2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-26 14:14:01 +08:00
linux-next/block/blk-mq.h

398 lines
11 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
#ifndef INT_BLK_MQ_H
#define INT_BLK_MQ_H
#include "blk-stat.h"
#include "blk-mq-tag.h"
struct blk_mq_tag_set;
struct blk_mq_ctxs {
struct kobject kobj;
struct blk_mq_ctx __percpu *queue_ctx;
};
/**
* struct blk_mq_ctx - State for a software queue facing the submitting CPUs
*/
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
struct blk_mq_ctx {
struct {
spinlock_t lock;
struct list_head rq_lists[HCTX_MAX_TYPES];
} ____cacheline_aligned_in_smp;
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
unsigned int cpu;
unsigned short index_hw[HCTX_MAX_TYPES];
struct blk_mq_hw_ctx *hctxs[HCTX_MAX_TYPES];
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
struct request_queue *queue;
struct blk_mq_ctxs *ctxs;
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
struct kobject kobj;
} ____cacheline_aligned_in_smp;
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
void blk_mq_submit_bio(struct bio *bio);
int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
unsigned int flags);
blk-mq: free hw queue's resource in hctx's release handler Once blk_cleanup_queue() returns, tags shouldn't be used any more, because blk_mq_free_tag_set() may be called. Commit 45a9c9d909b2 ("blk-mq: Fix a use-after-free") fixes this issue exactly. However, that commit introduces another issue. Before 45a9c9d909b2, we are allowed to run queue during cleaning up queue if the queue's kobj refcount is held. After that commit, queue can't be run during queue cleaning up, otherwise oops can be triggered easily because some fields of hctx are freed by blk_mq_free_queue() in blk_cleanup_queue(). We have invented ways for addressing this kind of issue before, such as: 8dc765d438f1 ("SCSI: fix queue cleanup race before queue initialization is done") c2856ae2f315 ("blk-mq: quiesce queue before freeing queue") But still can't cover all cases, recently James reports another such kind of issue: https://marc.info/?l=linux-scsi&m=155389088124782&w=2 This issue can be quite hard to address by previous way, given scsi_run_queue() may run requeues for other LUNs. Fixes the above issue by freeing hctx's resources in its release handler, and this way is safe becasue tags isn't needed for freeing such hctx resource. This approach follows typical design pattern wrt. kobject's release handler. Cc: Dongli Zhang <dongli.zhang@oracle.com> Cc: James Smart <james.smart@broadcom.com> Cc: Bart Van Assche <bart.vanassche@wdc.com> Cc: linux-scsi@vger.kernel.org, Cc: Martin K . Petersen <martin.petersen@oracle.com>, Cc: Christoph Hellwig <hch@lst.de>, Cc: James E . J . Bottomley <jejb@linux.vnet.ibm.com>, Reported-by: James Smart <james.smart@broadcom.com> Fixes: 45a9c9d909b2 ("blk-mq: Fix a use-after-free") Cc: stable@vger.kernel.org Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Tested-by: James Smart <james.smart@broadcom.com> Signed-off-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-30 09:52:25 +08:00
void blk_mq_exit_queue(struct request_queue *q);
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr);
void blk_mq_wake_waiters(struct request_queue *q);
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *,
unsigned int);
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
bool kick_requeue_list);
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list);
struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
struct blk_mq_ctx *start);
void blk_mq_put_rq_ref(struct request *rq);
/*
* Internal helpers for allocating/freeing the request map
*/
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
unsigned int hctx_idx);
void blk_mq_free_rq_map(struct blk_mq_tags *tags);
struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
unsigned int hctx_idx, unsigned int depth);
void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
struct blk_mq_tags *tags,
unsigned int hctx_idx);
/*
* Internal helpers for request insertion into sw queues
*/
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
bool at_head);
void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
bool run_queue);
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
struct list_head *list);
void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
struct list_head *list);
blk-mq: improve DM's blk-mq IO merging via blk_insert_cloned_request feedback blk_insert_cloned_request() is called in the fast path of a dm-rq driver (e.g. blk-mq request-based DM mpath). blk_insert_cloned_request() uses blk_mq_request_bypass_insert() to directly append the request to the blk-mq hctx->dispatch_list of the underlying queue. 1) This way isn't efficient enough because the hctx spinlock is always used. 2) With blk_insert_cloned_request(), we completely bypass underlying queue's elevator and depend on the upper-level dm-rq driver's elevator to schedule IO. But dm-rq currently can't get the underlying queue's dispatch feedback at all. Without knowing whether a request was issued or not (e.g. due to underlying queue being busy) the dm-rq elevator will not be able to provide effective IO merging (as a side-effect of dm-rq currently blindly destaging a request from its elevator only to requeue it after a delay, which kills any opportunity for merging). This obviously causes very bad sequential IO performance. Fix this by updating blk_insert_cloned_request() to use blk_mq_request_direct_issue(). blk_mq_request_direct_issue() allows a request to be issued directly to the underlying queue and returns the dispatch feedback (blk_status_t). If blk_mq_request_direct_issue() returns BLK_SYS_RESOURCE the dm-rq driver will now use DM_MAPIO_REQUEUE to _not_ destage the request. Whereby preserving the opportunity to merge IO. With this, request-based DM's blk-mq sequential IO performance is vastly improved (as much as 3X in mpath/virtio-scsi testing). Signed-off-by: Ming Lei <ming.lei@redhat.com> [blk-mq.c changes heavily influenced by Ming Lei's initial solution, but they were refactored to make them less fragile and easier to read/review] Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-18 00:25:57 +08:00
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
/*
* CPU -> queue mappings
*/
extern int blk_mq_hw_queue_to_node(struct blk_mq_queue_map *qmap, unsigned int);
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
/*
* blk_mq_map_queue_type() - map (hctx_type,cpu) to hardware queue
* @q: request queue
* @type: the hctx type index
* @cpu: CPU
*/
static inline struct blk_mq_hw_ctx *blk_mq_map_queue_type(struct request_queue *q,
enum hctx_type type,
unsigned int cpu)
{
return xa_load(&q->hctx_table, q->tag_set->map[type].mq_map[cpu]);
}
static inline enum hctx_type blk_mq_get_hctx_type(unsigned int flags)
{
enum hctx_type type = HCTX_TYPE_DEFAULT;
/*
* The caller ensure that if REQ_POLLED, poll must be enabled.
*/
if (flags & REQ_POLLED)
type = HCTX_TYPE_POLL;
else if ((flags & REQ_OP_MASK) == REQ_OP_READ)
type = HCTX_TYPE_READ;
return type;
}
/*
* blk_mq_map_queue() - map (cmd_flags,type) to hardware queue
* @q: request queue
* @flags: request command flags
* @ctx: software queue cpu ctx
*/
static inline struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q,
unsigned int flags,
struct blk_mq_ctx *ctx)
{
return ctx->hctxs[blk_mq_get_hctx_type(flags)];
}
/*
* sysfs helpers
*/
blk-mq: initialize mq kobjects in blk_mq_init_allocated_queue() Both q->mq_kobj and sw queues' kobjects should have been initialized once, instead of doing that each add_disk context. Also this patch removes clearing of ctx in blk_mq_init_cpu_queues() because percpu allocator fills zero to allocated variable. This patch fixes one issue[1] reported from Omar. [1] kernel wearning when doing unbind/bind on one scsi-mq device [ 19.347924] kobject (ffff8800791ea0b8): tried to init an initialized object, something is seriously wrong. [ 19.349781] CPU: 1 PID: 84 Comm: kworker/u8:1 Not tainted 4.10.0-rc7-00210-g53f39eeaa263 #34 [ 19.350686] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.1-20161122_114906-anatol 04/01/2014 [ 19.350920] Workqueue: events_unbound async_run_entry_fn [ 19.350920] Call Trace: [ 19.350920] dump_stack+0x63/0x83 [ 19.350920] kobject_init+0x77/0x90 [ 19.350920] blk_mq_register_dev+0x40/0x130 [ 19.350920] blk_register_queue+0xb6/0x190 [ 19.350920] device_add_disk+0x1ec/0x4b0 [ 19.350920] sd_probe_async+0x10d/0x1c0 [sd_mod] [ 19.350920] async_run_entry_fn+0x48/0x150 [ 19.350920] process_one_work+0x1d0/0x480 [ 19.350920] worker_thread+0x48/0x4e0 [ 19.350920] kthread+0x101/0x140 [ 19.350920] ? process_one_work+0x480/0x480 [ 19.350920] ? kthread_create_on_node+0x60/0x60 [ 19.350920] ret_from_fork+0x2c/0x40 Cc: Omar Sandoval <osandov@osandov.com> Signed-off-by: Ming Lei <tom.leiming@gmail.com> Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-02-22 18:13:59 +08:00
extern void blk_mq_sysfs_init(struct request_queue *q);
extern void blk_mq_sysfs_deinit(struct request_queue *q);
extern int __blk_mq_register_dev(struct device *dev, struct request_queue *q);
extern int blk_mq_sysfs_register(struct request_queue *q);
extern void blk_mq_sysfs_unregister(struct request_queue *q);
extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx);
void blk_mq_free_plug_rqs(struct blk_plug *plug);
void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule);
blk-mq: cancel blk-mq dispatch work in both blk_cleanup_queue and disk_release() For avoiding to slow down queue destroy, we don't call blk_mq_quiesce_queue() in blk_cleanup_queue(), instead of delaying to cancel dispatch work in blk_release_queue(). However, this way has caused kernel oops[1], reported by Changhui. The log shows that scsi_device can be freed before running blk_release_queue(), which is expected too since scsi_device is released after the scsi disk is closed and the scsi_device is removed. Fixes the issue by canceling blk-mq dispatch work in both blk_cleanup_queue() and disk_release(): 1) when disk_release() is run, the disk has been closed, and any sync dispatch activities have been done, so canceling dispatch work is enough to quiesce filesystem I/O dispatch activity. 2) in blk_cleanup_queue(), we only focus on passthrough request, and passthrough request is always explicitly allocated & freed by its caller, so once queue is frozen, all sync dispatch activity for passthrough request has been done, then it is enough to just cancel dispatch work for avoiding any dispatch activity. [1] kernel panic log [12622.769416] BUG: kernel NULL pointer dereference, address: 0000000000000300 [12622.777186] #PF: supervisor read access in kernel mode [12622.782918] #PF: error_code(0x0000) - not-present page [12622.788649] PGD 0 P4D 0 [12622.791474] Oops: 0000 [#1] PREEMPT SMP PTI [12622.796138] CPU: 10 PID: 744 Comm: kworker/10:1H Kdump: loaded Not tainted 5.15.0+ #1 [12622.804877] Hardware name: Dell Inc. PowerEdge R730/0H21J3, BIOS 1.5.4 10/002/2015 [12622.813321] Workqueue: kblockd blk_mq_run_work_fn [12622.818572] RIP: 0010:sbitmap_get+0x75/0x190 [12622.823336] Code: 85 80 00 00 00 41 8b 57 08 85 d2 0f 84 b1 00 00 00 45 31 e4 48 63 cd 48 8d 1c 49 48 c1 e3 06 49 03 5f 10 4c 8d 6b 40 83 f0 01 <48> 8b 33 44 89 f2 4c 89 ef 0f b6 c8 e8 fa f3 ff ff 83 f8 ff 75 58 [12622.844290] RSP: 0018:ffffb00a446dbd40 EFLAGS: 00010202 [12622.850120] RAX: 0000000000000001 RBX: 0000000000000300 RCX: 0000000000000004 [12622.858082] RDX: 0000000000000006 RSI: 0000000000000082 RDI: ffffa0b7a2dfe030 [12622.866042] RBP: 0000000000000004 R08: 0000000000000001 R09: ffffa0b742721334 [12622.874003] R10: 0000000000000008 R11: 0000000000000008 R12: 0000000000000000 [12622.881964] R13: 0000000000000340 R14: 0000000000000000 R15: ffffa0b7a2dfe030 [12622.889926] FS: 0000000000000000(0000) GS:ffffa0baafb40000(0000) knlGS:0000000000000000 [12622.898956] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [12622.905367] CR2: 0000000000000300 CR3: 0000000641210001 CR4: 00000000001706e0 [12622.913328] Call Trace: [12622.916055] <TASK> [12622.918394] scsi_mq_get_budget+0x1a/0x110 [12622.922969] __blk_mq_do_dispatch_sched+0x1d4/0x320 [12622.928404] ? pick_next_task_fair+0x39/0x390 [12622.933268] __blk_mq_sched_dispatch_requests+0xf4/0x140 [12622.939194] blk_mq_sched_dispatch_requests+0x30/0x60 [12622.944829] __blk_mq_run_hw_queue+0x30/0xa0 [12622.949593] process_one_work+0x1e8/0x3c0 [12622.954059] worker_thread+0x50/0x3b0 [12622.958144] ? rescuer_thread+0x370/0x370 [12622.962616] kthread+0x158/0x180 [12622.966218] ? set_kthread_struct+0x40/0x40 [12622.970884] ret_from_fork+0x22/0x30 [12622.974875] </TASK> [12622.977309] Modules linked in: scsi_debug rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs sunrpc dm_multipath intel_rapl_msr intel_rapl_common dell_wmi_descriptor sb_edac rfkill video x86_pkg_temp_thermal intel_powerclamp dcdbas coretemp kvm_intel kvm mgag200 irqbypass i2c_algo_bit rapl drm_kms_helper ipmi_ssif intel_cstate intel_uncore syscopyarea sysfillrect sysimgblt fb_sys_fops pcspkr cec mei_me lpc_ich mei ipmi_si ipmi_devintf ipmi_msghandler acpi_power_meter drm fuse xfs libcrc32c sr_mod cdrom sd_mod t10_pi sg ixgbe ahci libahci crct10dif_pclmul crc32_pclmul crc32c_intel libata megaraid_sas ghash_clmulni_intel tg3 wdat_wdt mdio dca wmi dm_mirror dm_region_hash dm_log dm_mod [last unloaded: scsi_debug] Reported-by: ChanghuiZhong <czhong@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Bart Van Assche <bvanassche@acm.org> Cc: linux-scsi@vger.kernel.org Signed-off-by: Ming Lei <ming.lei@redhat.com> Link: https://lore.kernel.org/r/20211116014343.610501-1-ming.lei@redhat.com Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-11-16 09:43:43 +08:00
void blk_mq_cancel_work_sync(struct request_queue *q);
void blk_mq_release(struct request_queue *q);
static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
unsigned int cpu)
{
return per_cpu_ptr(q->queue_ctx, cpu);
}
/*
* This assumes per-cpu software queueing queues. They could be per-node
* as well, for instance. For now this is hardcoded as-is. Note that we don't
* care about preemption, since we know the ctx's are persistent. This does
* mean that we can't rely on ctx always matching the currently running CPU.
*/
static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
{
return __blk_mq_get_ctx(q, raw_smp_processor_id());
}
struct blk_mq_alloc_data {
/* input parameter */
struct request_queue *q;
blk_mq_req_flags_t flags;
unsigned int shallow_depth;
unsigned int cmd_flags;
req_flags_t rq_flags;
/* allocate multiple requests/tags in one go */
unsigned int nr_tags;
struct request **cached_rq;
/* input & output parameter */
struct blk_mq_ctx *ctx;
struct blk_mq_hw_ctx *hctx;
};
static inline bool blk_mq_is_shared_tags(unsigned int flags)
blk-mq: Facilitate a shared sbitmap per tagset Some SCSI HBAs (such as HPSA, megaraid, mpt3sas, hisi_sas_v3 ..) support multiple reply queues with single hostwide tags. In addition, these drivers want to use interrupt assignment in pci_alloc_irq_vectors(PCI_IRQ_AFFINITY). However, as discussed in [0], CPU hotplug may cause in-flight IO completion to not be serviced when an interrupt is shutdown. That problem is solved in commit bf0beec0607d ("blk-mq: drain I/O when all CPUs in a hctx are offline"). However, to take advantage of that blk-mq feature, the HBA HW queuess are required to be mapped to that of the blk-mq hctx's; to do that, the HBA HW queues need to be exposed to the upper layer. In making that transition, the per-SCSI command request tags are no longer unique per Scsi host - they are just unique per hctx. As such, the HBA LLDD would have to generate this tag internally, which has a certain performance overhead. However another problem is that blk-mq assumes the host may accept (Scsi_host.can_queue * #hw queue) commands. In commit 6eb045e092ef ("scsi: core: avoid host-wide host_busy counter for scsi_mq"), the Scsi host busy counter was removed, which would stop the LLDD being sent more than .can_queue commands; however, it should still be ensured that the block layer does not issue more than .can_queue commands to the Scsi host. To solve this problem, introduce a shared sbitmap per blk_mq_tag_set, which may be requested at init time. New flag BLK_MQ_F_TAG_HCTX_SHARED should be set when requesting the tagset to indicate whether the shared sbitmap should be used. Even when BLK_MQ_F_TAG_HCTX_SHARED is set, a full set of tags and requests are still allocated per hctx; the reason for this is that if tags and requests were only allocated for a single hctx - like hctx0 - it may break block drivers which expect a request be associated with a specific hctx, i.e. not always hctx0. This will introduce extra memory usage. This change is based on work originally from Ming Lei in [1] and from Bart's suggestion in [2]. [0] https://lore.kernel.org/linux-block/alpine.DEB.2.21.1904051331270.1802@nanos.tec.linutronix.de/ [1] https://lore.kernel.org/linux-block/20190531022801.10003-1-ming.lei@redhat.com/ [2] https://lore.kernel.org/linux-block/ff77beff-5fd9-9f05-12b6-826922bace1f@huawei.com/T/#m3db0a602f095cbcbff27e9c884d6b4ae826144be Signed-off-by: John Garry <john.garry@huawei.com> Tested-by: Don Brace<don.brace@microsemi.com> #SCSI resv cmds patches used Tested-by: Douglas Gilbert <dgilbert@interlog.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-08-19 23:20:24 +08:00
{
return flags & BLK_MQ_F_TAG_HCTX_SHARED;
}
static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data)
{
if (!(data->rq_flags & RQF_ELV))
return data->hctx->tags;
return data->hctx->sched_tags;
}
static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx)
{
return test_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx)
{
return hctx->nr_ctx && hctx->tags;
}
unsigned int blk_mq_in_flight(struct request_queue *q,
struct block_device *part);
void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
unsigned int inflight[2]);
static inline void blk_mq_put_dispatch_budget(struct request_queue *q,
int budget_token)
{
if (q->mq_ops->put_budget)
q->mq_ops->put_budget(q, budget_token);
}
static inline int blk_mq_get_dispatch_budget(struct request_queue *q)
{
if (q->mq_ops->get_budget)
return q->mq_ops->get_budget(q);
return 0;
}
static inline void blk_mq_set_rq_budget_token(struct request *rq, int token)
{
if (token < 0)
return;
if (rq->q->mq_ops->set_rq_budget_token)
rq->q->mq_ops->set_rq_budget_token(rq, token);
}
static inline int blk_mq_get_rq_budget_token(struct request *rq)
{
if (rq->q->mq_ops->get_rq_budget_token)
return rq->q->mq_ops->get_rq_budget_token(rq);
return -1;
}
static inline void __blk_mq_inc_active_requests(struct blk_mq_hw_ctx *hctx)
{
if (blk_mq_is_shared_tags(hctx->flags))
atomic_inc(&hctx->queue->nr_active_requests_shared_tags);
else
atomic_inc(&hctx->nr_active);
}
static inline void __blk_mq_sub_active_requests(struct blk_mq_hw_ctx *hctx,
int val)
{
if (blk_mq_is_shared_tags(hctx->flags))
atomic_sub(val, &hctx->queue->nr_active_requests_shared_tags);
else
atomic_sub(val, &hctx->nr_active);
}
static inline void __blk_mq_dec_active_requests(struct blk_mq_hw_ctx *hctx)
{
__blk_mq_sub_active_requests(hctx, 1);
}
static inline int __blk_mq_active_requests(struct blk_mq_hw_ctx *hctx)
{
if (blk_mq_is_shared_tags(hctx->flags))
return atomic_read(&hctx->queue->nr_active_requests_shared_tags);
return atomic_read(&hctx->nr_active);
}
static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
struct request *rq)
{
blk_mq_put_tag(hctx->tags, rq->mq_ctx, rq->tag);
rq->tag = BLK_MQ_NO_TAG;
if (rq->rq_flags & RQF_MQ_INFLIGHT) {
rq->rq_flags &= ~RQF_MQ_INFLIGHT;
__blk_mq_dec_active_requests(hctx);
}
}
static inline void blk_mq_put_driver_tag(struct request *rq)
{
if (rq->tag == BLK_MQ_NO_TAG || rq->internal_tag == BLK_MQ_NO_TAG)
return;
__blk_mq_put_driver_tag(rq->mq_hctx, rq);
}
bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq);
static inline bool blk_mq_get_driver_tag(struct request *rq)
{
struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
if (rq->tag != BLK_MQ_NO_TAG &&
!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
hctx->tags->rqs[rq->tag] = rq;
return true;
}
return __blk_mq_get_driver_tag(hctx, rq);
}
block: Do not pull requests from the scheduler when we cannot dispatch them Provided the device driver does not implement dispatch budget accounting (which only SCSI does) the loop in __blk_mq_do_dispatch_sched() pulls requests from the IO scheduler as long as it is willing to give out any. That defeats scheduling heuristics inside the scheduler by creating false impression that the device can take more IO when it in fact cannot. For example with BFQ IO scheduler on top of virtio-blk device setting blkio cgroup weight has barely any impact on observed throughput of async IO because __blk_mq_do_dispatch_sched() always sucks out all the IO queued in BFQ. BFQ first submits IO from higher weight cgroups but when that is all dispatched, it will give out IO of lower weight cgroups as well. And then we have to wait for all this IO to be dispatched to the disk (which means lot of it actually has to complete) before the IO scheduler is queried again for dispatching more requests. This completely destroys any service differentiation. So grab request tag for a request pulled out of the IO scheduler already in __blk_mq_do_dispatch_sched() and do not pull any more requests if we cannot get it because we are unlikely to be able to dispatch it. That way only single request is going to wait in the dispatch list for some tag to free. Reviewed-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Jan Kara <jack@suse.cz> Link: https://lore.kernel.org/r/20210603104721.6309-1-jack@suse.cz Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-06-03 18:47:21 +08:00
static inline void blk_mq_clear_mq_map(struct blk_mq_queue_map *qmap)
{
int cpu;
for_each_possible_cpu(cpu)
qmap->mq_map[cpu] = 0;
}
block: Disable write plugging for zoned block devices Simultaneously writing to a sequential zone of a zoned block device from multiple contexts requires mutual exclusion for BIO issuing to ensure that writes happen sequentially. However, even for a well behaved user correctly implementing such synchronization, BIO plugging may interfere and result in BIOs from the different contextx to be reordered if plugging is done outside of the mutual exclusion section, e.g. the plug was started by a function higher in the call chain than the function issuing BIOs. Context A Context B | blk_start_plug() | ... | seq_write_zone() | mutex_lock(zone) | bio-0->bi_iter.bi_sector = zone->wp | zone->wp += bio_sectors(bio-0) | submit_bio(bio-0) | bio-1->bi_iter.bi_sector = zone->wp | zone->wp += bio_sectors(bio-1) | submit_bio(bio-1) | mutex_unlock(zone) | return | -----------------------> | seq_write_zone() | mutex_lock(zone) | bio-2->bi_iter.bi_sector = zone->wp | zone->wp += bio_sectors(bio-2) | submit_bio(bio-2) | mutex_unlock(zone) | <------------------------- | | blk_finish_plug() In the above example, despite the mutex synchronization ensuring the correct BIO issuing order 0, 1, 2, context A BIOs 0 and 1 end up being issued after BIO 2 of context B, when the plug is released with blk_finish_plug(). While this problem can be addressed using the blk_flush_plug_list() function (in the above example, the call must be inserted before the zone mutex lock is released), a simple generic solution in the block layer avoid this additional code in all zoned block device user code. The simple generic solution implemented with this patch is to introduce the internal helper function blk_mq_plug() to access the current context plug on BIO submission. This helper returns the current plug only if the target device is not a zoned block device or if the BIO to be plugged is not a write operation. Otherwise, the caller context plug is ignored and NULL returned, resulting is all writes to zoned block device to never be plugged. Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-07-11 00:18:31 +08:00
/*
* blk_mq_plug() - Get caller context plug
* @q: request queue
* @bio : the bio being submitted by the caller context
*
* Plugging, by design, may delay the insertion of BIOs into the elevator in
* order to increase BIO merging opportunities. This however can cause BIO
* insertion order to change from the order in which submit_bio() is being
* executed in the case of multiple contexts concurrently issuing BIOs to a
* device, even if these context are synchronized to tightly control BIO issuing
* order. While this is not a problem with regular block devices, this ordering
* change can cause write BIO failures with zoned block devices as these
* require sequential write patterns to zones. Prevent this from happening by
* ignoring the plug state of a BIO issuing context if the target request queue
* is for a zoned block device and the BIO to plug is a write operation.
*
* Return current->plug if the bio can be plugged and NULL otherwise
*/
static inline struct blk_plug *blk_mq_plug(struct request_queue *q,
struct bio *bio)
{
/*
* For regular block devices or read operations, use the context plug
* which may be NULL if blk_start_plug() was not executed.
*/
if (!blk_queue_is_zoned(q) || !op_is_write(bio_op(bio)))
return current->plug;
/* Zoned block device write operation case: do not plug the BIO */
return NULL;
}
/* Free all requests on the list */
static inline void blk_mq_free_requests(struct list_head *list)
{
while (!list_empty(list)) {
struct request *rq = list_entry_rq(list->next);
list_del_init(&rq->queuelist);
blk_mq_free_request(rq);
}
}
/*
* For shared tag users, we track the number of currently active users
* and attempt to provide a fair share of the tag depth for each of them.
*/
static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
struct sbitmap_queue *bt)
{
unsigned int depth, users;
if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED))
return true;
/*
* Don't try dividing an ant
*/
if (bt->sb.depth == 1)
return true;
if (blk_mq_is_shared_tags(hctx->flags)) {
struct request_queue *q = hctx->queue;
if (!test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags))
return true;
} else {
if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
return true;
}
users = atomic_read(&hctx->tags->active_queues);
if (!users)
return true;
/*
* Allow at least some tags
*/
depth = max((bt->sb.depth + users - 1) / users, 4U);
return __blk_mq_active_requests(hctx) < depth;
}
/* run the code block in @dispatch_ops with rcu/srcu read lock held */
#define __blk_mq_run_dispatch_ops(q, check_sleep, dispatch_ops) \
do { \
if (!blk_queue_has_srcu(q)) { \
rcu_read_lock(); \
(dispatch_ops); \
rcu_read_unlock(); \
} else { \
int srcu_idx; \
\
might_sleep_if(check_sleep); \
srcu_idx = srcu_read_lock((q)->srcu); \
(dispatch_ops); \
srcu_read_unlock((q)->srcu, srcu_idx); \
} \
} while (0)
#define blk_mq_run_dispatch_ops(q, dispatch_ops) \
__blk_mq_run_dispatch_ops(q, true, dispatch_ops) \
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
#endif