mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-17 01:34:00 +08:00
118 lines
5.1 KiB
ReStructuredText
118 lines
5.1 KiB
ReStructuredText
|
.. SPDX-License-Identifier: GPL-2.0
|
||
|
|
||
|
====================
|
||
|
Kernel Testing Guide
|
||
|
====================
|
||
|
|
||
|
|
||
|
There are a number of different tools for testing the Linux kernel, so knowing
|
||
|
when to use each of them can be a challenge. This document provides a rough
|
||
|
overview of their differences, and how they fit together.
|
||
|
|
||
|
|
||
|
Writing and Running Tests
|
||
|
=========================
|
||
|
|
||
|
The bulk of kernel tests are written using either the kselftest or KUnit
|
||
|
frameworks. These both provide infrastructure to help make running tests and
|
||
|
groups of tests easier, as well as providing helpers to aid in writing new
|
||
|
tests.
|
||
|
|
||
|
If you're looking to verify the behaviour of the Kernel — particularly specific
|
||
|
parts of the kernel — then you'll want to use KUnit or kselftest.
|
||
|
|
||
|
|
||
|
The Difference Between KUnit and kselftest
|
||
|
------------------------------------------
|
||
|
|
||
|
KUnit (Documentation/dev-tools/kunit/index.rst) is an entirely in-kernel system
|
||
|
for "white box" testing: because test code is part of the kernel, it can access
|
||
|
internal structures and functions which aren't exposed to userspace.
|
||
|
|
||
|
KUnit tests therefore are best written against small, self-contained parts
|
||
|
of the kernel, which can be tested in isolation. This aligns well with the
|
||
|
concept of 'unit' testing.
|
||
|
|
||
|
For example, a KUnit test might test an individual kernel function (or even a
|
||
|
single codepath through a function, such as an error handling case), rather
|
||
|
than a feature as a whole.
|
||
|
|
||
|
This also makes KUnit tests very fast to build and run, allowing them to be
|
||
|
run frequently as part of the development process.
|
||
|
|
||
|
There is a KUnit test style guide which may give further pointers in
|
||
|
Documentation/dev-tools/kunit/style.rst
|
||
|
|
||
|
|
||
|
kselftest (Documentation/dev-tools/kselftest.rst), on the other hand, is
|
||
|
largely implemented in userspace, and tests are normal userspace scripts or
|
||
|
programs.
|
||
|
|
||
|
This makes it easier to write more complicated tests, or tests which need to
|
||
|
manipulate the overall system state more (e.g., spawning processes, etc.).
|
||
|
However, it's not possible to call kernel functions directly from kselftest.
|
||
|
This means that only kernel functionality which is exposed to userspace somehow
|
||
|
(e.g. by a syscall, device, filesystem, etc.) can be tested with kselftest. To
|
||
|
work around this, some tests include a companion kernel module which exposes
|
||
|
more information or functionality. If a test runs mostly or entirely within the
|
||
|
kernel, however, KUnit may be the more appropriate tool.
|
||
|
|
||
|
kselftest is therefore suited well to tests of whole features, as these will
|
||
|
expose an interface to userspace, which can be tested, but not implementation
|
||
|
details. This aligns well with 'system' or 'end-to-end' testing.
|
||
|
|
||
|
For example, all new system calls should be accompanied by kselftest tests.
|
||
|
|
||
|
Code Coverage Tools
|
||
|
===================
|
||
|
|
||
|
The Linux Kernel supports two different code coverage measurement tools. These
|
||
|
can be used to verify that a test is executing particular functions or lines
|
||
|
of code. This is useful for determining how much of the kernel is being tested,
|
||
|
and for finding corner-cases which are not covered by the appropriate test.
|
||
|
|
||
|
:doc:`gcov` is GCC's coverage testing tool, which can be used with the kernel
|
||
|
to get global or per-module coverage. Unlike KCOV, it does not record per-task
|
||
|
coverage. Coverage data can be read from debugfs, and interpreted using the
|
||
|
usual gcov tooling.
|
||
|
|
||
|
:doc:`kcov` is a feature which can be built in to the kernel to allow
|
||
|
capturing coverage on a per-task level. It's therefore useful for fuzzing and
|
||
|
other situations where information about code executed during, for example, a
|
||
|
single syscall is useful.
|
||
|
|
||
|
|
||
|
Dynamic Analysis Tools
|
||
|
======================
|
||
|
|
||
|
The kernel also supports a number of dynamic analysis tools, which attempt to
|
||
|
detect classes of issues when they occur in a running kernel. These typically
|
||
|
each look for a different class of bugs, such as invalid memory accesses,
|
||
|
concurrency issues such as data races, or other undefined behaviour like
|
||
|
integer overflows.
|
||
|
|
||
|
Some of these tools are listed below:
|
||
|
|
||
|
* kmemleak detects possible memory leaks. See
|
||
|
Documentation/dev-tools/kmemleak.rst
|
||
|
* KASAN detects invalid memory accesses such as out-of-bounds and
|
||
|
use-after-free errors. See Documentation/dev-tools/kasan.rst
|
||
|
* UBSAN detects behaviour that is undefined by the C standard, like integer
|
||
|
overflows. See Documentation/dev-tools/ubsan.rst
|
||
|
* KCSAN detects data races. See Documentation/dev-tools/kcsan.rst
|
||
|
* KFENCE is a low-overhead detector of memory issues, which is much faster than
|
||
|
KASAN and can be used in production. See Documentation/dev-tools/kfence.rst
|
||
|
* lockdep is a locking correctness validator. See
|
||
|
Documentation/locking/lockdep-design.rst
|
||
|
* There are several other pieces of debug instrumentation in the kernel, many
|
||
|
of which can be found in lib/Kconfig.debug
|
||
|
|
||
|
These tools tend to test the kernel as a whole, and do not "pass" like
|
||
|
kselftest or KUnit tests. They can be combined with KUnit or kselftest by
|
||
|
running tests on a kernel with these tools enabled: you can then be sure
|
||
|
that none of these errors are occurring during the test.
|
||
|
|
||
|
Some of these tools integrate with KUnit or kselftest and will
|
||
|
automatically fail tests if an issue is detected.
|
||
|
|