2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-26 07:35:44 +08:00
linux-next/drivers/net/mipsnet.h

108 lines
3.6 KiB
C
Raw Normal View History

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#ifndef __MIPSNET_H
#define __MIPSNET_H
/*
* Id of this Net device, as seen by the core.
*/
#define MIPS_NET_DEV_ID ((uint64_t) \
((uint64_t)'M'<< 0)| \
((uint64_t)'I'<< 8)| \
((uint64_t)'P'<<16)| \
((uint64_t)'S'<<24)| \
((uint64_t)'N'<<32)| \
((uint64_t)'E'<<40)| \
((uint64_t)'T'<<48)| \
((uint64_t)'0'<<56))
/*
* Net status/control block as seen by sw in the core.
* (Why not use bit fields? can't be bothered with cross-platform struct
* packing.)
*/
typedef struct _net_control_block {
/// dev info for probing
/// reads as MIPSNET%d where %d is some form of version
uint64_t devId; /*0x00 */
/*
* read only busy flag.
* Set and cleared by the Net Device to indicate that an rx or a tx
* is in progress.
*/
uint32_t busy; /*0x08 */
/*
* Set by the Net Device.
* The device will set it once data has been received.
* The value is the number of bytes that should be read from
* rxDataBuffer. The value will decrease till 0 until all the data
* from rxDataBuffer has been read.
*/
uint32_t rxDataCount; /*0x0c */
#define MIPSNET_MAX_RXTX_DATACOUNT (1<<16)
/*
* Settable from the MIPS core, cleared by the Net Device.
* The core should set the number of bytes it wants to send,
* then it should write those bytes of data to txDataBuffer.
* The device will clear txDataCount has been processed (not necessarily sent).
*/
uint32_t txDataCount; /*0x10 */
/*
* Interrupt control
*
* Used to clear the interrupted generated by this dev.
* Write a 1 to clear the interrupt. (except bit31).
*
* Bit0 is set if it was a tx-done interrupt.
* Bit1 is set when new rx-data is available.
* Until this bit is cleared there will be no other RXs.
*
* Bit31 is used for testing, it clears after a read.
* Writing 1 to this bit will cause an interrupt to be generated.
* To clear the test interrupt, write 0 to this register.
*/
uint32_t interruptControl; /*0x14 */
#define MIPSNET_INTCTL_TXDONE ((uint32_t)(1<< 0))
#define MIPSNET_INTCTL_RXDONE ((uint32_t)(1<< 1))
#define MIPSNET_INTCTL_TESTBIT ((uint32_t)(1<<31))
#define MIPSNET_INTCTL_ALLSOURCES (MIPSNET_INTCTL_TXDONE|MIPSNET_INTCTL_RXDONE|MIPSNET_INTCTL_TESTBIT)
/*
* Readonly core-specific interrupt info for the device to signal the core.
* The meaning of the contents of this field might change.
*/
/*###\todo: the whole memIntf interrupt scheme is messy: the device should have
* no control what so ever of what VPE/register set is being used.
* The MemIntf should only expose interrupt lines, and something in the
* config should be responsible for the line<->core/vpe bindings.
*/
uint32_t interruptInfo; /*0x18 */
/*
* This is where the received data is read out.
* There is more data to read until rxDataReady is 0.
* Only 1 byte at this regs offset is used.
*/
uint32_t rxDataBuffer; /*0x1c */
/*
* This is where the data to transmit is written.
* Data should be written for the amount specified in the txDataCount register.
* Only 1 byte at this regs offset is used.
*/
uint32_t txDataBuffer; /*0x20 */
} MIPS_T_NetControl;
#define MIPSNET_IO_EXTENT 0x40 /* being generous */
#define field_offset(field) ((int)&((MIPS_T_NetControl*)(0))->field)
#endif /* __MIPSNET_H */