory due to its ARM64 specific nature. The code there is considered only for ARM64. The long term plan is to keep all ARM64 specific tables support in this place e.g. GTDT table. Signed-off-by: Tomasz Nowicki <tn@semihalf.com> Acked-by: Rafael J. Wysocki <rjw@rjwysocki.net> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-09-13 02:54:20 +08:00
/*
* Copyright (C) 2016, Semihalf
* Author: Tomasz Nowicki <tn@semihalf.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* This file implements early detection/parsing of I/O mapping
* reported to OS through firmware via I/O Remapping Table (IORT)
* IORT document number: ARM DEN 0049A
*/
#define pr_fmt(fmt) "ACPI: IORT: " fmt
#include <linux/acpi_iort.h>
#include <linux/iommu.h>
ACPI: I/O Remapping Table (IORT) initial support IORT shows representation of IO topology for ARM based systems. It describes how various components are connected together on parent-child basis e.g. PCI RC -> SMMU -> ITS. Also see IORT spec. http://infocenter.arm.com/help/topic/com.arm.doc.den0049b/DEN0049B_IO_Remapping_Table.pdf Initial support allows to detect IORT table presence and save its root pointer obtained through acpi_get_table(). The pointer validity depends on acpi_gbl_permanent_mmap because if acpi_gbl_permanent_mmap is not set while using IORT nodes we would dereference unmapped pointers. For the aforementioned reason call acpi_iort_init() from acpi_init() which guarantees acpi_gbl_permanent_mmap to be set at that point. Add generic helpers which are helpful for scanning and retrieving information from IORT table content. List of the most important helpers: - iort_find_dev_node() finds IORT node for a given device - iort_node_map_rid() maps device RID and returns IORT node which provides final translation IORT support is placed under drivers/acpi/arm64/ new directory due to its ARM64 specific nature. The code there is considered only for ARM64. The long term plan is to keep all ARM64 specific tables support in this place e.g. GTDT table. Signed-off-by: Tomasz Nowicki <tn@semihalf.com> Acked-by: Rafael J. Wysocki <rjw@rjwysocki.net> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-09-13 02:54:20 +08:00
#include <linux/kernel.h>
#include <linux/list.h>
ACPI: I/O Remapping Table (IORT) initial support IORT shows representation of IO topology for ARM based systems. It describes how various components are connected together on parent-child basis e.g. PCI RC -> SMMU -> ITS. Also see IORT spec. http://infocenter.arm.com/help/topic/com.arm.doc.den0049b/DEN0049B_IO_Remapping_Table.pdf Initial support allows to detect IORT table presence and save its root pointer obtained through acpi_get_table(). The pointer validity depends on acpi_gbl_permanent_mmap because if acpi_gbl_permanent_mmap is not set while using IORT nodes we would dereference unmapped pointers. For the aforementioned reason call acpi_iort_init() from acpi_init() which guarantees acpi_gbl_permanent_mmap to be set at that point. Add generic helpers which are helpful for scanning and retrieving information from IORT table content. List of the most important helpers: - iort_find_dev_node() finds IORT node for a given device - iort_node_map_rid() maps device RID and returns IORT node which provides final translation IORT support is placed under drivers/acpi/arm64/ new directory due to its ARM64 specific nature. The code there is considered only for ARM64. The long term plan is to keep all ARM64 specific tables support in this place e.g. GTDT table. Signed-off-by: Tomasz Nowicki <tn@semihalf.com> Acked-by: Rafael J. Wysocki <rjw@rjwysocki.net> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-09-13 02:54:20 +08:00
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
ACPI: I/O Remapping Table (IORT) initial support IORT shows representation of IO topology for ARM based systems. It describes how various components are connected together on parent-child basis e.g. PCI RC -> SMMU -> ITS. Also see IORT spec. http://infocenter.arm.com/help/topic/com.arm.doc.den0049b/DEN0049B_IO_Remapping_Table.pdf Initial support allows to detect IORT table presence and save its root pointer obtained through acpi_get_table(). The pointer validity depends on acpi_gbl_permanent_mmap because if acpi_gbl_permanent_mmap is not set while using IORT nodes we would dereference unmapped pointers. For the aforementioned reason call acpi_iort_init() from acpi_init() which guarantees acpi_gbl_permanent_mmap to be set at that point. Add generic helpers which are helpful for scanning and retrieving information from IORT table content. List of the most important helpers: - iort_find_dev_node() finds IORT node for a given device - iort_node_map_rid() maps device RID and returns IORT node which provides final translation IORT support is placed under drivers/acpi/arm64/ new directory due to its ARM64 specific nature. The code there is considered only for ARM64. The long term plan is to keep all ARM64 specific tables support in this place e.g. GTDT table. Signed-off-by: Tomasz Nowicki <tn@semihalf.com> Acked-by: Rafael J. Wysocki <rjw@rjwysocki.net> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-09-13 02:54:20 +08:00
#define IORT_TYPE_MASK(type) (1 << (type))
#define IORT_MSI_TYPE (1 << ACPI_IORT_NODE_ITS_GROUP)
#define IORT_IOMMU_TYPE ((1 << ACPI_IORT_NODE_SMMU) | \
(1 << ACPI_IORT_NODE_SMMU_V3))
struct iort_its_msi_chip {
struct list_head list;
struct fwnode_handle *fw_node;
u32 translation_id;
};
struct iort_fwnode {
struct list_head list;
struct acpi_iort_node *iort_node;
struct fwnode_handle *fwnode;
};
static LIST_HEAD(iort_fwnode_list);
static DEFINE_SPINLOCK(iort_fwnode_lock);
/**
* iort_set_fwnode() - Create iort_fwnode and use it to register
* iommu data in the iort_fwnode_list
*
* @node: IORT table node associated with the IOMMU
* @fwnode: fwnode associated with the IORT node
*
* Returns: 0 on success
* <0 on failure
*/
static inline int iort_set_fwnode(struct acpi_iort_node *iort_node,
struct fwnode_handle *fwnode)
{
struct iort_fwnode *np;
np = kzalloc(sizeof(struct iort_fwnode), GFP_ATOMIC);
if (WARN_ON(!np))
return -ENOMEM;
INIT_LIST_HEAD(&np->list);
np->iort_node = iort_node;
np->fwnode = fwnode;
spin_lock(&iort_fwnode_lock);
list_add_tail(&np->list, &iort_fwnode_list);
spin_unlock(&iort_fwnode_lock);
return 0;
}
/**
* iort_get_fwnode() - Retrieve fwnode associated with an IORT node
*
* @node: IORT table node to be looked-up
*
* Returns: fwnode_handle pointer on success, NULL on failure
*/
static inline
struct fwnode_handle *iort_get_fwnode(struct acpi_iort_node *node)
{
struct iort_fwnode *curr;
struct fwnode_handle *fwnode = NULL;
spin_lock(&iort_fwnode_lock);
list_for_each_entry(curr, &iort_fwnode_list, list) {
if (curr->iort_node == node) {
fwnode = curr->fwnode;
break;
}
}
spin_unlock(&iort_fwnode_lock);
return fwnode;
}
/**
* iort_delete_fwnode() - Delete fwnode associated with an IORT node
*
* @node: IORT table node associated with fwnode to delete
*/
static inline void iort_delete_fwnode(struct acpi_iort_node *node)
{
struct iort_fwnode *curr, *tmp;
spin_lock(&iort_fwnode_lock);
list_for_each_entry_safe(curr, tmp, &iort_fwnode_list, list) {
if (curr->iort_node == node) {
list_del(&curr->list);
kfree(curr);
break;
}
}
spin_unlock(&iort_fwnode_lock);
}
ACPI: I/O Remapping Table (IORT) initial support IORT shows representation of IO topology for ARM based systems. It describes how various components are connected together on parent-child basis e.g. PCI RC -> SMMU -> ITS. Also see IORT spec. http://infocenter.arm.com/help/topic/com.arm.doc.den0049b/DEN0049B_IO_Remapping_Table.pdf Initial support allows to detect IORT table presence and save its root pointer obtained through acpi_get_table(). The pointer validity depends on acpi_gbl_permanent_mmap because if acpi_gbl_permanent_mmap is not set while using IORT nodes we would dereference unmapped pointers. For the aforementioned reason call acpi_iort_init() from acpi_init() which guarantees acpi_gbl_permanent_mmap to be set at that point. Add generic helpers which are helpful for scanning and retrieving information from IORT table content. List of the most important helpers: - iort_find_dev_node() finds IORT node for a given device - iort_node_map_rid() maps device RID and returns IORT node which provides final translation IORT support is placed under drivers/acpi/arm64/ new directory due to its ARM64 specific nature. The code there is considered only for ARM64. The long term plan is to keep all ARM64 specific tables support in this place e.g. GTDT table. Signed-off-by: Tomasz Nowicki <tn@semihalf.com> Acked-by: Rafael J. Wysocki <rjw@rjwysocki.net> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-09-13 02:54:20 +08:00
typedef acpi_status (*iort_find_node_callback)
(struct acpi_iort_node *node, void *context);
/* Root pointer to the mapped IORT table */
static struct acpi_table_header *iort_table;
static LIST_HEAD(iort_msi_chip_list);
static DEFINE_SPINLOCK(iort_msi_chip_lock);
/**
* iort_register_domain_token() - register domain token and related ITS ID
* to the list from where we can get it back later on.
* @trans_id: ITS ID.
* @fw_node: Domain token.
*
* Returns: 0 on success, -ENOMEM if no memory when allocating list element
*/
int iort_register_domain_token(int trans_id, struct fwnode_handle *fw_node)
{
struct iort_its_msi_chip *its_msi_chip;
its_msi_chip = kzalloc(sizeof(*its_msi_chip), GFP_KERNEL);
if (!its_msi_chip)
return -ENOMEM;
its_msi_chip->fw_node = fw_node;
its_msi_chip->translation_id = trans_id;
spin_lock(&iort_msi_chip_lock);
list_add(&its_msi_chip->list, &iort_msi_chip_list);
spin_unlock(&iort_msi_chip_lock);
return 0;
}
/**
* iort_deregister_domain_token() - Deregister domain token based on ITS ID
* @trans_id: ITS ID.
*
* Returns: none.
*/
void iort_deregister_domain_token(int trans_id)
{
struct iort_its_msi_chip *its_msi_chip, *t;
spin_lock(&iort_msi_chip_lock);
list_for_each_entry_safe(its_msi_chip, t, &iort_msi_chip_list, list) {
if (its_msi_chip->translation_id == trans_id) {
list_del(&its_msi_chip->list);
kfree(its_msi_chip);
break;
}
}
spin_unlock(&iort_msi_chip_lock);
}
/**
* iort_find_domain_token() - Find domain token based on given ITS ID
* @trans_id: ITS ID.
*
* Returns: domain token when find on the list, NULL otherwise
*/
struct fwnode_handle *iort_find_domain_token(int trans_id)
{
struct fwnode_handle *fw_node = NULL;
struct iort_its_msi_chip *its_msi_chip;
spin_lock(&iort_msi_chip_lock);
list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
if (its_msi_chip->translation_id == trans_id) {
fw_node = its_msi_chip->fw_node;
break;
}
}
spin_unlock(&iort_msi_chip_lock);
return fw_node;
}
ACPI: I/O Remapping Table (IORT) initial support IORT shows representation of IO topology for ARM based systems. It describes how various components are connected together on parent-child basis e.g. PCI RC -> SMMU -> ITS. Also see IORT spec. http://infocenter.arm.com/help/topic/com.arm.doc.den0049b/DEN0049B_IO_Remapping_Table.pdf Initial support allows to detect IORT table presence and save its root pointer obtained through acpi_get_table(). The pointer validity depends on acpi_gbl_permanent_mmap because if acpi_gbl_permanent_mmap is not set while using IORT nodes we would dereference unmapped pointers. For the aforementioned reason call acpi_iort_init() from acpi_init() which guarantees acpi_gbl_permanent_mmap to be set at that point. Add generic helpers which are helpful for scanning and retrieving information from IORT table content. List of the most important helpers: - iort_find_dev_node() finds IORT node for a given device - iort_node_map_rid() maps device RID and returns IORT node which provides final translation IORT support is placed under drivers/acpi/arm64/ new directory due to its ARM64 specific nature. The code there is considered only for ARM64. The long term plan is to keep all ARM64 specific tables support in this place e.g. GTDT table. Signed-off-by: Tomasz Nowicki <tn@semihalf.com> Acked-by: Rafael J. Wysocki <rjw@rjwysocki.net> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-09-13 02:54:20 +08:00
static struct acpi_iort_node *iort_scan_node(enum acpi_iort_node_type type,
iort_find_node_callback callback,
void *context)
{
struct acpi_iort_node *iort_node, *iort_end;
struct acpi_table_iort *iort;
int i;
if (!iort_table)
return NULL;
/* Get the first IORT node */
iort = (struct acpi_table_iort *)iort_table;
iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
iort->node_offset);
iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
iort_table->length);
for (i = 0; i < iort->node_count; i++) {
if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
"IORT node pointer overflows, bad table!\n"))
return NULL;
if (iort_node->type == type &&
ACPI_SUCCESS(callback(iort_node, context)))
return iort_node;
iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
iort_node->length);
}
return NULL;
}
static acpi_status
iort_match_type_callback(struct acpi_iort_node *node, void *context)
{
return AE_OK;
}
bool iort_node_match(u8 type)
{
struct acpi_iort_node *node;
node = iort_scan_node(type, iort_match_type_callback, NULL);
return node != NULL;
}
ACPI: I/O Remapping Table (IORT) initial support IORT shows representation of IO topology for ARM based systems. It describes how various components are connected together on parent-child basis e.g. PCI RC -> SMMU -> ITS. Also see IORT spec. http://infocenter.arm.com/help/topic/com.arm.doc.den0049b/DEN0049B_IO_Remapping_Table.pdf Initial support allows to detect IORT table presence and save its root pointer obtained through acpi_get_table(). The pointer validity depends on acpi_gbl_permanent_mmap because if acpi_gbl_permanent_mmap is not set while using IORT nodes we would dereference unmapped pointers. For the aforementioned reason call acpi_iort_init() from acpi_init() which guarantees acpi_gbl_permanent_mmap to be set at that point. Add generic helpers which are helpful for scanning and retrieving information from IORT table content. List of the most important helpers: - iort_find_dev_node() finds IORT node for a given device - iort_node_map_rid() maps device RID and returns IORT node which provides final translation IORT support is placed under drivers/acpi/arm64/ new directory due to its ARM64 specific nature. The code there is considered only for ARM64. The long term plan is to keep all ARM64 specific tables support in this place e.g. GTDT table. Signed-off-by: Tomasz Nowicki <tn@semihalf.com> Acked-by: Rafael J. Wysocki <rjw@rjwysocki.net> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-09-13 02:54:20 +08:00
static acpi_status iort_match_node_callback(struct acpi_iort_node *node,
void *context)
{
struct device *dev = context;
acpi_status status;
if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT) {
struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
struct acpi_device *adev = to_acpi_device_node(dev->fwnode);
struct acpi_iort_named_component *ncomp;
if (!adev) {
status = AE_NOT_FOUND;
goto out;
}
status = acpi_get_name(adev->handle, ACPI_FULL_PATHNAME, &buf);
if (ACPI_FAILURE(status)) {
dev_warn(dev, "Can't get device full path name\n");
goto out;
}
ncomp = (struct acpi_iort_named_component *)node->node_data;
status = !strcmp(ncomp->device_name, buf.pointer) ?
AE_OK : AE_NOT_FOUND;
acpi_os_free(buf.pointer);
} else if (node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
struct acpi_iort_root_complex *pci_rc;
struct pci_bus *bus;
bus = to_pci_bus(dev);
pci_rc = (struct acpi_iort_root_complex *)node->node_data;
/*
* It is assumed that PCI segment numbers maps one-to-one
* with root complexes. Each segment number can represent only
* one root complex.
*/
status = pci_rc->pci_segment_number == pci_domain_nr(bus) ?
AE_OK : AE_NOT_FOUND;
} else {
status = AE_NOT_FOUND;
}
out:
return status;
}
static int iort_id_map(struct acpi_iort_id_mapping *map, u8 type, u32 rid_in,
u32 *rid_out)
{
/* Single mapping does not care for input id */
if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
if (type == ACPI_IORT_NODE_NAMED_COMPONENT ||
type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
*rid_out = map->output_base;
return 0;
}
pr_warn(FW_BUG "[map %p] SINGLE MAPPING flag not allowed for node type %d, skipping ID map\n",
map, type);
return -ENXIO;
}
if (rid_in < map->input_base ||
(rid_in >= map->input_base + map->id_count))
return -ENXIO;
*rid_out = map->output_base + (rid_in - map->input_base);
return 0;
}
static
struct acpi_iort_node *iort_node_get_id(struct acpi_iort_node *node,
u32 *id_out, u8 type_mask,
int index)
{
struct acpi_iort_node *parent;
struct acpi_iort_id_mapping *map;
if (!node->mapping_offset || !node->mapping_count ||
index >= node->mapping_count)
return NULL;
map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
node->mapping_offset);
/* Firmware bug! */
if (!map->output_reference) {
pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
node, node->type);
return NULL;
}
parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
map->output_reference);
if (!(IORT_TYPE_MASK(parent->type) & type_mask))
return NULL;
if (map[index].flags & ACPI_IORT_ID_SINGLE_MAPPING) {
if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT ||
node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
*id_out = map[index].output_base;
return parent;
}
}
return NULL;
}
ACPI: I/O Remapping Table (IORT) initial support IORT shows representation of IO topology for ARM based systems. It describes how various components are connected together on parent-child basis e.g. PCI RC -> SMMU -> ITS. Also see IORT spec. http://infocenter.arm.com/help/topic/com.arm.doc.den0049b/DEN0049B_IO_Remapping_Table.pdf Initial support allows to detect IORT table presence and save its root pointer obtained through acpi_get_table(). The pointer validity depends on acpi_gbl_permanent_mmap because if acpi_gbl_permanent_mmap is not set while using IORT nodes we would dereference unmapped pointers. For the aforementioned reason call acpi_iort_init() from acpi_init() which guarantees acpi_gbl_permanent_mmap to be set at that point. Add generic helpers which are helpful for scanning and retrieving information from IORT table content. List of the most important helpers: - iort_find_dev_node() finds IORT node for a given device - iort_node_map_rid() maps device RID and returns IORT node which provides final translation IORT support is placed under drivers/acpi/arm64/ new directory due to its ARM64 specific nature. The code there is considered only for ARM64. The long term plan is to keep all ARM64 specific tables support in this place e.g. GTDT table. Signed-off-by: Tomasz Nowicki <tn@semihalf.com> Acked-by: Rafael J. Wysocki <rjw@rjwysocki.net> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-09-13 02:54:20 +08:00
static struct acpi_iort_node *iort_node_map_rid(struct acpi_iort_node *node,
u32 rid_in, u32 *rid_out,
u8 type_mask)
ACPI: I/O Remapping Table (IORT) initial support IORT shows representation of IO topology for ARM based systems. It describes how various components are connected together on parent-child basis e.g. PCI RC -> SMMU -> ITS. Also see IORT spec. http://infocenter.arm.com/help/topic/com.arm.doc.den0049b/DEN0049B_IO_Remapping_Table.pdf Initial support allows to detect IORT table presence and save its root pointer obtained through acpi_get_table(). The pointer validity depends on acpi_gbl_permanent_mmap because if acpi_gbl_permanent_mmap is not set while using IORT nodes we would dereference unmapped pointers. For the aforementioned reason call acpi_iort_init() from acpi_init() which guarantees acpi_gbl_permanent_mmap to be set at that point. Add generic helpers which are helpful for scanning and retrieving information from IORT table content. List of the most important helpers: - iort_find_dev_node() finds IORT node for a given device - iort_node_map_rid() maps device RID and returns IORT node which provides final translation IORT support is placed under drivers/acpi/arm64/ new directory due to its ARM64 specific nature. The code there is considered only for ARM64. The long term plan is to keep all ARM64 specific tables support in this place e.g. GTDT table. Signed-off-by: Tomasz Nowicki <tn@semihalf.com> Acked-by: Rafael J. Wysocki <rjw@rjwysocki.net> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-09-13 02:54:20 +08:00
{
u32 rid = rid_in;
/* Parse the ID mapping tree to find specified node type */
while (node) {
struct acpi_iort_id_mapping *map;
int i;
if (IORT_TYPE_MASK(node->type) & type_mask) {
ACPI: I/O Remapping Table (IORT) initial support IORT shows representation of IO topology for ARM based systems. It describes how various components are connected together on parent-child basis e.g. PCI RC -> SMMU -> ITS. Also see IORT spec. http://infocenter.arm.com/help/topic/com.arm.doc.den0049b/DEN0049B_IO_Remapping_Table.pdf Initial support allows to detect IORT table presence and save its root pointer obtained through acpi_get_table(). The pointer validity depends on acpi_gbl_permanent_mmap because if acpi_gbl_permanent_mmap is not set while using IORT nodes we would dereference unmapped pointers. For the aforementioned reason call acpi_iort_init() from acpi_init() which guarantees acpi_gbl_permanent_mmap to be set at that point. Add generic helpers which are helpful for scanning and retrieving information from IORT table content. List of the most important helpers: - iort_find_dev_node() finds IORT node for a given device - iort_node_map_rid() maps device RID and returns IORT node which provides final translation IORT support is placed under drivers/acpi/arm64/ new directory due to its ARM64 specific nature. The code there is considered only for ARM64. The long term plan is to keep all ARM64 specific tables support in this place e.g. GTDT table. Signed-off-by: Tomasz Nowicki <tn@semihalf.com> Acked-by: Rafael J. Wysocki <rjw@rjwysocki.net> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-09-13 02:54:20 +08:00
if (rid_out)
*rid_out = rid;
return node;
}
if (!node->mapping_offset || !node->mapping_count)
goto fail_map;
map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
node->mapping_offset);
/* Firmware bug! */
if (!map->output_reference) {
pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
node, node->type);
goto fail_map;
}
/* Do the RID translation */
for (i = 0; i < node->mapping_count; i++, map++) {
if (!iort_id_map(map, node->type, rid, &rid))
break;
}
if (i == node->mapping_count)
goto fail_map;
node = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
map->output_reference);
}
fail_map:
/* Map input RID to output RID unchanged on mapping failure*/
if (rid_out)
*rid_out = rid_in;
return NULL;
}
static struct acpi_iort_node *iort_find_dev_node(struct device *dev)
{
struct pci_bus *pbus;
if (!dev_is_pci(dev))
return iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
iort_match_node_callback, dev);
/* Find a PCI root bus */
pbus = to_pci_dev(dev)->bus;
while (!pci_is_root_bus(pbus))
pbus = pbus->parent;
return iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
iort_match_node_callback, &pbus->dev);
}
/**
* iort_msi_map_rid() - Map a MSI requester ID for a device
* @dev: The device for which the mapping is to be done.
* @req_id: The device requester ID.
*
* Returns: mapped MSI RID on success, input requester ID otherwise
*/
u32 iort_msi_map_rid(struct device *dev, u32 req_id)
{
struct acpi_iort_node *node;
u32 dev_id;
node = iort_find_dev_node(dev);
if (!node)
return req_id;
iort_node_map_rid(node, req_id, &dev_id, IORT_MSI_TYPE);
return dev_id;
}
/**
* iort_dev_find_its_id() - Find the ITS identifier for a device
* @dev: The device.
* @idx: Index of the ITS identifier list.
* @its_id: ITS identifier.
*
* Returns: 0 on success, appropriate error value otherwise
*/
static int iort_dev_find_its_id(struct device *dev, u32 req_id,
unsigned int idx, int *its_id)
{
struct acpi_iort_its_group *its;
struct acpi_iort_node *node;
node = iort_find_dev_node(dev);
if (!node)
return -ENXIO;
node = iort_node_map_rid(node, req_id, NULL, IORT_MSI_TYPE);
if (!node)
return -ENXIO;
/* Move to ITS specific data */
its = (struct acpi_iort_its_group *)node->node_data;
if (idx > its->its_count) {
dev_err(dev, "requested ITS ID index [%d] is greater than available [%d]\n",
idx, its->its_count);
return -ENXIO;
}
*its_id = its->identifiers[idx];
return 0;
}
/**
* iort_get_device_domain() - Find MSI domain related to a device
* @dev: The device.
* @req_id: Requester ID for the device.
*
* Returns: the MSI domain for this device, NULL otherwise
*/
struct irq_domain *iort_get_device_domain(struct device *dev, u32 req_id)
{
struct fwnode_handle *handle;
int its_id;
if (iort_dev_find_its_id(dev, req_id, 0, &its_id))
return NULL;
handle = iort_find_domain_token(its_id);
if (!handle)
return NULL;
return irq_find_matching_fwnode(handle, DOMAIN_BUS_PCI_MSI);
}
static int __get_pci_rid(struct pci_dev *pdev, u16 alias, void *data)
{
u32 *rid = data;
*rid = alias;
return 0;
}
static int arm_smmu_iort_xlate(struct device *dev, u32 streamid,
struct fwnode_handle *fwnode,
const struct iommu_ops *ops)
{
int ret = iommu_fwspec_init(dev, fwnode, ops);
if (!ret)
ret = iommu_fwspec_add_ids(dev, &streamid, 1);
return ret;
}
static const struct iommu_ops *iort_iommu_xlate(struct device *dev,
struct acpi_iort_node *node,
u32 streamid)
{
const struct iommu_ops *ops = NULL;
int ret = -ENODEV;
struct fwnode_handle *iort_fwnode;
if (node) {
iort_fwnode = iort_get_fwnode(node);
if (!iort_fwnode)
return NULL;
ops = iommu_get_instance(iort_fwnode);
if (!ops)
return NULL;
ret = arm_smmu_iort_xlate(dev, streamid, iort_fwnode, ops);
}
return ret ? NULL : ops;
}
/**
* iort_iommu_configure - Set-up IOMMU configuration for a device.
*
* @dev: device to configure
*
* Returns: iommu_ops pointer on configuration success
* NULL on configuration failure
*/
const struct iommu_ops *iort_iommu_configure(struct device *dev)
{
struct acpi_iort_node *node, *parent;
const struct iommu_ops *ops = NULL;
u32 streamid = 0;
if (dev_is_pci(dev)) {
struct pci_bus *bus = to_pci_dev(dev)->bus;
u32 rid;
pci_for_each_dma_alias(to_pci_dev(dev), __get_pci_rid,
&rid);
node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
iort_match_node_callback, &bus->dev);
if (!node)
return NULL;
parent = iort_node_map_rid(node, rid, &streamid,
IORT_IOMMU_TYPE);
ops = iort_iommu_xlate(dev, parent, streamid);
} else {
int i = 0;
node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
iort_match_node_callback, dev);
if (!node)
return NULL;
parent = iort_node_get_id(node, &streamid,
IORT_IOMMU_TYPE, i++);
while (parent) {
ops = iort_iommu_xlate(dev, parent, streamid);
parent = iort_node_get_id(node, &streamid,
IORT_IOMMU_TYPE, i++);
}
}
return ops;
}
static void __init acpi_iort_register_irq(int hwirq, const char *name,
int trigger,
struct resource *res)
{
int irq = acpi_register_gsi(NULL, hwirq, trigger,
ACPI_ACTIVE_HIGH);
if (irq <= 0) {
pr_err("could not register gsi hwirq %d name [%s]\n", hwirq,
name);
return;
}
res->start = irq;
res->end = irq;
res->flags = IORESOURCE_IRQ;
res->name = name;
}
static int __init arm_smmu_v3_count_resources(struct acpi_iort_node *node)
{
struct acpi_iort_smmu_v3 *smmu;
/* Always present mem resource */
int num_res = 1;
/* Retrieve SMMUv3 specific data */
smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
if (smmu->event_gsiv)
num_res++;
if (smmu->pri_gsiv)
num_res++;
if (smmu->gerr_gsiv)
num_res++;
if (smmu->sync_gsiv)
num_res++;
return num_res;
}
static void __init arm_smmu_v3_init_resources(struct resource *res,
struct acpi_iort_node *node)
{
struct acpi_iort_smmu_v3 *smmu;
int num_res = 0;
/* Retrieve SMMUv3 specific data */
smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
res[num_res].start = smmu->base_address;
res[num_res].end = smmu->base_address + SZ_128K - 1;
res[num_res].flags = IORESOURCE_MEM;
num_res++;
if (smmu->event_gsiv)
acpi_iort_register_irq(smmu->event_gsiv, "eventq",
ACPI_EDGE_SENSITIVE,
&res[num_res++]);
if (smmu->pri_gsiv)
acpi_iort_register_irq(smmu->pri_gsiv, "priq",
ACPI_EDGE_SENSITIVE,
&res[num_res++]);
if (smmu->gerr_gsiv)
acpi_iort_register_irq(smmu->gerr_gsiv, "gerror",
ACPI_EDGE_SENSITIVE,
&res[num_res++]);
if (smmu->sync_gsiv)
acpi_iort_register_irq(smmu->sync_gsiv, "cmdq-sync",
ACPI_EDGE_SENSITIVE,
&res[num_res++]);
}
static bool __init arm_smmu_v3_is_coherent(struct acpi_iort_node *node)
{
struct acpi_iort_smmu_v3 *smmu;
/* Retrieve SMMUv3 specific data */
smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
return smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE;
}
static int __init arm_smmu_count_resources(struct acpi_iort_node *node)
{
struct acpi_iort_smmu *smmu;
/* Retrieve SMMU specific data */
smmu = (struct acpi_iort_smmu *)node->node_data;
/*
* Only consider the global fault interrupt and ignore the
* configuration access interrupt.
*
* MMIO address and global fault interrupt resources are always
* present so add them to the context interrupt count as a static
* value.
*/
return smmu->context_interrupt_count + 2;
}
static void __init arm_smmu_init_resources(struct resource *res,
struct acpi_iort_node *node)
{
struct acpi_iort_smmu *smmu;
int i, hw_irq, trigger, num_res = 0;
u64 *ctx_irq, *glb_irq;
/* Retrieve SMMU specific data */
smmu = (struct acpi_iort_smmu *)node->node_data;
res[num_res].start = smmu->base_address;
res[num_res].end = smmu->base_address + smmu->span - 1;
res[num_res].flags = IORESOURCE_MEM;
num_res++;
glb_irq = ACPI_ADD_PTR(u64, node, smmu->global_interrupt_offset);
/* Global IRQs */
hw_irq = IORT_IRQ_MASK(glb_irq[0]);
trigger = IORT_IRQ_TRIGGER_MASK(glb_irq[0]);
acpi_iort_register_irq(hw_irq, "arm-smmu-global", trigger,
&res[num_res++]);
/* Context IRQs */
ctx_irq = ACPI_ADD_PTR(u64, node, smmu->context_interrupt_offset);
for (i = 0; i < smmu->context_interrupt_count; i++) {
hw_irq = IORT_IRQ_MASK(ctx_irq[i]);
trigger = IORT_IRQ_TRIGGER_MASK(ctx_irq[i]);
acpi_iort_register_irq(hw_irq, "arm-smmu-context", trigger,
&res[num_res++]);
}
}
static bool __init arm_smmu_is_coherent(struct acpi_iort_node *node)
{
struct acpi_iort_smmu *smmu;
/* Retrieve SMMU specific data */
smmu = (struct acpi_iort_smmu *)node->node_data;
return smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK;
}
struct iort_iommu_config {
const char *name;
int (*iommu_init)(struct acpi_iort_node *node);
bool (*iommu_is_coherent)(struct acpi_iort_node *node);
int (*iommu_count_resources)(struct acpi_iort_node *node);
void (*iommu_init_resources)(struct resource *res,
struct acpi_iort_node *node);
};
static const struct iort_iommu_config iort_arm_smmu_v3_cfg __initconst = {
.name = "arm-smmu-v3",
.iommu_is_coherent = arm_smmu_v3_is_coherent,
.iommu_count_resources = arm_smmu_v3_count_resources,
.iommu_init_resources = arm_smmu_v3_init_resources
};
static const struct iort_iommu_config iort_arm_smmu_cfg __initconst = {
.name = "arm-smmu",
.iommu_is_coherent = arm_smmu_is_coherent,
.iommu_count_resources = arm_smmu_count_resources,
.iommu_init_resources = arm_smmu_init_resources
};
static __init
const struct iort_iommu_config *iort_get_iommu_cfg(struct acpi_iort_node *node)
{
switch (node->type) {
case ACPI_IORT_NODE_SMMU_V3:
return &iort_arm_smmu_v3_cfg;
case ACPI_IORT_NODE_SMMU:
return &iort_arm_smmu_cfg;
default:
return NULL;
}
}
/**
* iort_add_smmu_platform_device() - Allocate a platform device for SMMU
* @node: Pointer to SMMU ACPI IORT node
*
* Returns: 0 on success, <0 failure
*/
static int __init iort_add_smmu_platform_device(struct acpi_iort_node *node)
{
struct fwnode_handle *fwnode;
struct platform_device *pdev;
struct resource *r;
enum dev_dma_attr attr;
int ret, count;
const struct iort_iommu_config *ops = iort_get_iommu_cfg(node);
if (!ops)
return -ENODEV;
pdev = platform_device_alloc(ops->name, PLATFORM_DEVID_AUTO);
if (!pdev)
return PTR_ERR(pdev);
count = ops->iommu_count_resources(node);
r = kcalloc(count, sizeof(*r), GFP_KERNEL);
if (!r) {
ret = -ENOMEM;
goto dev_put;
}
ops->iommu_init_resources(r, node);
ret = platform_device_add_resources(pdev, r, count);
/*
* Resources are duplicated in platform_device_add_resources,
* free their allocated memory
*/
kfree(r);
if (ret)
goto dev_put;
/*
* Add a copy of IORT node pointer to platform_data to
* be used to retrieve IORT data information.
*/
ret = platform_device_add_data(pdev, &node, sizeof(node));
if (ret)
goto dev_put;
/*
* We expect the dma masks to be equivalent for
* all SMMUs set-ups
*/
pdev->dev.dma_mask = &pdev->dev.coherent_dma_mask;
fwnode = iort_get_fwnode(node);
if (!fwnode) {
ret = -ENODEV;
goto dev_put;
}
pdev->dev.fwnode = fwnode;
attr = ops->iommu_is_coherent(node) ?
DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
/* Configure DMA for the page table walker */
acpi_dma_configure(&pdev->dev, attr);
ret = platform_device_add(pdev);
if (ret)
goto dma_deconfigure;
return 0;
dma_deconfigure:
acpi_dma_deconfigure(&pdev->dev);
dev_put:
platform_device_put(pdev);
return ret;
}
static void __init iort_init_platform_devices(void)
{
struct acpi_iort_node *iort_node, *iort_end;
struct acpi_table_iort *iort;
struct fwnode_handle *fwnode;
int i, ret;
/*
* iort_table and iort both point to the start of IORT table, but
* have different struct types
*/
iort = (struct acpi_table_iort *)iort_table;
/* Get the first IORT node */
iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
iort->node_offset);
iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
iort_table->length);
for (i = 0; i < iort->node_count; i++) {
if (iort_node >= iort_end) {
pr_err("iort node pointer overflows, bad table\n");
return;
}
if ((iort_node->type == ACPI_IORT_NODE_SMMU) ||
(iort_node->type == ACPI_IORT_NODE_SMMU_V3)) {
fwnode = acpi_alloc_fwnode_static();
if (!fwnode)
return;
iort_set_fwnode(iort_node, fwnode);
ret = iort_add_smmu_platform_device(iort_node);
if (ret) {
iort_delete_fwnode(iort_node);
acpi_free_fwnode_static(fwnode);
return;
}
}
iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
iort_node->length);
}
}
ACPI: I/O Remapping Table (IORT) initial support IORT shows representation of IO topology for ARM based systems. It describes how various components are connected together on parent-child basis e.g. PCI RC -> SMMU -> ITS. Also see IORT spec. http://infocenter.arm.com/help/topic/com.arm.doc.den0049b/DEN0049B_IO_Remapping_Table.pdf Initial support allows to detect IORT table presence and save its root pointer obtained through acpi_get_table(). The pointer validity depends on acpi_gbl_permanent_mmap because if acpi_gbl_permanent_mmap is not set while using IORT nodes we would dereference unmapped pointers. For the aforementioned reason call acpi_iort_init() from acpi_init() which guarantees acpi_gbl_permanent_mmap to be set at that point. Add generic helpers which are helpful for scanning and retrieving information from IORT table content. List of the most important helpers: - iort_find_dev_node() finds IORT node for a given device - iort_node_map_rid() maps device RID and returns IORT node which provides final translation IORT support is placed under drivers/acpi/arm64/ new directory due to its ARM64 specific nature. The code there is considered only for ARM64. The long term plan is to keep all ARM64 specific tables support in this place e.g. GTDT table. Signed-off-by: Tomasz Nowicki <tn@semihalf.com> Acked-by: Rafael J. Wysocki <rjw@rjwysocki.net> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-09-13 02:54:20 +08:00
void __init acpi_iort_init(void)
{
acpi_status status;
status = acpi_get_table(ACPI_SIG_IORT, 0, &iort_table);
ACPI/IORT: Introduce linker section for IORT entries probing Since commit e647b532275b ("ACPI: Add early device probing infrastructure") the kernel has gained the infrastructure that allows adding linker script section entries to execute ACPI driver callbacks (ie probe routines) for all subsystems that register a table entry in the respective kernel section (eg clocksource, irqchip). Since ARM IOMMU devices data is described through IORT tables when booting with ACPI, the ARM IOMMU drivers must be made able to hook ACPI callback routines that are called to probe IORT entries and initialize the respective IOMMU devices. To avoid adding driver specific hooks into IORT table initialization code (breaking therefore code modularity - ie ACPI IORT code must be made aware of ARM SMMU drivers ACPI init callbacks), this patch adds code that allows ARM SMMU drivers to take advantage of the ACPI early probing infrastructure, so that they can add linker script section entries containing drivers callback to be executed on IORT tables detection. Since IORT nodes are differentiated by a type, the callback routines can easily parse the IORT table entries, check the IORT nodes and carry out some actions whenever the IORT node type associated with the driver specific callback is matched. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Reviewed-by: Tomasz Nowicki <tn@semihalf.com> Tested-by: Hanjun Guo <hanjun.guo@linaro.org> Tested-by: Tomasz Nowicki <tn@semihalf.com> Cc: Tomasz Nowicki <tn@semihalf.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-11-21 18:01:34 +08:00
if (ACPI_FAILURE(status)) {
if (status != AE_NOT_FOUND) {
const char *msg = acpi_format_exception(status);
pr_err("Failed to get table, %s\n", msg);
}
return;
ACPI: I/O Remapping Table (IORT) initial support IORT shows representation of IO topology for ARM based systems. It describes how various components are connected together on parent-child basis e.g. PCI RC -> SMMU -> ITS. Also see IORT spec. http://infocenter.arm.com/help/topic/com.arm.doc.den0049b/DEN0049B_IO_Remapping_Table.pdf Initial support allows to detect IORT table presence and save its root pointer obtained through acpi_get_table(). The pointer validity depends on acpi_gbl_permanent_mmap because if acpi_gbl_permanent_mmap is not set while using IORT nodes we would dereference unmapped pointers. For the aforementioned reason call acpi_iort_init() from acpi_init() which guarantees acpi_gbl_permanent_mmap to be set at that point. Add generic helpers which are helpful for scanning and retrieving information from IORT table content. List of the most important helpers: - iort_find_dev_node() finds IORT node for a given device - iort_node_map_rid() maps device RID and returns IORT node which provides final translation IORT support is placed under drivers/acpi/arm64/ new directory due to its ARM64 specific nature. The code there is considered only for ARM64. The long term plan is to keep all ARM64 specific tables support in this place e.g. GTDT table. Signed-off-by: Tomasz Nowicki <tn@semihalf.com> Acked-by: Rafael J. Wysocki <rjw@rjwysocki.net> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-09-13 02:54:20 +08:00
}
ACPI/IORT: Introduce linker section for IORT entries probing Since commit e647b532275b ("ACPI: Add early device probing infrastructure") the kernel has gained the infrastructure that allows adding linker script section entries to execute ACPI driver callbacks (ie probe routines) for all subsystems that register a table entry in the respective kernel section (eg clocksource, irqchip). Since ARM IOMMU devices data is described through IORT tables when booting with ACPI, the ARM IOMMU drivers must be made able to hook ACPI callback routines that are called to probe IORT entries and initialize the respective IOMMU devices. To avoid adding driver specific hooks into IORT table initialization code (breaking therefore code modularity - ie ACPI IORT code must be made aware of ARM SMMU drivers ACPI init callbacks), this patch adds code that allows ARM SMMU drivers to take advantage of the ACPI early probing infrastructure, so that they can add linker script section entries containing drivers callback to be executed on IORT tables detection. Since IORT nodes are differentiated by a type, the callback routines can easily parse the IORT table entries, check the IORT nodes and carry out some actions whenever the IORT node type associated with the driver specific callback is matched. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Reviewed-by: Tomasz Nowicki <tn@semihalf.com> Tested-by: Hanjun Guo <hanjun.guo@linaro.org> Tested-by: Tomasz Nowicki <tn@semihalf.com> Cc: Tomasz Nowicki <tn@semihalf.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-11-21 18:01:34 +08:00
iort_init_platform_devices();
ACPI/IORT: Introduce linker section for IORT entries probing Since commit e647b532275b ("ACPI: Add early device probing infrastructure") the kernel has gained the infrastructure that allows adding linker script section entries to execute ACPI driver callbacks (ie probe routines) for all subsystems that register a table entry in the respective kernel section (eg clocksource, irqchip). Since ARM IOMMU devices data is described through IORT tables when booting with ACPI, the ARM IOMMU drivers must be made able to hook ACPI callback routines that are called to probe IORT entries and initialize the respective IOMMU devices. To avoid adding driver specific hooks into IORT table initialization code (breaking therefore code modularity - ie ACPI IORT code must be made aware of ARM SMMU drivers ACPI init callbacks), this patch adds code that allows ARM SMMU drivers to take advantage of the ACPI early probing infrastructure, so that they can add linker script section entries containing drivers callback to be executed on IORT tables detection. Since IORT nodes are differentiated by a type, the callback routines can easily parse the IORT table entries, check the IORT nodes and carry out some actions whenever the IORT node type associated with the driver specific callback is matched. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Reviewed-by: Tomasz Nowicki <tn@semihalf.com> Tested-by: Hanjun Guo <hanjun.guo@linaro.org> Tested-by: Tomasz Nowicki <tn@semihalf.com> Cc: Tomasz Nowicki <tn@semihalf.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-11-21 18:01:34 +08:00
acpi_probe_device_table(iort);
ACPI: I/O Remapping Table (IORT) initial support IORT shows representation of IO topology for ARM based systems. It describes how various components are connected together on parent-child basis e.g. PCI RC -> SMMU -> ITS. Also see IORT spec. http://infocenter.arm.com/help/topic/com.arm.doc.den0049b/DEN0049B_IO_Remapping_Table.pdf Initial support allows to detect IORT table presence and save its root pointer obtained through acpi_get_table(). The pointer validity depends on acpi_gbl_permanent_mmap because if acpi_gbl_permanent_mmap is not set while using IORT nodes we would dereference unmapped pointers. For the aforementioned reason call acpi_iort_init() from acpi_init() which guarantees acpi_gbl_permanent_mmap to be set at that point. Add generic helpers which are helpful for scanning and retrieving information from IORT table content. List of the most important helpers: - iort_find_dev_node() finds IORT node for a given device - iort_node_map_rid() maps device RID and returns IORT node which provides final translation IORT support is placed under drivers/acpi/arm64/ new directory due to its ARM64 specific nature. The code there is considered only for ARM64. The long term plan is to keep all ARM64 specific tables support in this place e.g. GTDT table. Signed-off-by: Tomasz Nowicki <tn@semihalf.com> Acked-by: Rafael J. Wysocki <rjw@rjwysocki.net> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-09-13 02:54:20 +08:00
}