2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-22 20:43:56 +08:00
linux-next/Documentation/networking/ipvlan.txt

113 lines
4.6 KiB
Plaintext
Raw Normal View History

ipvlan: Initial check-in of the IPVLAN driver. This driver is very similar to the macvlan driver except that it uses L3 on the frame to determine the logical interface while functioning as packet dispatcher. It inherits L2 of the master device hence the packets on wire will have the same L2 for all the packets originating from all virtual devices off of the same master device. This driver was developed keeping the namespace use-case in mind. Hence most of the examples given here take that as the base setup where main-device belongs to the default-ns and virtual devices are assigned to the additional namespaces. The device operates in two different modes and the difference in these two modes in primarily in the TX side. (a) L2 mode : In this mode, the device behaves as a L2 device. TX processing upto L2 happens on the stack of the virtual device associated with (namespace). Packets are switched after that into the main device (default-ns) and queued for xmit. RX processing is simple and all multicast, broadcast (if applicable), and unicast belonging to the address(es) are delivered to the virtual devices. (b) L3 mode : In this mode, the device behaves like a L3 device. TX processing upto L3 happens on the stack of the virtual device associated with (namespace). Packets are switched to the main-device (default-ns) for the L2 processing. Hence the routing table of the default-ns will be used in this mode. RX processins is somewhat similar to the L2 mode except that in this mode only Unicast packets are delivered to the virtual device while main-dev will handle all other packets. The devices can be added using the "ip" command from the iproute2 package - ip link add link <master> <virtual> type ipvlan mode [ l2 | l3 ] Signed-off-by: Mahesh Bandewar <maheshb@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Maciej Żenczykowski <maze@google.com> Cc: Laurent Chavey <chavey@google.com> Cc: Tim Hockin <thockin@google.com> Cc: Brandon Philips <brandon.philips@coreos.com> Cc: Pavel Emelianov <xemul@parallels.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-24 15:07:46 +08:00
IPVLAN Driver HOWTO
Initial Release:
Mahesh Bandewar <maheshb AT google.com>
1. Introduction:
This is conceptually very similar to the macvlan driver with one major
exception of using L3 for mux-ing /demux-ing among slaves. This property makes
the master device share the L2 with it's slave devices. I have developed this
driver in conjunction with network namespaces and not sure if there is use case
ipvlan: Initial check-in of the IPVLAN driver. This driver is very similar to the macvlan driver except that it uses L3 on the frame to determine the logical interface while functioning as packet dispatcher. It inherits L2 of the master device hence the packets on wire will have the same L2 for all the packets originating from all virtual devices off of the same master device. This driver was developed keeping the namespace use-case in mind. Hence most of the examples given here take that as the base setup where main-device belongs to the default-ns and virtual devices are assigned to the additional namespaces. The device operates in two different modes and the difference in these two modes in primarily in the TX side. (a) L2 mode : In this mode, the device behaves as a L2 device. TX processing upto L2 happens on the stack of the virtual device associated with (namespace). Packets are switched after that into the main device (default-ns) and queued for xmit. RX processing is simple and all multicast, broadcast (if applicable), and unicast belonging to the address(es) are delivered to the virtual devices. (b) L3 mode : In this mode, the device behaves like a L3 device. TX processing upto L3 happens on the stack of the virtual device associated with (namespace). Packets are switched to the main-device (default-ns) for the L2 processing. Hence the routing table of the default-ns will be used in this mode. RX processins is somewhat similar to the L2 mode except that in this mode only Unicast packets are delivered to the virtual device while main-dev will handle all other packets. The devices can be added using the "ip" command from the iproute2 package - ip link add link <master> <virtual> type ipvlan mode [ l2 | l3 ] Signed-off-by: Mahesh Bandewar <maheshb@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Maciej Żenczykowski <maze@google.com> Cc: Laurent Chavey <chavey@google.com> Cc: Tim Hockin <thockin@google.com> Cc: Brandon Philips <brandon.philips@coreos.com> Cc: Pavel Emelianov <xemul@parallels.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-24 15:07:46 +08:00
outside of it.
2. Building and Installation:
In order to build the driver, please select the config item CONFIG_IPVLAN.
The driver can be built into the kernel (CONFIG_IPVLAN=y) or as a module
(CONFIG_IPVLAN=m).
3. Configuration:
There are no module parameters for this driver and it can be configured
using IProute2/ip utility.
ip link add link <master-dev> <slave-dev> type ipvlan mode { l2 | l3 | l3s }
ipvlan: Initial check-in of the IPVLAN driver. This driver is very similar to the macvlan driver except that it uses L3 on the frame to determine the logical interface while functioning as packet dispatcher. It inherits L2 of the master device hence the packets on wire will have the same L2 for all the packets originating from all virtual devices off of the same master device. This driver was developed keeping the namespace use-case in mind. Hence most of the examples given here take that as the base setup where main-device belongs to the default-ns and virtual devices are assigned to the additional namespaces. The device operates in two different modes and the difference in these two modes in primarily in the TX side. (a) L2 mode : In this mode, the device behaves as a L2 device. TX processing upto L2 happens on the stack of the virtual device associated with (namespace). Packets are switched after that into the main device (default-ns) and queued for xmit. RX processing is simple and all multicast, broadcast (if applicable), and unicast belonging to the address(es) are delivered to the virtual devices. (b) L3 mode : In this mode, the device behaves like a L3 device. TX processing upto L3 happens on the stack of the virtual device associated with (namespace). Packets are switched to the main-device (default-ns) for the L2 processing. Hence the routing table of the default-ns will be used in this mode. RX processins is somewhat similar to the L2 mode except that in this mode only Unicast packets are delivered to the virtual device while main-dev will handle all other packets. The devices can be added using the "ip" command from the iproute2 package - ip link add link <master> <virtual> type ipvlan mode [ l2 | l3 ] Signed-off-by: Mahesh Bandewar <maheshb@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Maciej Żenczykowski <maze@google.com> Cc: Laurent Chavey <chavey@google.com> Cc: Tim Hockin <thockin@google.com> Cc: Brandon Philips <brandon.philips@coreos.com> Cc: Pavel Emelianov <xemul@parallels.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-24 15:07:46 +08:00
e.g. ip link add link ipvl0 eth0 type ipvlan mode l2
4. Operating modes:
IPvlan has two modes of operation - L2 and L3. For a given master device,
you can select one of these two modes and all slaves on that master will
operate in the same (selected) mode. The RX mode is almost identical except
that in L3 mode the slaves wont receive any multicast / broadcast traffic.
L3 mode is more restrictive since routing is controlled from the other (mostly)
default namespace.
4.1 L2 mode:
In this mode TX processing happens on the stack instance attached to the
slave device and packets are switched and queued to the master device to send
out. In this mode the slaves will RX/TX multicast and broadcast (if applicable)
as well.
4.2 L3 mode:
In this mode TX processing up to L3 happens on the stack instance attached
ipvlan: Initial check-in of the IPVLAN driver. This driver is very similar to the macvlan driver except that it uses L3 on the frame to determine the logical interface while functioning as packet dispatcher. It inherits L2 of the master device hence the packets on wire will have the same L2 for all the packets originating from all virtual devices off of the same master device. This driver was developed keeping the namespace use-case in mind. Hence most of the examples given here take that as the base setup where main-device belongs to the default-ns and virtual devices are assigned to the additional namespaces. The device operates in two different modes and the difference in these two modes in primarily in the TX side. (a) L2 mode : In this mode, the device behaves as a L2 device. TX processing upto L2 happens on the stack of the virtual device associated with (namespace). Packets are switched after that into the main device (default-ns) and queued for xmit. RX processing is simple and all multicast, broadcast (if applicable), and unicast belonging to the address(es) are delivered to the virtual devices. (b) L3 mode : In this mode, the device behaves like a L3 device. TX processing upto L3 happens on the stack of the virtual device associated with (namespace). Packets are switched to the main-device (default-ns) for the L2 processing. Hence the routing table of the default-ns will be used in this mode. RX processins is somewhat similar to the L2 mode except that in this mode only Unicast packets are delivered to the virtual device while main-dev will handle all other packets. The devices can be added using the "ip" command from the iproute2 package - ip link add link <master> <virtual> type ipvlan mode [ l2 | l3 ] Signed-off-by: Mahesh Bandewar <maheshb@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Maciej Żenczykowski <maze@google.com> Cc: Laurent Chavey <chavey@google.com> Cc: Tim Hockin <thockin@google.com> Cc: Brandon Philips <brandon.philips@coreos.com> Cc: Pavel Emelianov <xemul@parallels.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-24 15:07:46 +08:00
to the slave device and packets are switched to the stack instance of the
master device for the L2 processing and routing from that instance will be
used before packets are queued on the outbound device. In this mode the slaves
will not receive nor can send multicast / broadcast traffic.
4.3 L3S mode:
This is very similar to the L3 mode except that iptables (conn-tracking)
works in this mode and hence it is L3-symmetric (L3s). This will have slightly less
performance but that shouldn't matter since you are choosing this mode over plain-L3
mode to make conn-tracking work.
ipvlan: Initial check-in of the IPVLAN driver. This driver is very similar to the macvlan driver except that it uses L3 on the frame to determine the logical interface while functioning as packet dispatcher. It inherits L2 of the master device hence the packets on wire will have the same L2 for all the packets originating from all virtual devices off of the same master device. This driver was developed keeping the namespace use-case in mind. Hence most of the examples given here take that as the base setup where main-device belongs to the default-ns and virtual devices are assigned to the additional namespaces. The device operates in two different modes and the difference in these two modes in primarily in the TX side. (a) L2 mode : In this mode, the device behaves as a L2 device. TX processing upto L2 happens on the stack of the virtual device associated with (namespace). Packets are switched after that into the main device (default-ns) and queued for xmit. RX processing is simple and all multicast, broadcast (if applicable), and unicast belonging to the address(es) are delivered to the virtual devices. (b) L3 mode : In this mode, the device behaves like a L3 device. TX processing upto L3 happens on the stack of the virtual device associated with (namespace). Packets are switched to the main-device (default-ns) for the L2 processing. Hence the routing table of the default-ns will be used in this mode. RX processins is somewhat similar to the L2 mode except that in this mode only Unicast packets are delivered to the virtual device while main-dev will handle all other packets. The devices can be added using the "ip" command from the iproute2 package - ip link add link <master> <virtual> type ipvlan mode [ l2 | l3 ] Signed-off-by: Mahesh Bandewar <maheshb@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Maciej Żenczykowski <maze@google.com> Cc: Laurent Chavey <chavey@google.com> Cc: Tim Hockin <thockin@google.com> Cc: Brandon Philips <brandon.philips@coreos.com> Cc: Pavel Emelianov <xemul@parallels.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-24 15:07:46 +08:00
5. What to choose (macvlan vs. ipvlan)?
These two devices are very similar in many regards and the specific use
case could very well define which device to choose. if one of the following
situations defines your use case then you can choose to use ipvlan -
(a) The Linux host that is connected to the external switch / router has
policy configured that allows only one mac per port.
(b) No of virtual devices created on a master exceed the mac capacity and
puts the NIC in promiscuous mode and degraded performance is a concern.
ipvlan: Initial check-in of the IPVLAN driver. This driver is very similar to the macvlan driver except that it uses L3 on the frame to determine the logical interface while functioning as packet dispatcher. It inherits L2 of the master device hence the packets on wire will have the same L2 for all the packets originating from all virtual devices off of the same master device. This driver was developed keeping the namespace use-case in mind. Hence most of the examples given here take that as the base setup where main-device belongs to the default-ns and virtual devices are assigned to the additional namespaces. The device operates in two different modes and the difference in these two modes in primarily in the TX side. (a) L2 mode : In this mode, the device behaves as a L2 device. TX processing upto L2 happens on the stack of the virtual device associated with (namespace). Packets are switched after that into the main device (default-ns) and queued for xmit. RX processing is simple and all multicast, broadcast (if applicable), and unicast belonging to the address(es) are delivered to the virtual devices. (b) L3 mode : In this mode, the device behaves like a L3 device. TX processing upto L3 happens on the stack of the virtual device associated with (namespace). Packets are switched to the main-device (default-ns) for the L2 processing. Hence the routing table of the default-ns will be used in this mode. RX processins is somewhat similar to the L2 mode except that in this mode only Unicast packets are delivered to the virtual device while main-dev will handle all other packets. The devices can be added using the "ip" command from the iproute2 package - ip link add link <master> <virtual> type ipvlan mode [ l2 | l3 ] Signed-off-by: Mahesh Bandewar <maheshb@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Maciej Żenczykowski <maze@google.com> Cc: Laurent Chavey <chavey@google.com> Cc: Tim Hockin <thockin@google.com> Cc: Brandon Philips <brandon.philips@coreos.com> Cc: Pavel Emelianov <xemul@parallels.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-24 15:07:46 +08:00
(c) If the slave device is to be put into the hostile / untrusted network
namespace where L2 on the slave could be changed / misused.
6. Example configuration:
+=============================================================+
| Host: host1 |
| |
| +----------------------+ +----------------------+ |
| | NS:ns0 | | NS:ns1 | |
| | | | | |
| | | | | |
| | ipvl0 | | ipvl1 | |
| +----------#-----------+ +-----------#----------+ |
| # # |
| ################################ |
| # eth0 |
+==============================#==============================+
(a) Create two network namespaces - ns0, ns1
ip netns add ns0
ip netns add ns1
(b) Create two ipvlan slaves on eth0 (master device)
ip link add link eth0 ipvl0 type ipvlan mode l2
ip link add link eth0 ipvl1 type ipvlan mode l2
(c) Assign slaves to the respective network namespaces
ip link set dev ipvl0 netns ns0
ip link set dev ipvl1 netns ns1
(d) Now switch to the namespace (ns0 or ns1) to configure the slave devices
- For ns0
(1) ip netns exec ns0 bash
(2) ip link set dev ipvl0 up
(3) ip link set dev lo up
(4) ip -4 addr add 127.0.0.1 dev lo
(5) ip -4 addr add $IPADDR dev ipvl0
(6) ip -4 route add default via $ROUTER dev ipvl0
- For ns1
(1) ip netns exec ns1 bash
(2) ip link set dev ipvl1 up
(3) ip link set dev lo up
(4) ip -4 addr add 127.0.0.1 dev lo
(5) ip -4 addr add $IPADDR dev ipvl1
(6) ip -4 route add default via $ROUTER dev ipvl1