2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-07 21:24:00 +08:00
linux-next/drivers/media/platform/omap24xxcam.c

1882 lines
43 KiB
C
Raw Normal View History

/*
* drivers/media/platform/omap24xxcam.c
*
* OMAP 2 camera block driver.
*
* Copyright (C) 2004 MontaVista Software, Inc.
* Copyright (C) 2004 Texas Instruments.
* Copyright (C) 2007-2008 Nokia Corporation.
*
* Contact: Sakari Ailus <sakari.ailus@nokia.com>
*
* Based on code from Andy Lowe <source@mvista.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*/
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/videodev2.h>
#include <linux/pci.h> /* needed for videobufs */
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/io.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/module.h>
#include <media/v4l2-common.h>
#include <media/v4l2-ioctl.h>
#include "omap24xxcam.h"
#define OMAP24XXCAM_VERSION "0.0.1"
#define RESET_TIMEOUT_NS 10000
static void omap24xxcam_reset(struct omap24xxcam_device *cam);
static int omap24xxcam_sensor_if_enable(struct omap24xxcam_device *cam);
static void omap24xxcam_device_unregister(struct v4l2_int_device *s);
static int omap24xxcam_remove(struct platform_device *pdev);
/* module parameters */
static int video_nr = -1; /* video device minor (-1 ==> auto assign) */
/*
* Maximum amount of memory to use for capture buffers.
* Default is 4800KB, enough to double-buffer SXGA.
*/
static int capture_mem = 1280 * 960 * 2 * 2;
static struct v4l2_int_device omap24xxcam;
/*
*
* Clocks.
*
*/
static void omap24xxcam_clock_put(struct omap24xxcam_device *cam)
{
if (cam->ick != NULL && !IS_ERR(cam->ick))
clk_put(cam->ick);
if (cam->fck != NULL && !IS_ERR(cam->fck))
clk_put(cam->fck);
cam->ick = cam->fck = NULL;
}
static int omap24xxcam_clock_get(struct omap24xxcam_device *cam)
{
int rval = 0;
cam->fck = clk_get(cam->dev, "fck");
if (IS_ERR(cam->fck)) {
dev_err(cam->dev, "can't get camera fck");
rval = PTR_ERR(cam->fck);
omap24xxcam_clock_put(cam);
return rval;
}
cam->ick = clk_get(cam->dev, "ick");
if (IS_ERR(cam->ick)) {
dev_err(cam->dev, "can't get camera ick");
rval = PTR_ERR(cam->ick);
omap24xxcam_clock_put(cam);
}
return rval;
}
static void omap24xxcam_clock_on(struct omap24xxcam_device *cam)
{
clk_enable(cam->fck);
clk_enable(cam->ick);
}
static void omap24xxcam_clock_off(struct omap24xxcam_device *cam)
{
clk_disable(cam->fck);
clk_disable(cam->ick);
}
/*
*
* Camera core
*
*/
/*
* Set xclk.
*
* To disable xclk, use value zero.
*/
static void omap24xxcam_core_xclk_set(const struct omap24xxcam_device *cam,
u32 xclk)
{
if (xclk) {
u32 divisor = CAM_MCLK / xclk;
if (divisor == 1)
omap24xxcam_reg_out(cam->mmio_base + CC_REG_OFFSET,
CC_CTRL_XCLK,
CC_CTRL_XCLK_DIV_BYPASS);
else
omap24xxcam_reg_out(cam->mmio_base + CC_REG_OFFSET,
CC_CTRL_XCLK, divisor);
} else
omap24xxcam_reg_out(cam->mmio_base + CC_REG_OFFSET,
CC_CTRL_XCLK, CC_CTRL_XCLK_DIV_STABLE_LOW);
}
static void omap24xxcam_core_hwinit(const struct omap24xxcam_device *cam)
{
/*
* Setting the camera core AUTOIDLE bit causes problems with frame
* synchronization, so we will clear the AUTOIDLE bit instead.
*/
omap24xxcam_reg_out(cam->mmio_base + CC_REG_OFFSET, CC_SYSCONFIG,
CC_SYSCONFIG_AUTOIDLE);
/* program the camera interface DMA packet size */
omap24xxcam_reg_out(cam->mmio_base + CC_REG_OFFSET, CC_CTRL_DMA,
CC_CTRL_DMA_EN | (DMA_THRESHOLD / 4 - 1));
/* enable camera core error interrupts */
omap24xxcam_reg_out(cam->mmio_base + CC_REG_OFFSET, CC_IRQENABLE,
CC_IRQENABLE_FW_ERR_IRQ
| CC_IRQENABLE_FSC_ERR_IRQ
| CC_IRQENABLE_SSC_ERR_IRQ
| CC_IRQENABLE_FIFO_OF_IRQ);
}
/*
* Enable the camera core.
*
* Data transfer to the camera DMA starts from next starting frame.
*/
static void omap24xxcam_core_enable(const struct omap24xxcam_device *cam)
{
omap24xxcam_reg_out(cam->mmio_base + CC_REG_OFFSET, CC_CTRL,
cam->cc_ctrl);
}
/*
* Disable camera core.
*
* The data transfer will be stopped immediately (CC_CTRL_CC_RST). The
* core internal state machines will be reset. Use
* CC_CTRL_CC_FRAME_TRIG instead if you want to transfer the current
* frame completely.
*/
static void omap24xxcam_core_disable(const struct omap24xxcam_device *cam)
{
omap24xxcam_reg_out(cam->mmio_base + CC_REG_OFFSET, CC_CTRL,
CC_CTRL_CC_RST);
}
/* Interrupt service routine for camera core interrupts. */
static void omap24xxcam_core_isr(struct omap24xxcam_device *cam)
{
u32 cc_irqstatus;
const u32 cc_irqstatus_err =
CC_IRQSTATUS_FW_ERR_IRQ
| CC_IRQSTATUS_FSC_ERR_IRQ
| CC_IRQSTATUS_SSC_ERR_IRQ
| CC_IRQSTATUS_FIFO_UF_IRQ
| CC_IRQSTATUS_FIFO_OF_IRQ;
cc_irqstatus = omap24xxcam_reg_in(cam->mmio_base + CC_REG_OFFSET,
CC_IRQSTATUS);
omap24xxcam_reg_out(cam->mmio_base + CC_REG_OFFSET, CC_IRQSTATUS,
cc_irqstatus);
if (cc_irqstatus & cc_irqstatus_err
&& !atomic_read(&cam->in_reset)) {
dev_dbg(cam->dev, "resetting camera, cc_irqstatus 0x%x\n",
cc_irqstatus);
omap24xxcam_reset(cam);
}
}
/*
*
* videobuf_buffer handling.
*
* Memory for mmapped videobuf_buffers is not allocated
* conventionally, but by several kmalloc allocations and then
* creating the scatterlist on our own. User-space buffers are handled
* normally.
*
*/
/*
* Free the memory-mapped buffer memory allocated for a
* videobuf_buffer and the associated scatterlist.
*/
static void omap24xxcam_vbq_free_mmap_buffer(struct videobuf_buffer *vb)
{
struct videobuf_dmabuf *dma = videobuf_to_dma(vb);
size_t alloc_size;
struct page *page;
int i;
if (dma->sglist == NULL)
return;
i = dma->sglen;
while (i) {
i--;
alloc_size = sg_dma_len(&dma->sglist[i]);
page = sg_page(&dma->sglist[i]);
do {
ClearPageReserved(page++);
} while (alloc_size -= PAGE_SIZE);
__free_pages(sg_page(&dma->sglist[i]),
get_order(sg_dma_len(&dma->sglist[i])));
}
kfree(dma->sglist);
dma->sglist = NULL;
}
/* Release all memory related to the videobuf_queue. */
static void omap24xxcam_vbq_free_mmap_buffers(struct videobuf_queue *vbq)
{
int i;
mutex_lock(&vbq->vb_lock);
for (i = 0; i < VIDEO_MAX_FRAME; i++) {
if (NULL == vbq->bufs[i])
continue;
if (V4L2_MEMORY_MMAP != vbq->bufs[i]->memory)
continue;
vbq->ops->buf_release(vbq, vbq->bufs[i]);
omap24xxcam_vbq_free_mmap_buffer(vbq->bufs[i]);
kfree(vbq->bufs[i]);
vbq->bufs[i] = NULL;
}
mutex_unlock(&vbq->vb_lock);
videobuf_mmap_free(vbq);
}
/*
* Allocate physically as contiguous as possible buffer for video
* frame and allocate and build DMA scatter-gather list for it.
*/
static int omap24xxcam_vbq_alloc_mmap_buffer(struct videobuf_buffer *vb)
{
unsigned int order;
size_t alloc_size, size = vb->bsize; /* vb->bsize is page aligned */
struct page *page;
int max_pages, err = 0, i = 0;
struct videobuf_dmabuf *dma = videobuf_to_dma(vb);
/*
* allocate maximum size scatter-gather list. Note this is
* overhead. We may not use as many entries as we allocate
*/
max_pages = vb->bsize >> PAGE_SHIFT;
dma->sglist = kcalloc(max_pages, sizeof(*dma->sglist), GFP_KERNEL);
if (dma->sglist == NULL) {
err = -ENOMEM;
goto out;
}
while (size) {
order = get_order(size);
/*
* do not over-allocate even if we would get larger
* contiguous chunk that way
*/
if ((PAGE_SIZE << order) > size)
order--;
/* try to allocate as many contiguous pages as possible */
page = alloc_pages(GFP_KERNEL, order);
/* if allocation fails, try to allocate smaller amount */
while (page == NULL) {
order--;
page = alloc_pages(GFP_KERNEL, order);
if (page == NULL && !order) {
err = -ENOMEM;
goto out;
}
}
size -= (PAGE_SIZE << order);
/* append allocated chunk of pages into scatter-gather list */
sg_set_page(&dma->sglist[i], page, PAGE_SIZE << order, 0);
dma->sglen++;
i++;
alloc_size = (PAGE_SIZE << order);
/* clear pages before giving them to user space */
memset(page_address(page), 0, alloc_size);
/* mark allocated pages reserved */
do {
SetPageReserved(page++);
} while (alloc_size -= PAGE_SIZE);
}
/*
* REVISIT: not fully correct to assign nr_pages == sglen but
* video-buf is passing nr_pages for e.g. unmap_sg calls
*/
dma->nr_pages = dma->sglen;
dma->direction = PCI_DMA_FROMDEVICE;
return 0;
out:
omap24xxcam_vbq_free_mmap_buffer(vb);
return err;
}
static int omap24xxcam_vbq_alloc_mmap_buffers(struct videobuf_queue *vbq,
unsigned int count)
{
int i, err = 0;
struct omap24xxcam_fh *fh =
container_of(vbq, struct omap24xxcam_fh, vbq);
mutex_lock(&vbq->vb_lock);
for (i = 0; i < count; i++) {
err = omap24xxcam_vbq_alloc_mmap_buffer(vbq->bufs[i]);
if (err)
goto out;
dev_dbg(fh->cam->dev, "sglen is %d for buffer %d\n",
videobuf_to_dma(vbq->bufs[i])->sglen, i);
}
mutex_unlock(&vbq->vb_lock);
return 0;
out:
while (i) {
i--;
omap24xxcam_vbq_free_mmap_buffer(vbq->bufs[i]);
}
mutex_unlock(&vbq->vb_lock);
return err;
}
/*
* This routine is called from interrupt context when a scatter-gather DMA
* transfer of a videobuf_buffer completes.
*/
static void omap24xxcam_vbq_complete(struct omap24xxcam_sgdma *sgdma,
u32 csr, void *arg)
{
struct omap24xxcam_device *cam =
container_of(sgdma, struct omap24xxcam_device, sgdma);
struct omap24xxcam_fh *fh = cam->streaming->private_data;
struct videobuf_buffer *vb = (struct videobuf_buffer *)arg;
const u32 csr_error = CAMDMA_CSR_MISALIGNED_ERR
| CAMDMA_CSR_SUPERVISOR_ERR | CAMDMA_CSR_SECURE_ERR
| CAMDMA_CSR_TRANS_ERR | CAMDMA_CSR_DROP;
unsigned long flags;
spin_lock_irqsave(&cam->core_enable_disable_lock, flags);
if (--cam->sgdma_in_queue == 0)
omap24xxcam_core_disable(cam);
spin_unlock_irqrestore(&cam->core_enable_disable_lock, flags);
v4l2_get_timestamp(&vb->ts);
vb->field_count = atomic_add_return(2, &fh->field_count);
if (csr & csr_error) {
vb->state = VIDEOBUF_ERROR;
if (!atomic_read(&fh->cam->in_reset)) {
dev_dbg(cam->dev, "resetting camera, csr 0x%x\n", csr);
omap24xxcam_reset(cam);
}
} else
vb->state = VIDEOBUF_DONE;
wake_up(&vb->done);
}
static void omap24xxcam_vbq_release(struct videobuf_queue *vbq,
struct videobuf_buffer *vb)
{
struct videobuf_dmabuf *dma = videobuf_to_dma(vb);
/* wait for buffer, especially to get out of the sgdma queue */
videobuf_waiton(vbq, vb, 0, 0);
if (vb->memory == V4L2_MEMORY_MMAP) {
dma_unmap_sg(vbq->dev, dma->sglist, dma->sglen,
dma->direction);
dma->direction = DMA_NONE;
} else {
videobuf_dma_unmap(vbq->dev, videobuf_to_dma(vb));
videobuf_dma_free(videobuf_to_dma(vb));
}
vb->state = VIDEOBUF_NEEDS_INIT;
}
/*
* Limit the number of available kernel image capture buffers based on the
* number requested, the currently selected image size, and the maximum
* amount of memory permitted for kernel capture buffers.
*/
static int omap24xxcam_vbq_setup(struct videobuf_queue *vbq, unsigned int *cnt,
unsigned int *size)
{
struct omap24xxcam_fh *fh = vbq->priv_data;
if (*cnt <= 0)
*cnt = VIDEO_MAX_FRAME; /* supply a default number of buffers */
if (*cnt > VIDEO_MAX_FRAME)
*cnt = VIDEO_MAX_FRAME;
*size = fh->pix.sizeimage;
/* accessing fh->cam->capture_mem is ok, it's constant */
if (*size * *cnt > fh->cam->capture_mem)
*cnt = fh->cam->capture_mem / *size;
return 0;
}
static int omap24xxcam_dma_iolock(struct videobuf_queue *vbq,
struct videobuf_dmabuf *dma)
{
int err = 0;
dma->direction = PCI_DMA_FROMDEVICE;
if (!dma_map_sg(vbq->dev, dma->sglist, dma->sglen, dma->direction)) {
kfree(dma->sglist);
dma->sglist = NULL;
dma->sglen = 0;
err = -EIO;
}
return err;
}
static int omap24xxcam_vbq_prepare(struct videobuf_queue *vbq,
struct videobuf_buffer *vb,
enum v4l2_field field)
{
struct omap24xxcam_fh *fh = vbq->priv_data;
int err = 0;
/*
* Accessing pix here is okay since it's constant while
* streaming is on (and we only get called then).
*/
if (vb->baddr) {
/* This is a userspace buffer. */
if (fh->pix.sizeimage > vb->bsize) {
/* The buffer isn't big enough. */
err = -EINVAL;
} else
vb->size = fh->pix.sizeimage;
} else {
if (vb->state != VIDEOBUF_NEEDS_INIT) {
/*
* We have a kernel bounce buffer that has
* already been allocated.
*/
if (fh->pix.sizeimage > vb->size) {
/*
* The image size has been changed to
* a larger size since this buffer was
* allocated, so we need to free and
* reallocate it.
*/
omap24xxcam_vbq_release(vbq, vb);
vb->size = fh->pix.sizeimage;
}
} else {
/* We need to allocate a new kernel bounce buffer. */
vb->size = fh->pix.sizeimage;
}
}
if (err)
return err;
vb->width = fh->pix.width;
vb->height = fh->pix.height;
vb->field = field;
if (vb->state == VIDEOBUF_NEEDS_INIT) {
if (vb->memory == V4L2_MEMORY_MMAP)
/*
* we have built the scatter-gather list by ourself so
* do the scatter-gather mapping as well
*/
err = omap24xxcam_dma_iolock(vbq, videobuf_to_dma(vb));
else
err = videobuf_iolock(vbq, vb, NULL);
}
if (!err)
vb->state = VIDEOBUF_PREPARED;
else
omap24xxcam_vbq_release(vbq, vb);
return err;
}
static void omap24xxcam_vbq_queue(struct videobuf_queue *vbq,
struct videobuf_buffer *vb)
{
struct omap24xxcam_fh *fh = vbq->priv_data;
struct omap24xxcam_device *cam = fh->cam;
enum videobuf_state state = vb->state;
unsigned long flags;
int err;
/*
* FIXME: We're marking the buffer active since we have no
* pretty way of marking it active exactly when the
* scatter-gather transfer starts.
*/
vb->state = VIDEOBUF_ACTIVE;
err = omap24xxcam_sgdma_queue(&fh->cam->sgdma,
videobuf_to_dma(vb)->sglist,
videobuf_to_dma(vb)->sglen, vb->size,
omap24xxcam_vbq_complete, vb);
if (!err) {
spin_lock_irqsave(&cam->core_enable_disable_lock, flags);
if (++cam->sgdma_in_queue == 1
&& !atomic_read(&cam->in_reset))
omap24xxcam_core_enable(cam);
spin_unlock_irqrestore(&cam->core_enable_disable_lock, flags);
} else {
/*
* Oops. We're not supposed to get any errors here.
* The only way we could get an error is if we ran out
* of scatter-gather DMA slots, but we are supposed to
* have at least as many scatter-gather DMA slots as
* video buffers so that can't happen.
*/
dev_err(cam->dev, "failed to queue a video buffer for dma!\n");
dev_err(cam->dev, "likely a bug in the driver!\n");
vb->state = state;
}
}
static struct videobuf_queue_ops omap24xxcam_vbq_ops = {
.buf_setup = omap24xxcam_vbq_setup,
.buf_prepare = omap24xxcam_vbq_prepare,
.buf_queue = omap24xxcam_vbq_queue,
.buf_release = omap24xxcam_vbq_release,
};
/*
*
* OMAP main camera system
*
*/
/*
* Reset camera block to power-on state.
*/
static void omap24xxcam_poweron_reset(struct omap24xxcam_device *cam)
{
int max_loop = RESET_TIMEOUT_NS;
/* Reset whole camera subsystem */
omap24xxcam_reg_out(cam->mmio_base,
CAM_SYSCONFIG,
CAM_SYSCONFIG_SOFTRESET);
/* Wait till it's finished */
while (!(omap24xxcam_reg_in(cam->mmio_base, CAM_SYSSTATUS)
& CAM_SYSSTATUS_RESETDONE)
&& --max_loop) {
ndelay(1);
}
if (!(omap24xxcam_reg_in(cam->mmio_base, CAM_SYSSTATUS)
& CAM_SYSSTATUS_RESETDONE))
dev_err(cam->dev, "camera soft reset timeout\n");
}
/*
* (Re)initialise the camera block.
*/
static void omap24xxcam_hwinit(struct omap24xxcam_device *cam)
{
omap24xxcam_poweron_reset(cam);
/* set the camera subsystem autoidle bit */
omap24xxcam_reg_out(cam->mmio_base, CAM_SYSCONFIG,
CAM_SYSCONFIG_AUTOIDLE);
/* set the camera MMU autoidle bit */
omap24xxcam_reg_out(cam->mmio_base,
CAMMMU_REG_OFFSET + CAMMMU_SYSCONFIG,
CAMMMU_SYSCONFIG_AUTOIDLE);
omap24xxcam_core_hwinit(cam);
omap24xxcam_dma_hwinit(&cam->sgdma.dma);
}
/*
* Callback for dma transfer stalling.
*/
static void omap24xxcam_stalled_dma_reset(unsigned long data)
{
struct omap24xxcam_device *cam = (struct omap24xxcam_device *)data;
if (!atomic_read(&cam->in_reset)) {
dev_dbg(cam->dev, "dma stalled, resetting camera\n");
omap24xxcam_reset(cam);
}
}
/*
* Stop capture. Mark we're doing a reset, stop DMA transfers and
* core. (No new scatter-gather transfers will be queued whilst
* in_reset is non-zero.)
*
* If omap24xxcam_capture_stop is called from several places at
* once, only the first call will have an effect. Similarly, the last
* call omap24xxcam_streaming_cont will have effect.
*
* Serialisation is ensured by using cam->core_enable_disable_lock.
*/
static void omap24xxcam_capture_stop(struct omap24xxcam_device *cam)
{
unsigned long flags;
spin_lock_irqsave(&cam->core_enable_disable_lock, flags);
if (atomic_inc_return(&cam->in_reset) != 1) {
spin_unlock_irqrestore(&cam->core_enable_disable_lock, flags);
return;
}
omap24xxcam_core_disable(cam);
spin_unlock_irqrestore(&cam->core_enable_disable_lock, flags);
omap24xxcam_sgdma_sync(&cam->sgdma);
}
/*
* Reset and continue streaming.
*
* Note: Resetting the camera FIFO via the CC_RST bit in the CC_CTRL
* register is supposed to be sufficient to recover from a camera
* interface error, but it doesn't seem to be enough. If we only do
* that then subsequent image captures are out of sync by either one
* or two times DMA_THRESHOLD bytes. Resetting and re-initializing the
* entire camera subsystem prevents the problem with frame
* synchronization.
*/
static void omap24xxcam_capture_cont(struct omap24xxcam_device *cam)
{
unsigned long flags;
spin_lock_irqsave(&cam->core_enable_disable_lock, flags);
if (atomic_read(&cam->in_reset) != 1)
goto out;
omap24xxcam_hwinit(cam);
omap24xxcam_sensor_if_enable(cam);
omap24xxcam_sgdma_process(&cam->sgdma);
if (cam->sgdma_in_queue)
omap24xxcam_core_enable(cam);
out:
atomic_dec(&cam->in_reset);
spin_unlock_irqrestore(&cam->core_enable_disable_lock, flags);
}
static ssize_t
omap24xxcam_streaming_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct omap24xxcam_device *cam = dev_get_drvdata(dev);
return sprintf(buf, "%s\n", cam->streaming ? "active" : "inactive");
}
static DEVICE_ATTR(streaming, S_IRUGO, omap24xxcam_streaming_show, NULL);
/*
* Stop capture and restart it. I.e. reset the camera during use.
*/
static void omap24xxcam_reset(struct omap24xxcam_device *cam)
{
omap24xxcam_capture_stop(cam);
omap24xxcam_capture_cont(cam);
}
/*
* The main interrupt handler.
*/
static irqreturn_t omap24xxcam_isr(int irq, void *arg)
{
struct omap24xxcam_device *cam = (struct omap24xxcam_device *)arg;
u32 irqstatus;
unsigned int irqhandled = 0;
irqstatus = omap24xxcam_reg_in(cam->mmio_base, CAM_IRQSTATUS);
if (irqstatus &
(CAM_IRQSTATUS_DMA_IRQ2 | CAM_IRQSTATUS_DMA_IRQ1
| CAM_IRQSTATUS_DMA_IRQ0)) {
omap24xxcam_dma_isr(&cam->sgdma.dma);
irqhandled = 1;
}
if (irqstatus & CAM_IRQSTATUS_CC_IRQ) {
omap24xxcam_core_isr(cam);
irqhandled = 1;
}
if (irqstatus & CAM_IRQSTATUS_MMU_IRQ)
dev_err(cam->dev, "unhandled camera MMU interrupt!\n");
return IRQ_RETVAL(irqhandled);
}
/*
*
* Sensor handling.
*
*/
/*
* Enable the external sensor interface. Try to negotiate interface
* parameters with the sensor and start using the new ones. The calls
* to sensor_if_enable and sensor_if_disable need not to be balanced.
*/
static int omap24xxcam_sensor_if_enable(struct omap24xxcam_device *cam)
{
int rval;
struct v4l2_ifparm p;
rval = vidioc_int_g_ifparm(cam->sdev, &p);
if (rval) {
dev_err(cam->dev, "vidioc_int_g_ifparm failed with %d\n", rval);
return rval;
}
cam->if_type = p.if_type;
cam->cc_ctrl = CC_CTRL_CC_EN;
switch (p.if_type) {
case V4L2_IF_TYPE_BT656:
if (p.u.bt656.frame_start_on_rising_vs)
cam->cc_ctrl |= CC_CTRL_NOBT_SYNCHRO;
if (p.u.bt656.bt_sync_correct)
cam->cc_ctrl |= CC_CTRL_BT_CORRECT;
if (p.u.bt656.swap)
cam->cc_ctrl |= CC_CTRL_PAR_ORDERCAM;
if (p.u.bt656.latch_clk_inv)
cam->cc_ctrl |= CC_CTRL_PAR_CLK_POL;
if (p.u.bt656.nobt_hs_inv)
cam->cc_ctrl |= CC_CTRL_NOBT_HS_POL;
if (p.u.bt656.nobt_vs_inv)
cam->cc_ctrl |= CC_CTRL_NOBT_VS_POL;
switch (p.u.bt656.mode) {
case V4L2_IF_TYPE_BT656_MODE_NOBT_8BIT:
cam->cc_ctrl |= CC_CTRL_PAR_MODE_NOBT8;
break;
case V4L2_IF_TYPE_BT656_MODE_NOBT_10BIT:
cam->cc_ctrl |= CC_CTRL_PAR_MODE_NOBT10;
break;
case V4L2_IF_TYPE_BT656_MODE_NOBT_12BIT:
cam->cc_ctrl |= CC_CTRL_PAR_MODE_NOBT12;
break;
case V4L2_IF_TYPE_BT656_MODE_BT_8BIT:
cam->cc_ctrl |= CC_CTRL_PAR_MODE_BT8;
break;
case V4L2_IF_TYPE_BT656_MODE_BT_10BIT:
cam->cc_ctrl |= CC_CTRL_PAR_MODE_BT10;
break;
default:
dev_err(cam->dev,
"bt656 interface mode %d not supported\n",
p.u.bt656.mode);
return -EINVAL;
}
/*
* The clock rate that the sensor wants has changed.
* We have to adjust the xclk from OMAP 2 side to
* match the sensor's wish as closely as possible.
*/
if (p.u.bt656.clock_curr != cam->if_u.bt656.xclk) {
u32 xclk = p.u.bt656.clock_curr;
u32 divisor;
if (xclk == 0)
return -EINVAL;
if (xclk > CAM_MCLK)
xclk = CAM_MCLK;
divisor = CAM_MCLK / xclk;
if (divisor * xclk < CAM_MCLK)
divisor++;
if (CAM_MCLK / divisor < p.u.bt656.clock_min
&& divisor > 1)
divisor--;
if (divisor > 30)
divisor = 30;
xclk = CAM_MCLK / divisor;
if (xclk < p.u.bt656.clock_min
|| xclk > p.u.bt656.clock_max)
return -EINVAL;
cam->if_u.bt656.xclk = xclk;
}
omap24xxcam_core_xclk_set(cam, cam->if_u.bt656.xclk);
break;
default:
/* FIXME: how about other interfaces? */
dev_err(cam->dev, "interface type %d not supported\n",
p.if_type);
return -EINVAL;
}
return 0;
}
static void omap24xxcam_sensor_if_disable(const struct omap24xxcam_device *cam)
{
switch (cam->if_type) {
case V4L2_IF_TYPE_BT656:
omap24xxcam_core_xclk_set(cam, 0);
break;
}
}
/*
* Initialise the sensor hardware.
*/
static int omap24xxcam_sensor_init(struct omap24xxcam_device *cam)
{
int err = 0;
struct v4l2_int_device *sdev = cam->sdev;
omap24xxcam_clock_on(cam);
err = omap24xxcam_sensor_if_enable(cam);
if (err) {
dev_err(cam->dev, "sensor interface could not be enabled at "
"initialisation, %d\n", err);
cam->sdev = NULL;
goto out;
}
/* power up sensor during sensor initialization */
vidioc_int_s_power(sdev, 1);
err = vidioc_int_dev_init(sdev);
if (err) {
dev_err(cam->dev, "cannot initialize sensor, error %d\n", err);
/* Sensor init failed --- it's nonexistent to us! */
cam->sdev = NULL;
goto out;
}
dev_info(cam->dev, "sensor is %s\n", sdev->name);
out:
omap24xxcam_sensor_if_disable(cam);
omap24xxcam_clock_off(cam);
vidioc_int_s_power(sdev, 0);
return err;
}
static void omap24xxcam_sensor_exit(struct omap24xxcam_device *cam)
{
if (cam->sdev)
vidioc_int_dev_exit(cam->sdev);
}
static void omap24xxcam_sensor_disable(struct omap24xxcam_device *cam)
{
omap24xxcam_sensor_if_disable(cam);
omap24xxcam_clock_off(cam);
vidioc_int_s_power(cam->sdev, 0);
}
/*
* Power-up and configure camera sensor. It's ready for capturing now.
*/
static int omap24xxcam_sensor_enable(struct omap24xxcam_device *cam)
{
int rval;
omap24xxcam_clock_on(cam);
omap24xxcam_sensor_if_enable(cam);
rval = vidioc_int_s_power(cam->sdev, 1);
if (rval)
goto out;
rval = vidioc_int_init(cam->sdev);
if (rval)
goto out;
return 0;
out:
omap24xxcam_sensor_disable(cam);
return rval;
}
static void omap24xxcam_sensor_reset_work(struct work_struct *work)
{
struct omap24xxcam_device *cam =
container_of(work, struct omap24xxcam_device,
sensor_reset_work);
if (atomic_read(&cam->reset_disable))
return;
omap24xxcam_capture_stop(cam);
if (vidioc_int_reset(cam->sdev) == 0) {
vidioc_int_init(cam->sdev);
} else {
/* Can't reset it by vidioc_int_reset. */
omap24xxcam_sensor_disable(cam);
omap24xxcam_sensor_enable(cam);
}
omap24xxcam_capture_cont(cam);
}
/*
*
* IOCTL interface.
*
*/
static int vidioc_querycap(struct file *file, void *fh,
struct v4l2_capability *cap)
{
struct omap24xxcam_fh *ofh = fh;
struct omap24xxcam_device *cam = ofh->cam;
strlcpy(cap->driver, CAM_NAME, sizeof(cap->driver));
strlcpy(cap->card, cam->vfd->name, sizeof(cap->card));
cap->capabilities = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_STREAMING;
return 0;
}
static int vidioc_enum_fmt_vid_cap(struct file *file, void *fh,
struct v4l2_fmtdesc *f)
{
struct omap24xxcam_fh *ofh = fh;
struct omap24xxcam_device *cam = ofh->cam;
int rval;
rval = vidioc_int_enum_fmt_cap(cam->sdev, f);
return rval;
}
static int vidioc_g_fmt_vid_cap(struct file *file, void *fh,
struct v4l2_format *f)
{
struct omap24xxcam_fh *ofh = fh;
struct omap24xxcam_device *cam = ofh->cam;
int rval;
mutex_lock(&cam->mutex);
rval = vidioc_int_g_fmt_cap(cam->sdev, f);
mutex_unlock(&cam->mutex);
return rval;
}
static int vidioc_s_fmt_vid_cap(struct file *file, void *fh,
struct v4l2_format *f)
{
struct omap24xxcam_fh *ofh = fh;
struct omap24xxcam_device *cam = ofh->cam;
int rval;
mutex_lock(&cam->mutex);
if (cam->streaming) {
rval = -EBUSY;
goto out;
}
rval = vidioc_int_s_fmt_cap(cam->sdev, f);
out:
mutex_unlock(&cam->mutex);
if (!rval) {
mutex_lock(&ofh->vbq.vb_lock);
ofh->pix = f->fmt.pix;
mutex_unlock(&ofh->vbq.vb_lock);
}
memset(f, 0, sizeof(*f));
vidioc_g_fmt_vid_cap(file, fh, f);
return rval;
}
static int vidioc_try_fmt_vid_cap(struct file *file, void *fh,
struct v4l2_format *f)
{
struct omap24xxcam_fh *ofh = fh;
struct omap24xxcam_device *cam = ofh->cam;
int rval;
mutex_lock(&cam->mutex);
rval = vidioc_int_try_fmt_cap(cam->sdev, f);
mutex_unlock(&cam->mutex);
return rval;
}
static int vidioc_reqbufs(struct file *file, void *fh,
struct v4l2_requestbuffers *b)
{
struct omap24xxcam_fh *ofh = fh;
struct omap24xxcam_device *cam = ofh->cam;
int rval;
mutex_lock(&cam->mutex);
if (cam->streaming) {
mutex_unlock(&cam->mutex);
return -EBUSY;
}
omap24xxcam_vbq_free_mmap_buffers(&ofh->vbq);
mutex_unlock(&cam->mutex);
rval = videobuf_reqbufs(&ofh->vbq, b);
/*
* Either videobuf_reqbufs failed or the buffers are not
* memory-mapped (which would need special attention).
*/
if (rval < 0 || b->memory != V4L2_MEMORY_MMAP)
goto out;
rval = omap24xxcam_vbq_alloc_mmap_buffers(&ofh->vbq, rval);
if (rval)
omap24xxcam_vbq_free_mmap_buffers(&ofh->vbq);
out:
return rval;
}
static int vidioc_querybuf(struct file *file, void *fh,
struct v4l2_buffer *b)
{
struct omap24xxcam_fh *ofh = fh;
return videobuf_querybuf(&ofh->vbq, b);
}
static int vidioc_qbuf(struct file *file, void *fh, struct v4l2_buffer *b)
{
struct omap24xxcam_fh *ofh = fh;
return videobuf_qbuf(&ofh->vbq, b);
}
static int vidioc_dqbuf(struct file *file, void *fh, struct v4l2_buffer *b)
{
struct omap24xxcam_fh *ofh = fh;
struct omap24xxcam_device *cam = ofh->cam;
struct videobuf_buffer *vb;
int rval;
videobuf_dqbuf_again:
rval = videobuf_dqbuf(&ofh->vbq, b, file->f_flags & O_NONBLOCK);
if (rval)
goto out;
vb = ofh->vbq.bufs[b->index];
mutex_lock(&cam->mutex);
/* _needs_reset returns -EIO if reset is required. */
rval = vidioc_int_g_needs_reset(cam->sdev, (void *)vb->baddr);
mutex_unlock(&cam->mutex);
if (rval == -EIO)
schedule_work(&cam->sensor_reset_work);
else
rval = 0;
out:
/*
* This is a hack. We don't want to show -EIO to the user
* space. Requeue the buffer and try again if we're not doing
* this in non-blocking mode.
*/
if (rval == -EIO) {
videobuf_qbuf(&ofh->vbq, b);
if (!(file->f_flags & O_NONBLOCK))
goto videobuf_dqbuf_again;
/*
* We don't have a videobuf_buffer now --- maybe next
* time...
*/
rval = -EAGAIN;
}
return rval;
}
static int vidioc_streamon(struct file *file, void *fh, enum v4l2_buf_type i)
{
struct omap24xxcam_fh *ofh = fh;
struct omap24xxcam_device *cam = ofh->cam;
int rval;
mutex_lock(&cam->mutex);
if (cam->streaming) {
rval = -EBUSY;
goto out;
}
rval = omap24xxcam_sensor_if_enable(cam);
if (rval) {
dev_dbg(cam->dev, "vidioc_int_g_ifparm failed\n");
goto out;
}
rval = videobuf_streamon(&ofh->vbq);
if (!rval) {
cam->streaming = file;
sysfs_notify(&cam->dev->kobj, NULL, "streaming");
}
out:
mutex_unlock(&cam->mutex);
return rval;
}
static int vidioc_streamoff(struct file *file, void *fh, enum v4l2_buf_type i)
{
struct omap24xxcam_fh *ofh = fh;
struct omap24xxcam_device *cam = ofh->cam;
struct videobuf_queue *q = &ofh->vbq;
int rval;
atomic_inc(&cam->reset_disable);
workqueue: deprecate flush[_delayed]_work_sync() flush[_delayed]_work_sync() are now spurious. Mark them deprecated and convert all users to flush[_delayed]_work(). If you're cc'd and wondering what's going on: Now all workqueues are non-reentrant and the regular flushes guarantee that the work item is not pending or running on any CPU on return, so there's no reason to use the sync flushes at all and they're going away. This patch doesn't make any functional difference. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Ian Campbell <ian.campbell@citrix.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Mattia Dongili <malattia@linux.it> Cc: Kent Yoder <key@linux.vnet.ibm.com> Cc: David Airlie <airlied@linux.ie> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Karsten Keil <isdn@linux-pingi.de> Cc: Bryan Wu <bryan.wu@canonical.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mauro Carvalho Chehab <mchehab@infradead.org> Cc: Florian Tobias Schandinat <FlorianSchandinat@gmx.de> Cc: David Woodhouse <dwmw2@infradead.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: linux-wireless@vger.kernel.org Cc: Anton Vorontsov <cbou@mail.ru> Cc: Sangbeom Kim <sbkim73@samsung.com> Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Eric Van Hensbergen <ericvh@gmail.com> Cc: Takashi Iwai <tiwai@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Petr Vandrovec <petr@vandrovec.name> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Avi Kivity <avi@redhat.com>
2012-08-21 05:51:24 +08:00
flush_work(&cam->sensor_reset_work);
rval = videobuf_streamoff(q);
if (!rval) {
mutex_lock(&cam->mutex);
cam->streaming = NULL;
mutex_unlock(&cam->mutex);
sysfs_notify(&cam->dev->kobj, NULL, "streaming");
}
atomic_dec(&cam->reset_disable);
return rval;
}
static int vidioc_enum_input(struct file *file, void *fh,
struct v4l2_input *inp)
{
if (inp->index > 0)
return -EINVAL;
strlcpy(inp->name, "camera", sizeof(inp->name));
inp->type = V4L2_INPUT_TYPE_CAMERA;
return 0;
}
static int vidioc_g_input(struct file *file, void *fh, unsigned int *i)
{
*i = 0;
return 0;
}
static int vidioc_s_input(struct file *file, void *fh, unsigned int i)
{
if (i > 0)
return -EINVAL;
return 0;
}
static int vidioc_queryctrl(struct file *file, void *fh,
struct v4l2_queryctrl *a)
{
struct omap24xxcam_fh *ofh = fh;
struct omap24xxcam_device *cam = ofh->cam;
int rval;
rval = vidioc_int_queryctrl(cam->sdev, a);
return rval;
}
static int vidioc_g_ctrl(struct file *file, void *fh,
struct v4l2_control *a)
{
struct omap24xxcam_fh *ofh = fh;
struct omap24xxcam_device *cam = ofh->cam;
int rval;
mutex_lock(&cam->mutex);
rval = vidioc_int_g_ctrl(cam->sdev, a);
mutex_unlock(&cam->mutex);
return rval;
}
static int vidioc_s_ctrl(struct file *file, void *fh,
struct v4l2_control *a)
{
struct omap24xxcam_fh *ofh = fh;
struct omap24xxcam_device *cam = ofh->cam;
int rval;
mutex_lock(&cam->mutex);
rval = vidioc_int_s_ctrl(cam->sdev, a);
mutex_unlock(&cam->mutex);
return rval;
}
static int vidioc_g_parm(struct file *file, void *fh,
struct v4l2_streamparm *a) {
struct omap24xxcam_fh *ofh = fh;
struct omap24xxcam_device *cam = ofh->cam;
int rval;
mutex_lock(&cam->mutex);
rval = vidioc_int_g_parm(cam->sdev, a);
mutex_unlock(&cam->mutex);
return rval;
}
static int vidioc_s_parm(struct file *file, void *fh,
struct v4l2_streamparm *a)
{
struct omap24xxcam_fh *ofh = fh;
struct omap24xxcam_device *cam = ofh->cam;
struct v4l2_streamparm old_streamparm;
int rval;
mutex_lock(&cam->mutex);
if (cam->streaming) {
rval = -EBUSY;
goto out;
}
old_streamparm.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
rval = vidioc_int_g_parm(cam->sdev, &old_streamparm);
if (rval)
goto out;
rval = vidioc_int_s_parm(cam->sdev, a);
if (rval)
goto out;
rval = omap24xxcam_sensor_if_enable(cam);
/*
* Revert to old streaming parameters if enabling sensor
* interface with the new ones failed.
*/
if (rval)
vidioc_int_s_parm(cam->sdev, &old_streamparm);
out:
mutex_unlock(&cam->mutex);
return rval;
}
/*
*
* File operations.
*
*/
static unsigned int omap24xxcam_poll(struct file *file,
struct poll_table_struct *wait)
{
struct omap24xxcam_fh *fh = file->private_data;
struct omap24xxcam_device *cam = fh->cam;
struct videobuf_buffer *vb;
mutex_lock(&cam->mutex);
if (cam->streaming != file) {
mutex_unlock(&cam->mutex);
return POLLERR;
}
mutex_unlock(&cam->mutex);
mutex_lock(&fh->vbq.vb_lock);
if (list_empty(&fh->vbq.stream)) {
mutex_unlock(&fh->vbq.vb_lock);
return POLLERR;
}
vb = list_entry(fh->vbq.stream.next, struct videobuf_buffer, stream);
mutex_unlock(&fh->vbq.vb_lock);
poll_wait(file, &vb->done, wait);
if (vb->state == VIDEOBUF_DONE || vb->state == VIDEOBUF_ERROR)
return POLLIN | POLLRDNORM;
return 0;
}
static int omap24xxcam_mmap_buffers(struct file *file,
struct vm_area_struct *vma)
{
struct omap24xxcam_fh *fh = file->private_data;
struct omap24xxcam_device *cam = fh->cam;
struct videobuf_queue *vbq = &fh->vbq;
unsigned int first, last, size, i, j;
int err = 0;
mutex_lock(&cam->mutex);
if (cam->streaming) {
mutex_unlock(&cam->mutex);
return -EBUSY;
}
mutex_unlock(&cam->mutex);
mutex_lock(&vbq->vb_lock);
/* look for first buffer to map */
for (first = 0; first < VIDEO_MAX_FRAME; first++) {
if (NULL == vbq->bufs[first])
continue;
if (V4L2_MEMORY_MMAP != vbq->bufs[first]->memory)
continue;
if (vbq->bufs[first]->boff == (vma->vm_pgoff << PAGE_SHIFT))
break;
}
/* look for last buffer to map */
for (size = 0, last = first; last < VIDEO_MAX_FRAME; last++) {
if (NULL == vbq->bufs[last])
continue;
if (V4L2_MEMORY_MMAP != vbq->bufs[last]->memory)
continue;
size += vbq->bufs[last]->bsize;
if (size == (vma->vm_end - vma->vm_start))
break;
}
size = 0;
for (i = first; i <= last && i < VIDEO_MAX_FRAME; i++) {
struct videobuf_dmabuf *dma = videobuf_to_dma(vbq->bufs[i]);
for (j = 0; j < dma->sglen; j++) {
err = remap_pfn_range(
vma, vma->vm_start + size,
page_to_pfn(sg_page(&dma->sglist[j])),
sg_dma_len(&dma->sglist[j]), vma->vm_page_prot);
if (err)
goto out;
size += sg_dma_len(&dma->sglist[j]);
}
}
out:
mutex_unlock(&vbq->vb_lock);
return err;
}
static int omap24xxcam_mmap(struct file *file, struct vm_area_struct *vma)
{
struct omap24xxcam_fh *fh = file->private_data;
int rval;
/* let the video-buf mapper check arguments and set-up structures */
rval = videobuf_mmap_mapper(&fh->vbq, vma);
if (rval)
return rval;
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
/* do mapping to our allocated buffers */
rval = omap24xxcam_mmap_buffers(file, vma);
/*
* In case of error, free vma->vm_private_data allocated by
* videobuf_mmap_mapper.
*/
if (rval)
kfree(vma->vm_private_data);
return rval;
}
static int omap24xxcam_open(struct file *file)
{
struct omap24xxcam_device *cam = omap24xxcam.priv;
struct omap24xxcam_fh *fh;
struct v4l2_format format;
if (!cam || !cam->vfd)
return -ENODEV;
fh = kzalloc(sizeof(*fh), GFP_KERNEL);
if (fh == NULL)
return -ENOMEM;
mutex_lock(&cam->mutex);
if (cam->sdev == NULL || !try_module_get(cam->sdev->module)) {
mutex_unlock(&cam->mutex);
goto out_try_module_get;
}
if (atomic_inc_return(&cam->users) == 1) {
omap24xxcam_hwinit(cam);
if (omap24xxcam_sensor_enable(cam)) {
mutex_unlock(&cam->mutex);
goto out_omap24xxcam_sensor_enable;
}
}
mutex_unlock(&cam->mutex);
fh->cam = cam;
mutex_lock(&cam->mutex);
vidioc_int_g_fmt_cap(cam->sdev, &format);
mutex_unlock(&cam->mutex);
/* FIXME: how about fh->pix when there are more users? */
fh->pix = format.fmt.pix;
file->private_data = fh;
spin_lock_init(&fh->vbq_lock);
videobuf_queue_sg_init(&fh->vbq, &omap24xxcam_vbq_ops, NULL,
&fh->vbq_lock, V4L2_BUF_TYPE_VIDEO_CAPTURE,
V4L2_FIELD_NONE,
sizeof(struct videobuf_buffer), fh, NULL);
return 0;
out_omap24xxcam_sensor_enable:
omap24xxcam_poweron_reset(cam);
module_put(cam->sdev->module);
out_try_module_get:
kfree(fh);
return -ENODEV;
}
static int omap24xxcam_release(struct file *file)
{
struct omap24xxcam_fh *fh = file->private_data;
struct omap24xxcam_device *cam = fh->cam;
atomic_inc(&cam->reset_disable);
workqueue: deprecate flush[_delayed]_work_sync() flush[_delayed]_work_sync() are now spurious. Mark them deprecated and convert all users to flush[_delayed]_work(). If you're cc'd and wondering what's going on: Now all workqueues are non-reentrant and the regular flushes guarantee that the work item is not pending or running on any CPU on return, so there's no reason to use the sync flushes at all and they're going away. This patch doesn't make any functional difference. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Ian Campbell <ian.campbell@citrix.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Mattia Dongili <malattia@linux.it> Cc: Kent Yoder <key@linux.vnet.ibm.com> Cc: David Airlie <airlied@linux.ie> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Karsten Keil <isdn@linux-pingi.de> Cc: Bryan Wu <bryan.wu@canonical.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mauro Carvalho Chehab <mchehab@infradead.org> Cc: Florian Tobias Schandinat <FlorianSchandinat@gmx.de> Cc: David Woodhouse <dwmw2@infradead.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: linux-wireless@vger.kernel.org Cc: Anton Vorontsov <cbou@mail.ru> Cc: Sangbeom Kim <sbkim73@samsung.com> Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Eric Van Hensbergen <ericvh@gmail.com> Cc: Takashi Iwai <tiwai@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Petr Vandrovec <petr@vandrovec.name> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Avi Kivity <avi@redhat.com>
2012-08-21 05:51:24 +08:00
flush_work(&cam->sensor_reset_work);
/* stop streaming capture */
videobuf_streamoff(&fh->vbq);
mutex_lock(&cam->mutex);
if (cam->streaming == file) {
cam->streaming = NULL;
mutex_unlock(&cam->mutex);
sysfs_notify(&cam->dev->kobj, NULL, "streaming");
} else {
mutex_unlock(&cam->mutex);
}
atomic_dec(&cam->reset_disable);
omap24xxcam_vbq_free_mmap_buffers(&fh->vbq);
/*
* Make sure the reset work we might have scheduled is not
* pending! It may be run *only* if we have users. (And it may
* not be scheduled anymore since streaming is already
* disabled.)
*/
workqueue: deprecate flush[_delayed]_work_sync() flush[_delayed]_work_sync() are now spurious. Mark them deprecated and convert all users to flush[_delayed]_work(). If you're cc'd and wondering what's going on: Now all workqueues are non-reentrant and the regular flushes guarantee that the work item is not pending or running on any CPU on return, so there's no reason to use the sync flushes at all and they're going away. This patch doesn't make any functional difference. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Ian Campbell <ian.campbell@citrix.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Mattia Dongili <malattia@linux.it> Cc: Kent Yoder <key@linux.vnet.ibm.com> Cc: David Airlie <airlied@linux.ie> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Karsten Keil <isdn@linux-pingi.de> Cc: Bryan Wu <bryan.wu@canonical.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mauro Carvalho Chehab <mchehab@infradead.org> Cc: Florian Tobias Schandinat <FlorianSchandinat@gmx.de> Cc: David Woodhouse <dwmw2@infradead.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: linux-wireless@vger.kernel.org Cc: Anton Vorontsov <cbou@mail.ru> Cc: Sangbeom Kim <sbkim73@samsung.com> Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Eric Van Hensbergen <ericvh@gmail.com> Cc: Takashi Iwai <tiwai@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Petr Vandrovec <petr@vandrovec.name> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Avi Kivity <avi@redhat.com>
2012-08-21 05:51:24 +08:00
flush_work(&cam->sensor_reset_work);
mutex_lock(&cam->mutex);
if (atomic_dec_return(&cam->users) == 0) {
omap24xxcam_sensor_disable(cam);
omap24xxcam_poweron_reset(cam);
}
mutex_unlock(&cam->mutex);
file->private_data = NULL;
module_put(cam->sdev->module);
kfree(fh);
return 0;
}
static struct v4l2_file_operations omap24xxcam_fops = {
.ioctl = video_ioctl2,
.poll = omap24xxcam_poll,
.mmap = omap24xxcam_mmap,
.open = omap24xxcam_open,
.release = omap24xxcam_release,
};
/*
*
* Power management.
*
*/
#ifdef CONFIG_PM
static int omap24xxcam_suspend(struct platform_device *pdev, pm_message_t state)
{
struct omap24xxcam_device *cam = platform_get_drvdata(pdev);
if (atomic_read(&cam->users) == 0)
return 0;
if (!atomic_read(&cam->reset_disable))
omap24xxcam_capture_stop(cam);
omap24xxcam_sensor_disable(cam);
omap24xxcam_poweron_reset(cam);
return 0;
}
static int omap24xxcam_resume(struct platform_device *pdev)
{
struct omap24xxcam_device *cam = platform_get_drvdata(pdev);
if (atomic_read(&cam->users) == 0)
return 0;
omap24xxcam_hwinit(cam);
omap24xxcam_sensor_enable(cam);
if (!atomic_read(&cam->reset_disable))
omap24xxcam_capture_cont(cam);
return 0;
}
#endif /* CONFIG_PM */
static const struct v4l2_ioctl_ops omap24xxcam_ioctl_fops = {
.vidioc_querycap = vidioc_querycap,
.vidioc_enum_fmt_vid_cap = vidioc_enum_fmt_vid_cap,
.vidioc_g_fmt_vid_cap = vidioc_g_fmt_vid_cap,
.vidioc_s_fmt_vid_cap = vidioc_s_fmt_vid_cap,
.vidioc_try_fmt_vid_cap = vidioc_try_fmt_vid_cap,
.vidioc_reqbufs = vidioc_reqbufs,
.vidioc_querybuf = vidioc_querybuf,
.vidioc_qbuf = vidioc_qbuf,
.vidioc_dqbuf = vidioc_dqbuf,
.vidioc_streamon = vidioc_streamon,
.vidioc_streamoff = vidioc_streamoff,
.vidioc_enum_input = vidioc_enum_input,
.vidioc_g_input = vidioc_g_input,
.vidioc_s_input = vidioc_s_input,
.vidioc_queryctrl = vidioc_queryctrl,
.vidioc_g_ctrl = vidioc_g_ctrl,
.vidioc_s_ctrl = vidioc_s_ctrl,
.vidioc_g_parm = vidioc_g_parm,
.vidioc_s_parm = vidioc_s_parm,
};
/*
*
* Camera device (i.e. /dev/video).
*
*/
static int omap24xxcam_device_register(struct v4l2_int_device *s)
{
struct omap24xxcam_device *cam = s->u.slave->master->priv;
struct video_device *vfd;
int rval;
/* We already have a slave. */
if (cam->sdev)
return -EBUSY;
cam->sdev = s;
if (device_create_file(cam->dev, &dev_attr_streaming) != 0) {
dev_err(cam->dev, "could not register sysfs entry\n");
rval = -EBUSY;
goto err;
}
/* initialize the video_device struct */
vfd = cam->vfd = video_device_alloc();
if (!vfd) {
dev_err(cam->dev, "could not allocate video device struct\n");
rval = -ENOMEM;
goto err;
}
vfd->release = video_device_release;
vfd->parent = cam->dev;
strlcpy(vfd->name, CAM_NAME, sizeof(vfd->name));
vfd->fops = &omap24xxcam_fops;
vfd->ioctl_ops = &omap24xxcam_ioctl_fops;
omap24xxcam_hwinit(cam);
rval = omap24xxcam_sensor_init(cam);
if (rval)
goto err;
if (video_register_device(vfd, VFL_TYPE_GRABBER, video_nr) < 0) {
dev_err(cam->dev, "could not register V4L device\n");
rval = -EBUSY;
goto err;
}
omap24xxcam_poweron_reset(cam);
dev_info(cam->dev, "registered device %s\n",
video_device_node_name(vfd));
return 0;
err:
omap24xxcam_device_unregister(s);
return rval;
}
static void omap24xxcam_device_unregister(struct v4l2_int_device *s)
{
struct omap24xxcam_device *cam = s->u.slave->master->priv;
omap24xxcam_sensor_exit(cam);
if (cam->vfd) {
if (!video_is_registered(cam->vfd)) {
/*
* The device was never registered, so release the
* video_device struct directly.
*/
video_device_release(cam->vfd);
} else {
/*
* The unregister function will release the
* video_device struct as well as
* unregistering it.
*/
video_unregister_device(cam->vfd);
}
cam->vfd = NULL;
}
device_remove_file(cam->dev, &dev_attr_streaming);
cam->sdev = NULL;
}
static struct v4l2_int_master omap24xxcam_master = {
.attach = omap24xxcam_device_register,
.detach = omap24xxcam_device_unregister,
};
static struct v4l2_int_device omap24xxcam = {
.module = THIS_MODULE,
.name = CAM_NAME,
.type = v4l2_int_type_master,
.u = {
.master = &omap24xxcam_master
},
};
/*
*
* Driver initialisation and deinitialisation.
*
*/
static int omap24xxcam_probe(struct platform_device *pdev)
{
struct omap24xxcam_device *cam;
struct resource *mem;
int irq;
cam = kzalloc(sizeof(*cam), GFP_KERNEL);
if (!cam) {
dev_err(&pdev->dev, "could not allocate memory\n");
goto err;
}
platform_set_drvdata(pdev, cam);
cam->dev = &pdev->dev;
/*
* Impose a lower limit on the amount of memory allocated for
* capture. We require at least enough memory to double-buffer
* QVGA (300KB).
*/
if (capture_mem < 320 * 240 * 2 * 2)
capture_mem = 320 * 240 * 2 * 2;
cam->capture_mem = capture_mem;
/* request the mem region for the camera registers */
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!mem) {
dev_err(cam->dev, "no mem resource?\n");
goto err;
}
if (!request_mem_region(mem->start, resource_size(mem), pdev->name)) {
dev_err(cam->dev,
"cannot reserve camera register I/O region\n");
goto err;
}
cam->mmio_base_phys = mem->start;
cam->mmio_size = resource_size(mem);
/* map the region */
cam->mmio_base = ioremap_nocache(cam->mmio_base_phys, cam->mmio_size);
if (!cam->mmio_base) {
dev_err(cam->dev, "cannot map camera register I/O region\n");
goto err;
}
irq = platform_get_irq(pdev, 0);
if (irq <= 0) {
dev_err(cam->dev, "no irq for camera?\n");
goto err;
}
/* install the interrupt service routine */
if (request_irq(irq, omap24xxcam_isr, 0, CAM_NAME, cam)) {
dev_err(cam->dev,
"could not install interrupt service routine\n");
goto err;
}
cam->irq = irq;
if (omap24xxcam_clock_get(cam))
goto err;
INIT_WORK(&cam->sensor_reset_work, omap24xxcam_sensor_reset_work);
mutex_init(&cam->mutex);
spin_lock_init(&cam->core_enable_disable_lock);
omap24xxcam_sgdma_init(&cam->sgdma,
cam->mmio_base + CAMDMA_REG_OFFSET,
omap24xxcam_stalled_dma_reset,
(unsigned long)cam);
omap24xxcam.priv = cam;
if (v4l2_int_device_register(&omap24xxcam))
goto err;
return 0;
err:
omap24xxcam_remove(pdev);
return -ENODEV;
}
static int omap24xxcam_remove(struct platform_device *pdev)
{
struct omap24xxcam_device *cam = platform_get_drvdata(pdev);
if (!cam)
return 0;
if (omap24xxcam.priv != NULL)
v4l2_int_device_unregister(&omap24xxcam);
omap24xxcam.priv = NULL;
omap24xxcam_clock_put(cam);
if (cam->irq) {
free_irq(cam->irq, cam);
cam->irq = 0;
}
if (cam->mmio_base) {
iounmap((void *)cam->mmio_base);
cam->mmio_base = 0;
}
if (cam->mmio_base_phys) {
release_mem_region(cam->mmio_base_phys, cam->mmio_size);
cam->mmio_base_phys = 0;
}
kfree(cam);
return 0;
}
static struct platform_driver omap24xxcam_driver = {
.probe = omap24xxcam_probe,
.remove = omap24xxcam_remove,
#ifdef CONFIG_PM
.suspend = omap24xxcam_suspend,
.resume = omap24xxcam_resume,
#endif
.driver = {
.name = CAM_NAME,
.owner = THIS_MODULE,
},
};
module_platform_driver(omap24xxcam_driver);
MODULE_AUTHOR("Sakari Ailus <sakari.ailus@nokia.com>");
MODULE_DESCRIPTION("OMAP24xx Video for Linux camera driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(OMAP24XXCAM_VERSION);
module_param(video_nr, int, 0);
MODULE_PARM_DESC(video_nr,
"Minor number for video device (-1 ==> auto assign)");
module_param(capture_mem, int, 0);
MODULE_PARM_DESC(capture_mem, "Maximum amount of memory for capture "
"buffers (default 4800kiB)");