2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-25 15:15:33 +08:00
linux-next/arch/powerpc/kvm/book3s_rmhandlers.S

170 lines
4.6 KiB
ArmAsm
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright SUSE Linux Products GmbH 2009
*
* Authors: Alexander Graf <agraf@suse.de>
*/
#include <asm/ppc_asm.h>
#include <asm/kvm_asm.h>
#include <asm/reg.h>
#include <asm/mmu.h>
#include <asm/page.h>
#include <asm/asm-offsets.h>
#ifdef CONFIG_PPC_BOOK3S_64
#include <asm/exception-64s.h>
#endif
/*****************************************************************************
* *
* Real Mode handlers that need to be in low physical memory *
* *
****************************************************************************/
#if defined(CONFIG_PPC_BOOK3S_64)
#ifdef PPC64_ELF_ABI_v2
#define FUNC(name) name
#else
#define FUNC(name) GLUE(.,name)
#endif
#elif defined(CONFIG_PPC_BOOK3S_32)
#define FUNC(name) name
.macro INTERRUPT_TRAMPOLINE intno
.global kvmppc_trampoline_\intno
kvmppc_trampoline_\intno:
mtspr SPRN_SPRG_SCRATCH0, r13 /* Save r13 */
/*
* First thing to do is to find out if we're coming
* from a KVM guest or a Linux process.
*
* To distinguish, we check a magic byte in the PACA/current
*/
mfspr r13, SPRN_SPRG_THREAD
lwz r13, THREAD_KVM_SVCPU(r13)
/* PPC32 can have a NULL pointer - let's check for that */
mtspr SPRN_SPRG_SCRATCH1, r12 /* Save r12 */
mfcr r12
cmpwi r13, 0
bne 1f
2: mtcr r12
mfspr r12, SPRN_SPRG_SCRATCH1
mfspr r13, SPRN_SPRG_SCRATCH0 /* r13 = original r13 */
b kvmppc_resume_\intno /* Get back original handler */
1: tophys(r13, r13)
stw r12, HSTATE_SCRATCH1(r13)
mfspr r12, SPRN_SPRG_SCRATCH1
stw r12, HSTATE_SCRATCH0(r13)
lbz r12, HSTATE_IN_GUEST(r13)
cmpwi r12, KVM_GUEST_MODE_NONE
bne ..kvmppc_handler_hasmagic_\intno
/* No KVM guest? Then jump back to the Linux handler! */
lwz r12, HSTATE_SCRATCH1(r13)
b 2b
/* Now we know we're handling a KVM guest */
..kvmppc_handler_hasmagic_\intno:
/* Should we just skip the faulting instruction? */
cmpwi r12, KVM_GUEST_MODE_SKIP
beq kvmppc_handler_skip_ins
/* Let's store which interrupt we're handling */
li r12, \intno
/* Jump into the SLB exit code that goes to the highmem handler */
b kvmppc_handler_trampoline_exit
.endm
INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_SYSTEM_RESET
INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_MACHINE_CHECK
INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_DATA_STORAGE
INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_INST_STORAGE
INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_EXTERNAL
INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_ALIGNMENT
INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_PROGRAM
INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_FP_UNAVAIL
INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_DECREMENTER
INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_SYSCALL
INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_TRACE
INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_PERFMON
INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_ALTIVEC
/*
* Bring us back to the faulting code, but skip the
* faulting instruction.
*
* This is a generic exit path from the interrupt
* trampolines above.
*
* Input Registers:
*
* R12 = free
* R13 = Shadow VCPU (PACA)
* HSTATE.SCRATCH0 = guest R12
* HSTATE.SCRATCH1 = guest CR
* SPRG_SCRATCH0 = guest R13
*
*/
kvmppc_handler_skip_ins:
/* Patch the IP to the next instruction */
mfsrr0 r12
addi r12, r12, 4
mtsrr0 r12
/* Clean up all state */
lwz r12, HSTATE_SCRATCH1(r13)
mtcr r12
PPC_LL r12, HSTATE_SCRATCH0(r13)
GET_SCRATCH0(r13)
/* And get back into the code */
RFI
#endif
/*
KVM: PPC: book3s_pr: Simplify transitions between virtual and real mode This simplifies the way that the book3s_pr makes the transition to real mode when entering the guest. We now call kvmppc_entry_trampoline (renamed from kvmppc_rmcall) in the base kernel using a normal function call instead of doing an indirect call through a pointer in the vcpu. If kvm is a module, the module loader takes care of generating a trampoline as it does for other calls to functions outside the module. kvmppc_entry_trampoline then disables interrupts and jumps to kvmppc_handler_trampoline_enter in real mode using an rfi[d]. That then uses the link register as the address to return to (potentially in module space) when the guest exits. This also simplifies the way that we call the Linux interrupt handler when we exit the guest due to an external, decrementer or performance monitor interrupt. Instead of turning on the MMU, then deciding that we need to call the Linux handler and turning the MMU back off again, we now go straight to the handler at the point where we would turn the MMU on. The handler will then return to the virtual-mode code (potentially in the module). Along the way, this moves the setting and clearing of the HID5 DCBZ32 bit into real-mode interrupts-off code, and also makes sure that we clear the MSR[RI] bit before loading values into SRR0/1. The net result is that we no longer need any code addresses to be stored in vcpu->arch. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-23 15:41:44 +08:00
* Call kvmppc_handler_trampoline_enter in real mode
*
KVM: PPC: book3s_pr: Simplify transitions between virtual and real mode This simplifies the way that the book3s_pr makes the transition to real mode when entering the guest. We now call kvmppc_entry_trampoline (renamed from kvmppc_rmcall) in the base kernel using a normal function call instead of doing an indirect call through a pointer in the vcpu. If kvm is a module, the module loader takes care of generating a trampoline as it does for other calls to functions outside the module. kvmppc_entry_trampoline then disables interrupts and jumps to kvmppc_handler_trampoline_enter in real mode using an rfi[d]. That then uses the link register as the address to return to (potentially in module space) when the guest exits. This also simplifies the way that we call the Linux interrupt handler when we exit the guest due to an external, decrementer or performance monitor interrupt. Instead of turning on the MMU, then deciding that we need to call the Linux handler and turning the MMU back off again, we now go straight to the handler at the point where we would turn the MMU on. The handler will then return to the virtual-mode code (potentially in the module). Along the way, this moves the setting and clearing of the HID5 DCBZ32 bit into real-mode interrupts-off code, and also makes sure that we clear the MSR[RI] bit before loading values into SRR0/1. The net result is that we no longer need any code addresses to be stored in vcpu->arch. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-23 15:41:44 +08:00
* On entry, r4 contains the guest shadow MSR
* MSR.EE has to be 0 when calling this function
*/
_GLOBAL_TOC(kvmppc_entry_trampoline)
KVM: PPC: book3s_pr: Simplify transitions between virtual and real mode This simplifies the way that the book3s_pr makes the transition to real mode when entering the guest. We now call kvmppc_entry_trampoline (renamed from kvmppc_rmcall) in the base kernel using a normal function call instead of doing an indirect call through a pointer in the vcpu. If kvm is a module, the module loader takes care of generating a trampoline as it does for other calls to functions outside the module. kvmppc_entry_trampoline then disables interrupts and jumps to kvmppc_handler_trampoline_enter in real mode using an rfi[d]. That then uses the link register as the address to return to (potentially in module space) when the guest exits. This also simplifies the way that we call the Linux interrupt handler when we exit the guest due to an external, decrementer or performance monitor interrupt. Instead of turning on the MMU, then deciding that we need to call the Linux handler and turning the MMU back off again, we now go straight to the handler at the point where we would turn the MMU on. The handler will then return to the virtual-mode code (potentially in the module). Along the way, this moves the setting and clearing of the HID5 DCBZ32 bit into real-mode interrupts-off code, and also makes sure that we clear the MSR[RI] bit before loading values into SRR0/1. The net result is that we no longer need any code addresses to be stored in vcpu->arch. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-23 15:41:44 +08:00
mfmsr r5
LOAD_REG_ADDR(r7, kvmppc_handler_trampoline_enter)
toreal(r7)
li r6, MSR_IR | MSR_DR
andc r6, r5, r6 /* Clear DR and IR in MSR value */
/*
* Set EE in HOST_MSR so that it's enabled when we get into our
* C exit handler function.
*/
ori r5, r5, MSR_EE
mtsrr0 r7
mtsrr1 r6
RFI
#include "book3s_segment.S"