2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-05 03:44:03 +08:00
linux-next/net/smc/smc_cdc.c

492 lines
14 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
* Shared Memory Communications over RDMA (SMC-R) and RoCE
*
* Connection Data Control (CDC)
* handles flow control
*
* Copyright IBM Corp. 2016
*
* Author(s): Ursula Braun <ubraun@linux.vnet.ibm.com>
*/
#include <linux/spinlock.h>
#include "smc.h"
#include "smc_wr.h"
#include "smc_cdc.h"
#include "smc_tx.h"
#include "smc_rx.h"
#include "smc_close.h"
/********************************** send *************************************/
/* handler for send/transmission completion of a CDC msg */
static void smc_cdc_tx_handler(struct smc_wr_tx_pend_priv *pnd_snd,
struct smc_link *link,
enum ib_wc_status wc_status)
{
struct smc_cdc_tx_pend *cdcpend = (struct smc_cdc_tx_pend *)pnd_snd;
struct smc_connection *conn = cdcpend->conn;
struct smc_sock *smc;
int diff;
smc = container_of(conn, struct smc_sock, conn);
bh_lock_sock(&smc->sk);
if (!wc_status) {
diff = smc_curs_diff(cdcpend->conn->sndbuf_desc->len,
&cdcpend->conn->tx_curs_fin,
&cdcpend->cursor);
/* sndbuf_space is decreased in smc_sendmsg */
smp_mb__before_atomic();
atomic_add(diff, &cdcpend->conn->sndbuf_space);
/* guarantee 0 <= sndbuf_space <= sndbuf_desc->len */
smp_mb__after_atomic();
smc_curs_copy(&conn->tx_curs_fin, &cdcpend->cursor, conn);
smc_curs_copy(&conn->local_tx_ctrl_fin, &cdcpend->p_cursor,
conn);
conn->tx_cdc_seq_fin = cdcpend->ctrl_seq;
}
net/smc: fix kernel panic caused by race of smc_sock A crash occurs when smc_cdc_tx_handler() tries to access smc_sock but smc_release() has already freed it. [ 4570.695099] BUG: unable to handle page fault for address: 000000002eae9e88 [ 4570.696048] #PF: supervisor write access in kernel mode [ 4570.696728] #PF: error_code(0x0002) - not-present page [ 4570.697401] PGD 0 P4D 0 [ 4570.697716] Oops: 0002 [#1] PREEMPT SMP NOPTI [ 4570.698228] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.16.0-rc4+ #111 [ 4570.699013] Hardware name: Alibaba Cloud Alibaba Cloud ECS, BIOS 8c24b4c 04/0 [ 4570.699933] RIP: 0010:_raw_spin_lock+0x1a/0x30 <...> [ 4570.711446] Call Trace: [ 4570.711746] <IRQ> [ 4570.711992] smc_cdc_tx_handler+0x41/0xc0 [ 4570.712470] smc_wr_tx_tasklet_fn+0x213/0x560 [ 4570.712981] ? smc_cdc_tx_dismisser+0x10/0x10 [ 4570.713489] tasklet_action_common.isra.17+0x66/0x140 [ 4570.714083] __do_softirq+0x123/0x2f4 [ 4570.714521] irq_exit_rcu+0xc4/0xf0 [ 4570.714934] common_interrupt+0xba/0xe0 Though smc_cdc_tx_handler() checked the existence of smc connection, smc_release() may have already dismissed and released the smc socket before smc_cdc_tx_handler() further visits it. smc_cdc_tx_handler() |smc_release() if (!conn) | | |smc_cdc_tx_dismiss_slots() | smc_cdc_tx_dismisser() | |sock_put(&smc->sk) <- last sock_put, | smc_sock freed bh_lock_sock(&smc->sk) (panic) | To make sure we won't receive any CDC messages after we free the smc_sock, add a refcount on the smc_connection for inflight CDC message(posted to the QP but haven't received related CQE), and don't release the smc_connection until all the inflight CDC messages haven been done, for both success or failed ones. Using refcount on CDC messages brings another problem: when the link is going to be destroyed, smcr_link_clear() will reset the QP, which then remove all the pending CQEs related to the QP in the CQ. To make sure all the CQEs will always come back so the refcount on the smc_connection can always reach 0, smc_ib_modify_qp_reset() was replaced by smc_ib_modify_qp_error(). And remove the timeout in smc_wr_tx_wait_no_pending_sends() since we need to wait for all pending WQEs done, or we may encounter use-after- free when handling CQEs. For IB device removal routine, we need to wait for all the QPs on that device been destroyed before we can destroy CQs on the device, or the refcount on smc_connection won't reach 0 and smc_sock cannot be released. Fixes: 5f08318f617b ("smc: connection data control (CDC)") Reported-by: Wen Gu <guwen@linux.alibaba.com> Signed-off-by: Dust Li <dust.li@linux.alibaba.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-12-28 17:03:25 +08:00
net/smc: add autocorking support This patch adds autocorking support for SMC which could improve throughput for small message by x3+. The main idea is borrowed from TCP autocorking with some RDMA specific modification: 1. The first message should never cork to make sure we won't bring extra latency 2. If we have posted any Tx WRs to the NIC that have not completed, cork the new messages until: a) Receive CQE for the last Tx WR b) We have corked enough message on the connection 3. Try to push the corked data out when we receive CQE of the last Tx WR to prevent the corked messages hang in the send queue. Both SMC autocorking and TCP autocorking check the TX completion to decide whether we should cork or not. The difference is when we got a SMC Tx WR completion, the data have been confirmed by the RNIC while TCP TX completion just tells us the data have been sent out by the local NIC. Add an atomic variable tx_pushing in smc_connection to make sure only one can send to let it cork more and save CDC slot. SMC autocorking should not bring extra latency since the first message will always been sent out immediately. The qperf tcp_bw test shows more than x4 increase under small message size with Mellanox connectX4-Lx, same result with other throughput benchmarks like sockperf/netperf. The qperf tcp_lat test shows SMC autocorking has not increase any ping-pong latency. Test command: client: smc_run taskset -c 1 qperf smc-server -oo msg_size:1:64K:*2 \ -t 30 -vu tcp_{bw|lat} server: smc_run taskset -c 1 qperf === Bandwidth ==== MsgSize(Bytes) SMC-NoCork TCP SMC-AutoCorking 1 0.578 MB/s 2.392 MB/s(313.57%) 2.647 MB/s(357.72%) 2 1.159 MB/s 4.780 MB/s(312.53%) 5.153 MB/s(344.71%) 4 2.283 MB/s 10.266 MB/s(349.77%) 10.363 MB/s(354.02%) 8 4.668 MB/s 19.040 MB/s(307.86%) 21.215 MB/s(354.45%) 16 9.147 MB/s 38.904 MB/s(325.31%) 41.740 MB/s(356.32%) 32 18.369 MB/s 79.587 MB/s(333.25%) 82.392 MB/s(348.52%) 64 36.562 MB/s 148.668 MB/s(306.61%) 161.564 MB/s(341.89%) 128 72.961 MB/s 274.913 MB/s(276.80%) 325.363 MB/s(345.94%) 256 144.705 MB/s 512.059 MB/s(253.86%) 633.743 MB/s(337.96%) 512 288.873 MB/s 884.977 MB/s(206.35%) 1250.681 MB/s(332.95%) 1024 574.180 MB/s 1337.736 MB/s(132.98%) 2246.121 MB/s(291.19%) 2048 1095.192 MB/s 1865.952 MB/s( 70.38%) 2057.767 MB/s( 87.89%) 4096 2066.157 MB/s 2380.337 MB/s( 15.21%) 2173.983 MB/s( 5.22%) 8192 3717.198 MB/s 2733.073 MB/s(-26.47%) 3491.223 MB/s( -6.08%) 16384 4742.221 MB/s 2958.693 MB/s(-37.61%) 4637.692 MB/s( -2.20%) 32768 5349.550 MB/s 3061.285 MB/s(-42.77%) 5385.796 MB/s( 0.68%) 65536 5162.919 MB/s 3731.408 MB/s(-27.73%) 5223.890 MB/s( 1.18%) ==== Latency ==== MsgSize(Bytes) SMC-NoCork TCP SMC-AutoCorking 1 10.540 us 11.938 us( 13.26%) 10.573 us( 0.31%) 2 10.996 us 11.992 us( 9.06%) 10.269 us( -6.61%) 4 10.229 us 11.687 us( 14.25%) 10.240 us( 0.11%) 8 10.203 us 11.653 us( 14.21%) 10.402 us( 1.95%) 16 10.530 us 11.313 us( 7.44%) 10.599 us( 0.66%) 32 10.241 us 11.586 us( 13.13%) 10.223 us( -0.18%) 64 10.693 us 11.652 us( 8.97%) 10.251 us( -4.13%) 128 10.597 us 11.579 us( 9.27%) 10.494 us( -0.97%) 256 10.409 us 11.957 us( 14.87%) 10.710 us( 2.89%) 512 11.088 us 12.505 us( 12.78%) 10.547 us( -4.88%) 1024 11.240 us 12.255 us( 9.03%) 10.787 us( -4.03%) 2048 11.485 us 16.970 us( 47.76%) 11.256 us( -1.99%) 4096 12.077 us 13.948 us( 15.49%) 12.230 us( 1.27%) 8192 13.683 us 16.693 us( 22.00%) 13.786 us( 0.75%) 16384 16.470 us 23.615 us( 43.38%) 16.459 us( -0.07%) 32768 22.540 us 40.966 us( 81.75%) 23.284 us( 3.30%) 65536 34.192 us 73.003 us(113.51%) 34.233 us( 0.12%) With SMC autocorking support, we can archive better throughput than TCP in most message sizes without any latency trade-off. Signed-off-by: Dust Li <dust.li@linux.alibaba.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-03-01 17:43:57 +08:00
if (atomic_dec_and_test(&conn->cdc_pend_tx_wr)) {
/* If user owns the sock_lock, mark the connection need sending.
* User context will later try to send when it release sock_lock
* in smc_release_cb()
net/smc: add autocorking support This patch adds autocorking support for SMC which could improve throughput for small message by x3+. The main idea is borrowed from TCP autocorking with some RDMA specific modification: 1. The first message should never cork to make sure we won't bring extra latency 2. If we have posted any Tx WRs to the NIC that have not completed, cork the new messages until: a) Receive CQE for the last Tx WR b) We have corked enough message on the connection 3. Try to push the corked data out when we receive CQE of the last Tx WR to prevent the corked messages hang in the send queue. Both SMC autocorking and TCP autocorking check the TX completion to decide whether we should cork or not. The difference is when we got a SMC Tx WR completion, the data have been confirmed by the RNIC while TCP TX completion just tells us the data have been sent out by the local NIC. Add an atomic variable tx_pushing in smc_connection to make sure only one can send to let it cork more and save CDC slot. SMC autocorking should not bring extra latency since the first message will always been sent out immediately. The qperf tcp_bw test shows more than x4 increase under small message size with Mellanox connectX4-Lx, same result with other throughput benchmarks like sockperf/netperf. The qperf tcp_lat test shows SMC autocorking has not increase any ping-pong latency. Test command: client: smc_run taskset -c 1 qperf smc-server -oo msg_size:1:64K:*2 \ -t 30 -vu tcp_{bw|lat} server: smc_run taskset -c 1 qperf === Bandwidth ==== MsgSize(Bytes) SMC-NoCork TCP SMC-AutoCorking 1 0.578 MB/s 2.392 MB/s(313.57%) 2.647 MB/s(357.72%) 2 1.159 MB/s 4.780 MB/s(312.53%) 5.153 MB/s(344.71%) 4 2.283 MB/s 10.266 MB/s(349.77%) 10.363 MB/s(354.02%) 8 4.668 MB/s 19.040 MB/s(307.86%) 21.215 MB/s(354.45%) 16 9.147 MB/s 38.904 MB/s(325.31%) 41.740 MB/s(356.32%) 32 18.369 MB/s 79.587 MB/s(333.25%) 82.392 MB/s(348.52%) 64 36.562 MB/s 148.668 MB/s(306.61%) 161.564 MB/s(341.89%) 128 72.961 MB/s 274.913 MB/s(276.80%) 325.363 MB/s(345.94%) 256 144.705 MB/s 512.059 MB/s(253.86%) 633.743 MB/s(337.96%) 512 288.873 MB/s 884.977 MB/s(206.35%) 1250.681 MB/s(332.95%) 1024 574.180 MB/s 1337.736 MB/s(132.98%) 2246.121 MB/s(291.19%) 2048 1095.192 MB/s 1865.952 MB/s( 70.38%) 2057.767 MB/s( 87.89%) 4096 2066.157 MB/s 2380.337 MB/s( 15.21%) 2173.983 MB/s( 5.22%) 8192 3717.198 MB/s 2733.073 MB/s(-26.47%) 3491.223 MB/s( -6.08%) 16384 4742.221 MB/s 2958.693 MB/s(-37.61%) 4637.692 MB/s( -2.20%) 32768 5349.550 MB/s 3061.285 MB/s(-42.77%) 5385.796 MB/s( 0.68%) 65536 5162.919 MB/s 3731.408 MB/s(-27.73%) 5223.890 MB/s( 1.18%) ==== Latency ==== MsgSize(Bytes) SMC-NoCork TCP SMC-AutoCorking 1 10.540 us 11.938 us( 13.26%) 10.573 us( 0.31%) 2 10.996 us 11.992 us( 9.06%) 10.269 us( -6.61%) 4 10.229 us 11.687 us( 14.25%) 10.240 us( 0.11%) 8 10.203 us 11.653 us( 14.21%) 10.402 us( 1.95%) 16 10.530 us 11.313 us( 7.44%) 10.599 us( 0.66%) 32 10.241 us 11.586 us( 13.13%) 10.223 us( -0.18%) 64 10.693 us 11.652 us( 8.97%) 10.251 us( -4.13%) 128 10.597 us 11.579 us( 9.27%) 10.494 us( -0.97%) 256 10.409 us 11.957 us( 14.87%) 10.710 us( 2.89%) 512 11.088 us 12.505 us( 12.78%) 10.547 us( -4.88%) 1024 11.240 us 12.255 us( 9.03%) 10.787 us( -4.03%) 2048 11.485 us 16.970 us( 47.76%) 11.256 us( -1.99%) 4096 12.077 us 13.948 us( 15.49%) 12.230 us( 1.27%) 8192 13.683 us 16.693 us( 22.00%) 13.786 us( 0.75%) 16384 16.470 us 23.615 us( 43.38%) 16.459 us( -0.07%) 32768 22.540 us 40.966 us( 81.75%) 23.284 us( 3.30%) 65536 34.192 us 73.003 us(113.51%) 34.233 us( 0.12%) With SMC autocorking support, we can archive better throughput than TCP in most message sizes without any latency trade-off. Signed-off-by: Dust Li <dust.li@linux.alibaba.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-03-01 17:43:57 +08:00
*/
if (sock_owned_by_user(&smc->sk))
conn->tx_in_release_sock = true;
else
smc_tx_pending(conn);
net/smc: add autocorking support This patch adds autocorking support for SMC which could improve throughput for small message by x3+. The main idea is borrowed from TCP autocorking with some RDMA specific modification: 1. The first message should never cork to make sure we won't bring extra latency 2. If we have posted any Tx WRs to the NIC that have not completed, cork the new messages until: a) Receive CQE for the last Tx WR b) We have corked enough message on the connection 3. Try to push the corked data out when we receive CQE of the last Tx WR to prevent the corked messages hang in the send queue. Both SMC autocorking and TCP autocorking check the TX completion to decide whether we should cork or not. The difference is when we got a SMC Tx WR completion, the data have been confirmed by the RNIC while TCP TX completion just tells us the data have been sent out by the local NIC. Add an atomic variable tx_pushing in smc_connection to make sure only one can send to let it cork more and save CDC slot. SMC autocorking should not bring extra latency since the first message will always been sent out immediately. The qperf tcp_bw test shows more than x4 increase under small message size with Mellanox connectX4-Lx, same result with other throughput benchmarks like sockperf/netperf. The qperf tcp_lat test shows SMC autocorking has not increase any ping-pong latency. Test command: client: smc_run taskset -c 1 qperf smc-server -oo msg_size:1:64K:*2 \ -t 30 -vu tcp_{bw|lat} server: smc_run taskset -c 1 qperf === Bandwidth ==== MsgSize(Bytes) SMC-NoCork TCP SMC-AutoCorking 1 0.578 MB/s 2.392 MB/s(313.57%) 2.647 MB/s(357.72%) 2 1.159 MB/s 4.780 MB/s(312.53%) 5.153 MB/s(344.71%) 4 2.283 MB/s 10.266 MB/s(349.77%) 10.363 MB/s(354.02%) 8 4.668 MB/s 19.040 MB/s(307.86%) 21.215 MB/s(354.45%) 16 9.147 MB/s 38.904 MB/s(325.31%) 41.740 MB/s(356.32%) 32 18.369 MB/s 79.587 MB/s(333.25%) 82.392 MB/s(348.52%) 64 36.562 MB/s 148.668 MB/s(306.61%) 161.564 MB/s(341.89%) 128 72.961 MB/s 274.913 MB/s(276.80%) 325.363 MB/s(345.94%) 256 144.705 MB/s 512.059 MB/s(253.86%) 633.743 MB/s(337.96%) 512 288.873 MB/s 884.977 MB/s(206.35%) 1250.681 MB/s(332.95%) 1024 574.180 MB/s 1337.736 MB/s(132.98%) 2246.121 MB/s(291.19%) 2048 1095.192 MB/s 1865.952 MB/s( 70.38%) 2057.767 MB/s( 87.89%) 4096 2066.157 MB/s 2380.337 MB/s( 15.21%) 2173.983 MB/s( 5.22%) 8192 3717.198 MB/s 2733.073 MB/s(-26.47%) 3491.223 MB/s( -6.08%) 16384 4742.221 MB/s 2958.693 MB/s(-37.61%) 4637.692 MB/s( -2.20%) 32768 5349.550 MB/s 3061.285 MB/s(-42.77%) 5385.796 MB/s( 0.68%) 65536 5162.919 MB/s 3731.408 MB/s(-27.73%) 5223.890 MB/s( 1.18%) ==== Latency ==== MsgSize(Bytes) SMC-NoCork TCP SMC-AutoCorking 1 10.540 us 11.938 us( 13.26%) 10.573 us( 0.31%) 2 10.996 us 11.992 us( 9.06%) 10.269 us( -6.61%) 4 10.229 us 11.687 us( 14.25%) 10.240 us( 0.11%) 8 10.203 us 11.653 us( 14.21%) 10.402 us( 1.95%) 16 10.530 us 11.313 us( 7.44%) 10.599 us( 0.66%) 32 10.241 us 11.586 us( 13.13%) 10.223 us( -0.18%) 64 10.693 us 11.652 us( 8.97%) 10.251 us( -4.13%) 128 10.597 us 11.579 us( 9.27%) 10.494 us( -0.97%) 256 10.409 us 11.957 us( 14.87%) 10.710 us( 2.89%) 512 11.088 us 12.505 us( 12.78%) 10.547 us( -4.88%) 1024 11.240 us 12.255 us( 9.03%) 10.787 us( -4.03%) 2048 11.485 us 16.970 us( 47.76%) 11.256 us( -1.99%) 4096 12.077 us 13.948 us( 15.49%) 12.230 us( 1.27%) 8192 13.683 us 16.693 us( 22.00%) 13.786 us( 0.75%) 16384 16.470 us 23.615 us( 43.38%) 16.459 us( -0.07%) 32768 22.540 us 40.966 us( 81.75%) 23.284 us( 3.30%) 65536 34.192 us 73.003 us(113.51%) 34.233 us( 0.12%) With SMC autocorking support, we can archive better throughput than TCP in most message sizes without any latency trade-off. Signed-off-by: Dust Li <dust.li@linux.alibaba.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-03-01 17:43:57 +08:00
if (unlikely(wq_has_sleeper(&conn->cdc_pend_tx_wq)))
wake_up(&conn->cdc_pend_tx_wq);
}
net/smc: fix kernel panic caused by race of smc_sock A crash occurs when smc_cdc_tx_handler() tries to access smc_sock but smc_release() has already freed it. [ 4570.695099] BUG: unable to handle page fault for address: 000000002eae9e88 [ 4570.696048] #PF: supervisor write access in kernel mode [ 4570.696728] #PF: error_code(0x0002) - not-present page [ 4570.697401] PGD 0 P4D 0 [ 4570.697716] Oops: 0002 [#1] PREEMPT SMP NOPTI [ 4570.698228] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.16.0-rc4+ #111 [ 4570.699013] Hardware name: Alibaba Cloud Alibaba Cloud ECS, BIOS 8c24b4c 04/0 [ 4570.699933] RIP: 0010:_raw_spin_lock+0x1a/0x30 <...> [ 4570.711446] Call Trace: [ 4570.711746] <IRQ> [ 4570.711992] smc_cdc_tx_handler+0x41/0xc0 [ 4570.712470] smc_wr_tx_tasklet_fn+0x213/0x560 [ 4570.712981] ? smc_cdc_tx_dismisser+0x10/0x10 [ 4570.713489] tasklet_action_common.isra.17+0x66/0x140 [ 4570.714083] __do_softirq+0x123/0x2f4 [ 4570.714521] irq_exit_rcu+0xc4/0xf0 [ 4570.714934] common_interrupt+0xba/0xe0 Though smc_cdc_tx_handler() checked the existence of smc connection, smc_release() may have already dismissed and released the smc socket before smc_cdc_tx_handler() further visits it. smc_cdc_tx_handler() |smc_release() if (!conn) | | |smc_cdc_tx_dismiss_slots() | smc_cdc_tx_dismisser() | |sock_put(&smc->sk) <- last sock_put, | smc_sock freed bh_lock_sock(&smc->sk) (panic) | To make sure we won't receive any CDC messages after we free the smc_sock, add a refcount on the smc_connection for inflight CDC message(posted to the QP but haven't received related CQE), and don't release the smc_connection until all the inflight CDC messages haven been done, for both success or failed ones. Using refcount on CDC messages brings another problem: when the link is going to be destroyed, smcr_link_clear() will reset the QP, which then remove all the pending CQEs related to the QP in the CQ. To make sure all the CQEs will always come back so the refcount on the smc_connection can always reach 0, smc_ib_modify_qp_reset() was replaced by smc_ib_modify_qp_error(). And remove the timeout in smc_wr_tx_wait_no_pending_sends() since we need to wait for all pending WQEs done, or we may encounter use-after- free when handling CQEs. For IB device removal routine, we need to wait for all the QPs on that device been destroyed before we can destroy CQs on the device, or the refcount on smc_connection won't reach 0 and smc_sock cannot be released. Fixes: 5f08318f617b ("smc: connection data control (CDC)") Reported-by: Wen Gu <guwen@linux.alibaba.com> Signed-off-by: Dust Li <dust.li@linux.alibaba.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-12-28 17:03:25 +08:00
WARN_ON(atomic_read(&conn->cdc_pend_tx_wr) < 0);
smc_tx_sndbuf_nonfull(smc);
bh_unlock_sock(&smc->sk);
}
int smc_cdc_get_free_slot(struct smc_connection *conn,
struct smc_link *link,
struct smc_wr_buf **wr_buf,
struct smc_rdma_wr **wr_rdma_buf,
struct smc_cdc_tx_pend **pend)
{
int rc;
rc = smc_wr_tx_get_free_slot(link, smc_cdc_tx_handler, wr_buf,
wr_rdma_buf,
(struct smc_wr_tx_pend_priv **)pend);
if (conn->killed) {
/* abnormal termination */
if (!rc)
smc_wr_tx_put_slot(link,
(struct smc_wr_tx_pend_priv *)pend);
rc = -EPIPE;
}
return rc;
}
static inline void smc_cdc_add_pending_send(struct smc_connection *conn,
struct smc_cdc_tx_pend *pend)
{
BUILD_BUG_ON_MSG(
sizeof(struct smc_cdc_msg) > SMC_WR_BUF_SIZE,
"must increase SMC_WR_BUF_SIZE to at least sizeof(struct smc_cdc_msg)");
BUILD_BUG_ON_MSG(
offsetofend(struct smc_cdc_msg, reserved) > SMC_WR_TX_SIZE,
"must adapt SMC_WR_TX_SIZE to sizeof(struct smc_cdc_msg); if not all smc_wr upper layer protocols use the same message size any more, must start to set link->wr_tx_sges[i].length on each individual smc_wr_tx_send()");
BUILD_BUG_ON_MSG(
sizeof(struct smc_cdc_tx_pend) > SMC_WR_TX_PEND_PRIV_SIZE,
"must increase SMC_WR_TX_PEND_PRIV_SIZE to at least sizeof(struct smc_cdc_tx_pend)");
pend->conn = conn;
pend->cursor = conn->tx_curs_sent;
pend->p_cursor = conn->local_tx_ctrl.prod;
pend->ctrl_seq = conn->tx_cdc_seq;
}
int smc_cdc_msg_send(struct smc_connection *conn,
struct smc_wr_buf *wr_buf,
struct smc_cdc_tx_pend *pend)
{
struct smc_link *link = conn->lnk;
union smc_host_cursor cfed;
int rc;
smc_cdc_add_pending_send(conn, pend);
conn->tx_cdc_seq++;
conn->local_tx_ctrl.seqno = conn->tx_cdc_seq;
smc_host_msg_to_cdc((struct smc_cdc_msg *)wr_buf, conn, &cfed);
net/smc: fix kernel panic caused by race of smc_sock A crash occurs when smc_cdc_tx_handler() tries to access smc_sock but smc_release() has already freed it. [ 4570.695099] BUG: unable to handle page fault for address: 000000002eae9e88 [ 4570.696048] #PF: supervisor write access in kernel mode [ 4570.696728] #PF: error_code(0x0002) - not-present page [ 4570.697401] PGD 0 P4D 0 [ 4570.697716] Oops: 0002 [#1] PREEMPT SMP NOPTI [ 4570.698228] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.16.0-rc4+ #111 [ 4570.699013] Hardware name: Alibaba Cloud Alibaba Cloud ECS, BIOS 8c24b4c 04/0 [ 4570.699933] RIP: 0010:_raw_spin_lock+0x1a/0x30 <...> [ 4570.711446] Call Trace: [ 4570.711746] <IRQ> [ 4570.711992] smc_cdc_tx_handler+0x41/0xc0 [ 4570.712470] smc_wr_tx_tasklet_fn+0x213/0x560 [ 4570.712981] ? smc_cdc_tx_dismisser+0x10/0x10 [ 4570.713489] tasklet_action_common.isra.17+0x66/0x140 [ 4570.714083] __do_softirq+0x123/0x2f4 [ 4570.714521] irq_exit_rcu+0xc4/0xf0 [ 4570.714934] common_interrupt+0xba/0xe0 Though smc_cdc_tx_handler() checked the existence of smc connection, smc_release() may have already dismissed and released the smc socket before smc_cdc_tx_handler() further visits it. smc_cdc_tx_handler() |smc_release() if (!conn) | | |smc_cdc_tx_dismiss_slots() | smc_cdc_tx_dismisser() | |sock_put(&smc->sk) <- last sock_put, | smc_sock freed bh_lock_sock(&smc->sk) (panic) | To make sure we won't receive any CDC messages after we free the smc_sock, add a refcount on the smc_connection for inflight CDC message(posted to the QP but haven't received related CQE), and don't release the smc_connection until all the inflight CDC messages haven been done, for both success or failed ones. Using refcount on CDC messages brings another problem: when the link is going to be destroyed, smcr_link_clear() will reset the QP, which then remove all the pending CQEs related to the QP in the CQ. To make sure all the CQEs will always come back so the refcount on the smc_connection can always reach 0, smc_ib_modify_qp_reset() was replaced by smc_ib_modify_qp_error(). And remove the timeout in smc_wr_tx_wait_no_pending_sends() since we need to wait for all pending WQEs done, or we may encounter use-after- free when handling CQEs. For IB device removal routine, we need to wait for all the QPs on that device been destroyed before we can destroy CQs on the device, or the refcount on smc_connection won't reach 0 and smc_sock cannot be released. Fixes: 5f08318f617b ("smc: connection data control (CDC)") Reported-by: Wen Gu <guwen@linux.alibaba.com> Signed-off-by: Dust Li <dust.li@linux.alibaba.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-12-28 17:03:25 +08:00
atomic_inc(&conn->cdc_pend_tx_wr);
smp_mb__after_atomic(); /* Make sure cdc_pend_tx_wr added before post */
rc = smc_wr_tx_send(link, (struct smc_wr_tx_pend_priv *)pend);
if (!rc) {
smc_curs_copy(&conn->rx_curs_confirmed, &cfed, conn);
conn->local_rx_ctrl.prod_flags.cons_curs_upd_req = 0;
} else {
conn->tx_cdc_seq--;
conn->local_tx_ctrl.seqno = conn->tx_cdc_seq;
net/smc: fix kernel panic caused by race of smc_sock A crash occurs when smc_cdc_tx_handler() tries to access smc_sock but smc_release() has already freed it. [ 4570.695099] BUG: unable to handle page fault for address: 000000002eae9e88 [ 4570.696048] #PF: supervisor write access in kernel mode [ 4570.696728] #PF: error_code(0x0002) - not-present page [ 4570.697401] PGD 0 P4D 0 [ 4570.697716] Oops: 0002 [#1] PREEMPT SMP NOPTI [ 4570.698228] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.16.0-rc4+ #111 [ 4570.699013] Hardware name: Alibaba Cloud Alibaba Cloud ECS, BIOS 8c24b4c 04/0 [ 4570.699933] RIP: 0010:_raw_spin_lock+0x1a/0x30 <...> [ 4570.711446] Call Trace: [ 4570.711746] <IRQ> [ 4570.711992] smc_cdc_tx_handler+0x41/0xc0 [ 4570.712470] smc_wr_tx_tasklet_fn+0x213/0x560 [ 4570.712981] ? smc_cdc_tx_dismisser+0x10/0x10 [ 4570.713489] tasklet_action_common.isra.17+0x66/0x140 [ 4570.714083] __do_softirq+0x123/0x2f4 [ 4570.714521] irq_exit_rcu+0xc4/0xf0 [ 4570.714934] common_interrupt+0xba/0xe0 Though smc_cdc_tx_handler() checked the existence of smc connection, smc_release() may have already dismissed and released the smc socket before smc_cdc_tx_handler() further visits it. smc_cdc_tx_handler() |smc_release() if (!conn) | | |smc_cdc_tx_dismiss_slots() | smc_cdc_tx_dismisser() | |sock_put(&smc->sk) <- last sock_put, | smc_sock freed bh_lock_sock(&smc->sk) (panic) | To make sure we won't receive any CDC messages after we free the smc_sock, add a refcount on the smc_connection for inflight CDC message(posted to the QP but haven't received related CQE), and don't release the smc_connection until all the inflight CDC messages haven been done, for both success or failed ones. Using refcount on CDC messages brings another problem: when the link is going to be destroyed, smcr_link_clear() will reset the QP, which then remove all the pending CQEs related to the QP in the CQ. To make sure all the CQEs will always come back so the refcount on the smc_connection can always reach 0, smc_ib_modify_qp_reset() was replaced by smc_ib_modify_qp_error(). And remove the timeout in smc_wr_tx_wait_no_pending_sends() since we need to wait for all pending WQEs done, or we may encounter use-after- free when handling CQEs. For IB device removal routine, we need to wait for all the QPs on that device been destroyed before we can destroy CQs on the device, or the refcount on smc_connection won't reach 0 and smc_sock cannot be released. Fixes: 5f08318f617b ("smc: connection data control (CDC)") Reported-by: Wen Gu <guwen@linux.alibaba.com> Signed-off-by: Dust Li <dust.li@linux.alibaba.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-12-28 17:03:25 +08:00
atomic_dec(&conn->cdc_pend_tx_wr);
}
return rc;
}
/* send a validation msg indicating the move of a conn to an other QP link */
int smcr_cdc_msg_send_validation(struct smc_connection *conn,
struct smc_cdc_tx_pend *pend,
struct smc_wr_buf *wr_buf)
{
struct smc_host_cdc_msg *local = &conn->local_tx_ctrl;
struct smc_link *link = conn->lnk;
struct smc_cdc_msg *peer;
int rc;
peer = (struct smc_cdc_msg *)wr_buf;
peer->common.type = local->common.type;
peer->len = local->len;
peer->seqno = htons(conn->tx_cdc_seq_fin); /* seqno last compl. tx */
peer->token = htonl(local->token);
peer->prod_flags.failover_validation = 1;
net/smc: fix kernel panic caused by race of smc_sock A crash occurs when smc_cdc_tx_handler() tries to access smc_sock but smc_release() has already freed it. [ 4570.695099] BUG: unable to handle page fault for address: 000000002eae9e88 [ 4570.696048] #PF: supervisor write access in kernel mode [ 4570.696728] #PF: error_code(0x0002) - not-present page [ 4570.697401] PGD 0 P4D 0 [ 4570.697716] Oops: 0002 [#1] PREEMPT SMP NOPTI [ 4570.698228] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.16.0-rc4+ #111 [ 4570.699013] Hardware name: Alibaba Cloud Alibaba Cloud ECS, BIOS 8c24b4c 04/0 [ 4570.699933] RIP: 0010:_raw_spin_lock+0x1a/0x30 <...> [ 4570.711446] Call Trace: [ 4570.711746] <IRQ> [ 4570.711992] smc_cdc_tx_handler+0x41/0xc0 [ 4570.712470] smc_wr_tx_tasklet_fn+0x213/0x560 [ 4570.712981] ? smc_cdc_tx_dismisser+0x10/0x10 [ 4570.713489] tasklet_action_common.isra.17+0x66/0x140 [ 4570.714083] __do_softirq+0x123/0x2f4 [ 4570.714521] irq_exit_rcu+0xc4/0xf0 [ 4570.714934] common_interrupt+0xba/0xe0 Though smc_cdc_tx_handler() checked the existence of smc connection, smc_release() may have already dismissed and released the smc socket before smc_cdc_tx_handler() further visits it. smc_cdc_tx_handler() |smc_release() if (!conn) | | |smc_cdc_tx_dismiss_slots() | smc_cdc_tx_dismisser() | |sock_put(&smc->sk) <- last sock_put, | smc_sock freed bh_lock_sock(&smc->sk) (panic) | To make sure we won't receive any CDC messages after we free the smc_sock, add a refcount on the smc_connection for inflight CDC message(posted to the QP but haven't received related CQE), and don't release the smc_connection until all the inflight CDC messages haven been done, for both success or failed ones. Using refcount on CDC messages brings another problem: when the link is going to be destroyed, smcr_link_clear() will reset the QP, which then remove all the pending CQEs related to the QP in the CQ. To make sure all the CQEs will always come back so the refcount on the smc_connection can always reach 0, smc_ib_modify_qp_reset() was replaced by smc_ib_modify_qp_error(). And remove the timeout in smc_wr_tx_wait_no_pending_sends() since we need to wait for all pending WQEs done, or we may encounter use-after- free when handling CQEs. For IB device removal routine, we need to wait for all the QPs on that device been destroyed before we can destroy CQs on the device, or the refcount on smc_connection won't reach 0 and smc_sock cannot be released. Fixes: 5f08318f617b ("smc: connection data control (CDC)") Reported-by: Wen Gu <guwen@linux.alibaba.com> Signed-off-by: Dust Li <dust.li@linux.alibaba.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-12-28 17:03:25 +08:00
/* We need to set pend->conn here to make sure smc_cdc_tx_handler()
* can handle properly
*/
smc_cdc_add_pending_send(conn, pend);
atomic_inc(&conn->cdc_pend_tx_wr);
smp_mb__after_atomic(); /* Make sure cdc_pend_tx_wr added before post */
rc = smc_wr_tx_send(link, (struct smc_wr_tx_pend_priv *)pend);
net/smc: fix kernel panic caused by race of smc_sock A crash occurs when smc_cdc_tx_handler() tries to access smc_sock but smc_release() has already freed it. [ 4570.695099] BUG: unable to handle page fault for address: 000000002eae9e88 [ 4570.696048] #PF: supervisor write access in kernel mode [ 4570.696728] #PF: error_code(0x0002) - not-present page [ 4570.697401] PGD 0 P4D 0 [ 4570.697716] Oops: 0002 [#1] PREEMPT SMP NOPTI [ 4570.698228] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.16.0-rc4+ #111 [ 4570.699013] Hardware name: Alibaba Cloud Alibaba Cloud ECS, BIOS 8c24b4c 04/0 [ 4570.699933] RIP: 0010:_raw_spin_lock+0x1a/0x30 <...> [ 4570.711446] Call Trace: [ 4570.711746] <IRQ> [ 4570.711992] smc_cdc_tx_handler+0x41/0xc0 [ 4570.712470] smc_wr_tx_tasklet_fn+0x213/0x560 [ 4570.712981] ? smc_cdc_tx_dismisser+0x10/0x10 [ 4570.713489] tasklet_action_common.isra.17+0x66/0x140 [ 4570.714083] __do_softirq+0x123/0x2f4 [ 4570.714521] irq_exit_rcu+0xc4/0xf0 [ 4570.714934] common_interrupt+0xba/0xe0 Though smc_cdc_tx_handler() checked the existence of smc connection, smc_release() may have already dismissed and released the smc socket before smc_cdc_tx_handler() further visits it. smc_cdc_tx_handler() |smc_release() if (!conn) | | |smc_cdc_tx_dismiss_slots() | smc_cdc_tx_dismisser() | |sock_put(&smc->sk) <- last sock_put, | smc_sock freed bh_lock_sock(&smc->sk) (panic) | To make sure we won't receive any CDC messages after we free the smc_sock, add a refcount on the smc_connection for inflight CDC message(posted to the QP but haven't received related CQE), and don't release the smc_connection until all the inflight CDC messages haven been done, for both success or failed ones. Using refcount on CDC messages brings another problem: when the link is going to be destroyed, smcr_link_clear() will reset the QP, which then remove all the pending CQEs related to the QP in the CQ. To make sure all the CQEs will always come back so the refcount on the smc_connection can always reach 0, smc_ib_modify_qp_reset() was replaced by smc_ib_modify_qp_error(). And remove the timeout in smc_wr_tx_wait_no_pending_sends() since we need to wait for all pending WQEs done, or we may encounter use-after- free when handling CQEs. For IB device removal routine, we need to wait for all the QPs on that device been destroyed before we can destroy CQs on the device, or the refcount on smc_connection won't reach 0 and smc_sock cannot be released. Fixes: 5f08318f617b ("smc: connection data control (CDC)") Reported-by: Wen Gu <guwen@linux.alibaba.com> Signed-off-by: Dust Li <dust.li@linux.alibaba.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-12-28 17:03:25 +08:00
if (unlikely(rc))
atomic_dec(&conn->cdc_pend_tx_wr);
return rc;
}
static int smcr_cdc_get_slot_and_msg_send(struct smc_connection *conn)
{
struct smc_cdc_tx_pend *pend;
struct smc_wr_buf *wr_buf;
struct smc_link *link;
bool again = false;
int rc;
again:
link = conn->lnk;
if (!smc_wr_tx_link_hold(link))
return -ENOLINK;
rc = smc_cdc_get_free_slot(conn, link, &wr_buf, NULL, &pend);
if (rc)
goto put_out;
spin_lock_bh(&conn->send_lock);
if (link != conn->lnk) {
/* link of connection changed, try again one time*/
spin_unlock_bh(&conn->send_lock);
smc_wr_tx_put_slot(link,
(struct smc_wr_tx_pend_priv *)pend);
smc_wr_tx_link_put(link);
if (again)
return -ENOLINK;
again = true;
goto again;
}
rc = smc_cdc_msg_send(conn, wr_buf, pend);
spin_unlock_bh(&conn->send_lock);
put_out:
smc_wr_tx_link_put(link);
return rc;
}
int smc_cdc_get_slot_and_msg_send(struct smc_connection *conn)
{
int rc;
if (!smc_conn_lgr_valid(conn) ||
(conn->lgr->is_smcd && conn->lgr->peer_shutdown))
return -EPIPE;
if (conn->lgr->is_smcd) {
spin_lock_bh(&conn->send_lock);
rc = smcd_cdc_msg_send(conn);
spin_unlock_bh(&conn->send_lock);
} else {
rc = smcr_cdc_get_slot_and_msg_send(conn);
}
return rc;
}
net/smc: fix kernel panic caused by race of smc_sock A crash occurs when smc_cdc_tx_handler() tries to access smc_sock but smc_release() has already freed it. [ 4570.695099] BUG: unable to handle page fault for address: 000000002eae9e88 [ 4570.696048] #PF: supervisor write access in kernel mode [ 4570.696728] #PF: error_code(0x0002) - not-present page [ 4570.697401] PGD 0 P4D 0 [ 4570.697716] Oops: 0002 [#1] PREEMPT SMP NOPTI [ 4570.698228] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.16.0-rc4+ #111 [ 4570.699013] Hardware name: Alibaba Cloud Alibaba Cloud ECS, BIOS 8c24b4c 04/0 [ 4570.699933] RIP: 0010:_raw_spin_lock+0x1a/0x30 <...> [ 4570.711446] Call Trace: [ 4570.711746] <IRQ> [ 4570.711992] smc_cdc_tx_handler+0x41/0xc0 [ 4570.712470] smc_wr_tx_tasklet_fn+0x213/0x560 [ 4570.712981] ? smc_cdc_tx_dismisser+0x10/0x10 [ 4570.713489] tasklet_action_common.isra.17+0x66/0x140 [ 4570.714083] __do_softirq+0x123/0x2f4 [ 4570.714521] irq_exit_rcu+0xc4/0xf0 [ 4570.714934] common_interrupt+0xba/0xe0 Though smc_cdc_tx_handler() checked the existence of smc connection, smc_release() may have already dismissed and released the smc socket before smc_cdc_tx_handler() further visits it. smc_cdc_tx_handler() |smc_release() if (!conn) | | |smc_cdc_tx_dismiss_slots() | smc_cdc_tx_dismisser() | |sock_put(&smc->sk) <- last sock_put, | smc_sock freed bh_lock_sock(&smc->sk) (panic) | To make sure we won't receive any CDC messages after we free the smc_sock, add a refcount on the smc_connection for inflight CDC message(posted to the QP but haven't received related CQE), and don't release the smc_connection until all the inflight CDC messages haven been done, for both success or failed ones. Using refcount on CDC messages brings another problem: when the link is going to be destroyed, smcr_link_clear() will reset the QP, which then remove all the pending CQEs related to the QP in the CQ. To make sure all the CQEs will always come back so the refcount on the smc_connection can always reach 0, smc_ib_modify_qp_reset() was replaced by smc_ib_modify_qp_error(). And remove the timeout in smc_wr_tx_wait_no_pending_sends() since we need to wait for all pending WQEs done, or we may encounter use-after- free when handling CQEs. For IB device removal routine, we need to wait for all the QPs on that device been destroyed before we can destroy CQs on the device, or the refcount on smc_connection won't reach 0 and smc_sock cannot be released. Fixes: 5f08318f617b ("smc: connection data control (CDC)") Reported-by: Wen Gu <guwen@linux.alibaba.com> Signed-off-by: Dust Li <dust.li@linux.alibaba.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-12-28 17:03:25 +08:00
void smc_cdc_wait_pend_tx_wr(struct smc_connection *conn)
{
net/smc: fix kernel panic caused by race of smc_sock A crash occurs when smc_cdc_tx_handler() tries to access smc_sock but smc_release() has already freed it. [ 4570.695099] BUG: unable to handle page fault for address: 000000002eae9e88 [ 4570.696048] #PF: supervisor write access in kernel mode [ 4570.696728] #PF: error_code(0x0002) - not-present page [ 4570.697401] PGD 0 P4D 0 [ 4570.697716] Oops: 0002 [#1] PREEMPT SMP NOPTI [ 4570.698228] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.16.0-rc4+ #111 [ 4570.699013] Hardware name: Alibaba Cloud Alibaba Cloud ECS, BIOS 8c24b4c 04/0 [ 4570.699933] RIP: 0010:_raw_spin_lock+0x1a/0x30 <...> [ 4570.711446] Call Trace: [ 4570.711746] <IRQ> [ 4570.711992] smc_cdc_tx_handler+0x41/0xc0 [ 4570.712470] smc_wr_tx_tasklet_fn+0x213/0x560 [ 4570.712981] ? smc_cdc_tx_dismisser+0x10/0x10 [ 4570.713489] tasklet_action_common.isra.17+0x66/0x140 [ 4570.714083] __do_softirq+0x123/0x2f4 [ 4570.714521] irq_exit_rcu+0xc4/0xf0 [ 4570.714934] common_interrupt+0xba/0xe0 Though smc_cdc_tx_handler() checked the existence of smc connection, smc_release() may have already dismissed and released the smc socket before smc_cdc_tx_handler() further visits it. smc_cdc_tx_handler() |smc_release() if (!conn) | | |smc_cdc_tx_dismiss_slots() | smc_cdc_tx_dismisser() | |sock_put(&smc->sk) <- last sock_put, | smc_sock freed bh_lock_sock(&smc->sk) (panic) | To make sure we won't receive any CDC messages after we free the smc_sock, add a refcount on the smc_connection for inflight CDC message(posted to the QP but haven't received related CQE), and don't release the smc_connection until all the inflight CDC messages haven been done, for both success or failed ones. Using refcount on CDC messages brings another problem: when the link is going to be destroyed, smcr_link_clear() will reset the QP, which then remove all the pending CQEs related to the QP in the CQ. To make sure all the CQEs will always come back so the refcount on the smc_connection can always reach 0, smc_ib_modify_qp_reset() was replaced by smc_ib_modify_qp_error(). And remove the timeout in smc_wr_tx_wait_no_pending_sends() since we need to wait for all pending WQEs done, or we may encounter use-after- free when handling CQEs. For IB device removal routine, we need to wait for all the QPs on that device been destroyed before we can destroy CQs on the device, or the refcount on smc_connection won't reach 0 and smc_sock cannot be released. Fixes: 5f08318f617b ("smc: connection data control (CDC)") Reported-by: Wen Gu <guwen@linux.alibaba.com> Signed-off-by: Dust Li <dust.li@linux.alibaba.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-12-28 17:03:25 +08:00
wait_event(conn->cdc_pend_tx_wq, !atomic_read(&conn->cdc_pend_tx_wr));
}
/* Send a SMC-D CDC header.
* This increments the free space available in our send buffer.
* Also update the confirmed receive buffer with what was sent to the peer.
*/
int smcd_cdc_msg_send(struct smc_connection *conn)
{
struct smc_sock *smc = container_of(conn, struct smc_sock, conn);
union smc_host_cursor curs;
struct smcd_cdc_msg cdc;
int rc, diff;
memset(&cdc, 0, sizeof(cdc));
cdc.common.type = SMC_CDC_MSG_TYPE;
curs.acurs.counter = atomic64_read(&conn->local_tx_ctrl.prod.acurs);
cdc.prod.wrap = curs.wrap;
cdc.prod.count = curs.count;
curs.acurs.counter = atomic64_read(&conn->local_tx_ctrl.cons.acurs);
cdc.cons.wrap = curs.wrap;
cdc.cons.count = curs.count;
cdc.cons.prod_flags = conn->local_tx_ctrl.prod_flags;
cdc.cons.conn_state_flags = conn->local_tx_ctrl.conn_state_flags;
rc = smcd_tx_ism_write(conn, &cdc, sizeof(cdc), 0, 1);
if (rc)
return rc;
smc_curs_copy(&conn->rx_curs_confirmed, &curs, conn);
conn->local_rx_ctrl.prod_flags.cons_curs_upd_req = 0;
/* Calculate transmitted data and increment free send buffer space */
diff = smc_curs_diff(conn->sndbuf_desc->len, &conn->tx_curs_fin,
&conn->tx_curs_sent);
/* increased by confirmed number of bytes */
smp_mb__before_atomic();
atomic_add(diff, &conn->sndbuf_space);
/* guarantee 0 <= sndbuf_space <= sndbuf_desc->len */
smp_mb__after_atomic();
smc_curs_copy(&conn->tx_curs_fin, &conn->tx_curs_sent, conn);
smc_tx_sndbuf_nonfull(smc);
return rc;
}
/********************************* receive ***********************************/
static inline bool smc_cdc_before(u16 seq1, u16 seq2)
{
return (s16)(seq1 - seq2) < 0;
}
static void smc_cdc_handle_urg_data_arrival(struct smc_sock *smc,
int *diff_prod)
{
struct smc_connection *conn = &smc->conn;
char *base;
/* new data included urgent business */
smc_curs_copy(&conn->urg_curs, &conn->local_rx_ctrl.prod, conn);
conn->urg_state = SMC_URG_VALID;
if (!sock_flag(&smc->sk, SOCK_URGINLINE))
/* we'll skip the urgent byte, so don't account for it */
(*diff_prod)--;
base = (char *)conn->rmb_desc->cpu_addr + conn->rx_off;
if (conn->urg_curs.count)
conn->urg_rx_byte = *(base + conn->urg_curs.count - 1);
else
conn->urg_rx_byte = *(base + conn->rmb_desc->len - 1);
sk_send_sigurg(&smc->sk);
}
static void smc_cdc_msg_validate(struct smc_sock *smc, struct smc_cdc_msg *cdc,
struct smc_link *link)
{
struct smc_connection *conn = &smc->conn;
u16 recv_seq = ntohs(cdc->seqno);
s16 diff;
/* check that seqnum was seen before */
diff = conn->local_rx_ctrl.seqno - recv_seq;
if (diff < 0) { /* diff larger than 0x7fff */
/* drop connection */
conn->out_of_sync = 1; /* prevent any further receives */
spin_lock_bh(&conn->send_lock);
conn->local_tx_ctrl.conn_state_flags.peer_conn_abort = 1;
conn->lnk = link;
spin_unlock_bh(&conn->send_lock);
sock_hold(&smc->sk); /* sock_put in abort_work */
if (!queue_work(smc_close_wq, &conn->abort_work))
sock_put(&smc->sk);
}
}
static void smc_cdc_msg_recv_action(struct smc_sock *smc,
struct smc_cdc_msg *cdc)
{
union smc_host_cursor cons_old, prod_old;
struct smc_connection *conn = &smc->conn;
int diff_cons, diff_prod;
smc_curs_copy(&prod_old, &conn->local_rx_ctrl.prod, conn);
smc_curs_copy(&cons_old, &conn->local_rx_ctrl.cons, conn);
smc_cdc_msg_to_host(&conn->local_rx_ctrl, cdc, conn);
diff_cons = smc_curs_diff(conn->peer_rmbe_size, &cons_old,
&conn->local_rx_ctrl.cons);
if (diff_cons) {
/* peer_rmbe_space is decreased during data transfer with RDMA
* write
*/
smp_mb__before_atomic();
atomic_add(diff_cons, &conn->peer_rmbe_space);
/* guarantee 0 <= peer_rmbe_space <= peer_rmbe_size */
smp_mb__after_atomic();
}
diff_prod = smc_curs_diff(conn->rmb_desc->len, &prod_old,
&conn->local_rx_ctrl.prod);
if (diff_prod) {
if (conn->local_rx_ctrl.prod_flags.urg_data_present)
smc_cdc_handle_urg_data_arrival(smc, &diff_prod);
/* bytes_to_rcv is decreased in smc_recvmsg */
smp_mb__before_atomic();
atomic_add(diff_prod, &conn->bytes_to_rcv);
/* guarantee 0 <= bytes_to_rcv <= rmb_desc->len */
smp_mb__after_atomic();
smc->sk.sk_data_ready(&smc->sk);
} else {
if (conn->local_rx_ctrl.prod_flags.write_blocked)
smc->sk.sk_data_ready(&smc->sk);
if (conn->local_rx_ctrl.prod_flags.urg_data_pending)
conn->urg_state = SMC_URG_NOTYET;
}
/* trigger sndbuf consumer: RDMA write into peer RMBE and CDC */
if ((diff_cons && smc_tx_prepared_sends(conn)) ||
conn->local_rx_ctrl.prod_flags.cons_curs_upd_req ||
conn->local_rx_ctrl.prod_flags.urg_data_pending) {
if (!sock_owned_by_user(&smc->sk))
smc_tx_pending(conn);
else
conn->tx_in_release_sock = true;
}
if (diff_cons && conn->urg_tx_pend &&
atomic_read(&conn->peer_rmbe_space) == conn->peer_rmbe_size) {
/* urg data confirmed by peer, indicate we're ready for more */
conn->urg_tx_pend = false;
smc->sk.sk_write_space(&smc->sk);
}
if (conn->local_rx_ctrl.conn_state_flags.peer_conn_abort) {
smc->sk.sk_err = ECONNRESET;
conn->local_tx_ctrl.conn_state_flags.peer_conn_abort = 1;
}
if (smc_cdc_rxed_any_close_or_senddone(conn)) {
smc->sk.sk_shutdown |= RCV_SHUTDOWN;
if (smc->clcsock && smc->clcsock->sk)
smc->clcsock->sk->sk_shutdown |= RCV_SHUTDOWN;
sock_set_flag(&smc->sk, SOCK_DONE);
sock_hold(&smc->sk); /* sock_put in close_work */
if (!queue_work(smc_close_wq, &conn->close_work))
sock_put(&smc->sk);
}
}
/* called under tasklet context */
static void smc_cdc_msg_recv(struct smc_sock *smc, struct smc_cdc_msg *cdc)
{
sock_hold(&smc->sk);
bh_lock_sock(&smc->sk);
smc_cdc_msg_recv_action(smc, cdc);
bh_unlock_sock(&smc->sk);
sock_put(&smc->sk); /* no free sk in softirq-context */
}
/* Schedule a tasklet for this connection. Triggered from the ISM device IRQ
* handler to indicate update in the DMBE.
*
* Context:
* - tasklet context
*/
static void smcd_cdc_rx_tsklet(struct tasklet_struct *t)
{
struct smc_connection *conn = from_tasklet(conn, t, rx_tsklet);
struct smcd_cdc_msg *data_cdc;
struct smcd_cdc_msg cdc;
struct smc_sock *smc;
if (!conn || conn->killed)
return;
data_cdc = (struct smcd_cdc_msg *)conn->rmb_desc->cpu_addr;
smcd_curs_copy(&cdc.prod, &data_cdc->prod, conn);
smcd_curs_copy(&cdc.cons, &data_cdc->cons, conn);
smc = container_of(conn, struct smc_sock, conn);
smc_cdc_msg_recv(smc, (struct smc_cdc_msg *)&cdc);
}
/* Initialize receive tasklet. Called from ISM device IRQ handler to start
* receiver side.
*/
void smcd_cdc_rx_init(struct smc_connection *conn)
{
tasklet_setup(&conn->rx_tsklet, smcd_cdc_rx_tsklet);
}
/***************************** init, exit, misc ******************************/
static void smc_cdc_rx_handler(struct ib_wc *wc, void *buf)
{
struct smc_link *link = (struct smc_link *)wc->qp->qp_context;
struct smc_cdc_msg *cdc = buf;
struct smc_connection *conn;
struct smc_link_group *lgr;
struct smc_sock *smc;
if (wc->byte_len < offsetof(struct smc_cdc_msg, reserved))
return; /* short message */
if (cdc->len != SMC_WR_TX_SIZE)
return; /* invalid message */
/* lookup connection */
lgr = smc_get_lgr(link);
read_lock_bh(&lgr->conns_lock);
conn = smc_lgr_find_conn(ntohl(cdc->token), lgr);
read_unlock_bh(&lgr->conns_lock);
if (!conn || conn->out_of_sync)
return;
smc = container_of(conn, struct smc_sock, conn);
if (cdc->prod_flags.failover_validation) {
smc_cdc_msg_validate(smc, cdc, link);
return;
}
if (smc_cdc_before(ntohs(cdc->seqno),
conn->local_rx_ctrl.seqno))
/* received seqno is old */
return;
smc_cdc_msg_recv(smc, cdc);
}
static struct smc_wr_rx_handler smc_cdc_rx_handlers[] = {
{
.handler = smc_cdc_rx_handler,
.type = SMC_CDC_MSG_TYPE
},
{
.handler = NULL,
}
};
int __init smc_cdc_init(void)
{
struct smc_wr_rx_handler *handler;
int rc = 0;
for (handler = smc_cdc_rx_handlers; handler->handler; handler++) {
INIT_HLIST_NODE(&handler->list);
rc = smc_wr_rx_register_handler(handler);
if (rc)
break;
}
return rc;
}