2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 22:53:55 +08:00
linux-next/include/net/strparser.h

147 lines
3.8 KiB
C
Raw Normal View History

strparser: Stream parser for messages This patch introduces a utility for parsing application layer protocol messages in a TCP stream. This is a generalization of the mechanism implemented of Kernel Connection Multiplexor. The API includes a context structure, a set of callbacks, utility functions, and a data ready function. A stream parser instance is defined by a strparse structure that is bound to a TCP socket. The function to initialize the structure is: int strp_init(struct strparser *strp, struct sock *csk, struct strp_callbacks *cb); csk is the TCP socket being bound to and cb are the parser callbacks. The upper layer calls strp_tcp_data_ready when data is ready on the lower socket for strparser to process. This should be called from a data_ready callback that is set on the socket: void strp_tcp_data_ready(struct strparser *strp); A parser is bound to a TCP socket by setting data_ready function to strp_tcp_data_ready so that all receive indications on the socket go through the parser. This is assumes that sk_user_data is set to the strparser structure. There are four callbacks. - parse_msg is called to parse the message (returns length or error). - rcv_msg is called when a complete message has been received - read_sock_done is called when data_ready function exits - abort_parser is called to abort the parser The input to parse_msg is an skbuff which contains next message under construction. The backend processing of parse_msg will parse the application layer protocol headers to determine the length of the message in the stream. The possible return values are: >0 : indicates length of successfully parsed message 0 : indicates more data must be received to parse the message -ESTRPIPE : current message should not be processed by the kernel, return control of the socket to userspace which can proceed to read the messages itself other < 0 : Error is parsing, give control back to userspace assuming that synchronzation is lost and the stream is unrecoverable (application expected to close TCP socket) In the case of error return (< 0) strparse will stop the parser and report and error to userspace. The application must deal with the error. To handle the error the strparser is unbound from the TCP socket. If the error indicates that the stream TCP socket is at recoverable point (ESTRPIPE) then the application can read the TCP socket to process the stream. Once the application has dealt with the exceptions in the stream, it may again bind the socket to a strparser to continue data operations. Note that ENODATA may be returned to the application. In this case parse_msg returned -ESTRPIPE, however strparser was unable to maintain synchronization of the stream (i.e. some of the message in question was already read by the parser). strp_pause and strp_unpause are used to provide flow control. For instance, if rcv_msg is called but the upper layer can't immediately consume the message it can hold the message and pause strparser. Signed-off-by: Tom Herbert <tom@herbertland.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-16 05:51:01 +08:00
/*
* Stream Parser
*
* Copyright (c) 2016 Tom Herbert <tom@herbertland.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*/
#ifndef __NET_STRPARSER_H_
#define __NET_STRPARSER_H_
#include <linux/skbuff.h>
#include <net/sock.h>
#define STRP_STATS_ADD(stat, count) ((stat) += (count))
#define STRP_STATS_INCR(stat) ((stat)++)
struct strp_stats {
unsigned long long msgs;
unsigned long long bytes;
unsigned int mem_fail;
unsigned int need_more_hdr;
unsigned int msg_too_big;
unsigned int msg_timeouts;
unsigned int bad_hdr_len;
strparser: Stream parser for messages This patch introduces a utility for parsing application layer protocol messages in a TCP stream. This is a generalization of the mechanism implemented of Kernel Connection Multiplexor. The API includes a context structure, a set of callbacks, utility functions, and a data ready function. A stream parser instance is defined by a strparse structure that is bound to a TCP socket. The function to initialize the structure is: int strp_init(struct strparser *strp, struct sock *csk, struct strp_callbacks *cb); csk is the TCP socket being bound to and cb are the parser callbacks. The upper layer calls strp_tcp_data_ready when data is ready on the lower socket for strparser to process. This should be called from a data_ready callback that is set on the socket: void strp_tcp_data_ready(struct strparser *strp); A parser is bound to a TCP socket by setting data_ready function to strp_tcp_data_ready so that all receive indications on the socket go through the parser. This is assumes that sk_user_data is set to the strparser structure. There are four callbacks. - parse_msg is called to parse the message (returns length or error). - rcv_msg is called when a complete message has been received - read_sock_done is called when data_ready function exits - abort_parser is called to abort the parser The input to parse_msg is an skbuff which contains next message under construction. The backend processing of parse_msg will parse the application layer protocol headers to determine the length of the message in the stream. The possible return values are: >0 : indicates length of successfully parsed message 0 : indicates more data must be received to parse the message -ESTRPIPE : current message should not be processed by the kernel, return control of the socket to userspace which can proceed to read the messages itself other < 0 : Error is parsing, give control back to userspace assuming that synchronzation is lost and the stream is unrecoverable (application expected to close TCP socket) In the case of error return (< 0) strparse will stop the parser and report and error to userspace. The application must deal with the error. To handle the error the strparser is unbound from the TCP socket. If the error indicates that the stream TCP socket is at recoverable point (ESTRPIPE) then the application can read the TCP socket to process the stream. Once the application has dealt with the exceptions in the stream, it may again bind the socket to a strparser to continue data operations. Note that ENODATA may be returned to the application. In this case parse_msg returned -ESTRPIPE, however strparser was unable to maintain synchronization of the stream (i.e. some of the message in question was already read by the parser). strp_pause and strp_unpause are used to provide flow control. For instance, if rcv_msg is called but the upper layer can't immediately consume the message it can hold the message and pause strparser. Signed-off-by: Tom Herbert <tom@herbertland.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-16 05:51:01 +08:00
};
struct strp_aggr_stats {
unsigned long long msgs;
unsigned long long bytes;
unsigned int mem_fail;
unsigned int need_more_hdr;
unsigned int msg_too_big;
unsigned int msg_timeouts;
unsigned int bad_hdr_len;
unsigned int aborts;
unsigned int interrupted;
unsigned int unrecov_intr;
strparser: Stream parser for messages This patch introduces a utility for parsing application layer protocol messages in a TCP stream. This is a generalization of the mechanism implemented of Kernel Connection Multiplexor. The API includes a context structure, a set of callbacks, utility functions, and a data ready function. A stream parser instance is defined by a strparse structure that is bound to a TCP socket. The function to initialize the structure is: int strp_init(struct strparser *strp, struct sock *csk, struct strp_callbacks *cb); csk is the TCP socket being bound to and cb are the parser callbacks. The upper layer calls strp_tcp_data_ready when data is ready on the lower socket for strparser to process. This should be called from a data_ready callback that is set on the socket: void strp_tcp_data_ready(struct strparser *strp); A parser is bound to a TCP socket by setting data_ready function to strp_tcp_data_ready so that all receive indications on the socket go through the parser. This is assumes that sk_user_data is set to the strparser structure. There are four callbacks. - parse_msg is called to parse the message (returns length or error). - rcv_msg is called when a complete message has been received - read_sock_done is called when data_ready function exits - abort_parser is called to abort the parser The input to parse_msg is an skbuff which contains next message under construction. The backend processing of parse_msg will parse the application layer protocol headers to determine the length of the message in the stream. The possible return values are: >0 : indicates length of successfully parsed message 0 : indicates more data must be received to parse the message -ESTRPIPE : current message should not be processed by the kernel, return control of the socket to userspace which can proceed to read the messages itself other < 0 : Error is parsing, give control back to userspace assuming that synchronzation is lost and the stream is unrecoverable (application expected to close TCP socket) In the case of error return (< 0) strparse will stop the parser and report and error to userspace. The application must deal with the error. To handle the error the strparser is unbound from the TCP socket. If the error indicates that the stream TCP socket is at recoverable point (ESTRPIPE) then the application can read the TCP socket to process the stream. Once the application has dealt with the exceptions in the stream, it may again bind the socket to a strparser to continue data operations. Note that ENODATA may be returned to the application. In this case parse_msg returned -ESTRPIPE, however strparser was unable to maintain synchronization of the stream (i.e. some of the message in question was already read by the parser). strp_pause and strp_unpause are used to provide flow control. For instance, if rcv_msg is called but the upper layer can't immediately consume the message it can hold the message and pause strparser. Signed-off-by: Tom Herbert <tom@herbertland.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-16 05:51:01 +08:00
};
struct strparser;
/* Callbacks are called with lock held for the attached socket */
struct strp_callbacks {
int (*parse_msg)(struct strparser *strp, struct sk_buff *skb);
void (*rcv_msg)(struct strparser *strp, struct sk_buff *skb);
int (*read_sock_done)(struct strparser *strp, int err);
void (*abort_parser)(struct strparser *strp, int err);
void (*lock)(struct strparser *strp);
void (*unlock)(struct strparser *strp);
strparser: Stream parser for messages This patch introduces a utility for parsing application layer protocol messages in a TCP stream. This is a generalization of the mechanism implemented of Kernel Connection Multiplexor. The API includes a context structure, a set of callbacks, utility functions, and a data ready function. A stream parser instance is defined by a strparse structure that is bound to a TCP socket. The function to initialize the structure is: int strp_init(struct strparser *strp, struct sock *csk, struct strp_callbacks *cb); csk is the TCP socket being bound to and cb are the parser callbacks. The upper layer calls strp_tcp_data_ready when data is ready on the lower socket for strparser to process. This should be called from a data_ready callback that is set on the socket: void strp_tcp_data_ready(struct strparser *strp); A parser is bound to a TCP socket by setting data_ready function to strp_tcp_data_ready so that all receive indications on the socket go through the parser. This is assumes that sk_user_data is set to the strparser structure. There are four callbacks. - parse_msg is called to parse the message (returns length or error). - rcv_msg is called when a complete message has been received - read_sock_done is called when data_ready function exits - abort_parser is called to abort the parser The input to parse_msg is an skbuff which contains next message under construction. The backend processing of parse_msg will parse the application layer protocol headers to determine the length of the message in the stream. The possible return values are: >0 : indicates length of successfully parsed message 0 : indicates more data must be received to parse the message -ESTRPIPE : current message should not be processed by the kernel, return control of the socket to userspace which can proceed to read the messages itself other < 0 : Error is parsing, give control back to userspace assuming that synchronzation is lost and the stream is unrecoverable (application expected to close TCP socket) In the case of error return (< 0) strparse will stop the parser and report and error to userspace. The application must deal with the error. To handle the error the strparser is unbound from the TCP socket. If the error indicates that the stream TCP socket is at recoverable point (ESTRPIPE) then the application can read the TCP socket to process the stream. Once the application has dealt with the exceptions in the stream, it may again bind the socket to a strparser to continue data operations. Note that ENODATA may be returned to the application. In this case parse_msg returned -ESTRPIPE, however strparser was unable to maintain synchronization of the stream (i.e. some of the message in question was already read by the parser). strp_pause and strp_unpause are used to provide flow control. For instance, if rcv_msg is called but the upper layer can't immediately consume the message it can hold the message and pause strparser. Signed-off-by: Tom Herbert <tom@herbertland.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-16 05:51:01 +08:00
};
struct strp_msg {
strparser: Stream parser for messages This patch introduces a utility for parsing application layer protocol messages in a TCP stream. This is a generalization of the mechanism implemented of Kernel Connection Multiplexor. The API includes a context structure, a set of callbacks, utility functions, and a data ready function. A stream parser instance is defined by a strparse structure that is bound to a TCP socket. The function to initialize the structure is: int strp_init(struct strparser *strp, struct sock *csk, struct strp_callbacks *cb); csk is the TCP socket being bound to and cb are the parser callbacks. The upper layer calls strp_tcp_data_ready when data is ready on the lower socket for strparser to process. This should be called from a data_ready callback that is set on the socket: void strp_tcp_data_ready(struct strparser *strp); A parser is bound to a TCP socket by setting data_ready function to strp_tcp_data_ready so that all receive indications on the socket go through the parser. This is assumes that sk_user_data is set to the strparser structure. There are four callbacks. - parse_msg is called to parse the message (returns length or error). - rcv_msg is called when a complete message has been received - read_sock_done is called when data_ready function exits - abort_parser is called to abort the parser The input to parse_msg is an skbuff which contains next message under construction. The backend processing of parse_msg will parse the application layer protocol headers to determine the length of the message in the stream. The possible return values are: >0 : indicates length of successfully parsed message 0 : indicates more data must be received to parse the message -ESTRPIPE : current message should not be processed by the kernel, return control of the socket to userspace which can proceed to read the messages itself other < 0 : Error is parsing, give control back to userspace assuming that synchronzation is lost and the stream is unrecoverable (application expected to close TCP socket) In the case of error return (< 0) strparse will stop the parser and report and error to userspace. The application must deal with the error. To handle the error the strparser is unbound from the TCP socket. If the error indicates that the stream TCP socket is at recoverable point (ESTRPIPE) then the application can read the TCP socket to process the stream. Once the application has dealt with the exceptions in the stream, it may again bind the socket to a strparser to continue data operations. Note that ENODATA may be returned to the application. In this case parse_msg returned -ESTRPIPE, however strparser was unable to maintain synchronization of the stream (i.e. some of the message in question was already read by the parser). strp_pause and strp_unpause are used to provide flow control. For instance, if rcv_msg is called but the upper layer can't immediately consume the message it can hold the message and pause strparser. Signed-off-by: Tom Herbert <tom@herbertland.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-16 05:51:01 +08:00
int full_len;
int offset;
};
static inline struct strp_msg *strp_msg(struct sk_buff *skb)
strparser: Stream parser for messages This patch introduces a utility for parsing application layer protocol messages in a TCP stream. This is a generalization of the mechanism implemented of Kernel Connection Multiplexor. The API includes a context structure, a set of callbacks, utility functions, and a data ready function. A stream parser instance is defined by a strparse structure that is bound to a TCP socket. The function to initialize the structure is: int strp_init(struct strparser *strp, struct sock *csk, struct strp_callbacks *cb); csk is the TCP socket being bound to and cb are the parser callbacks. The upper layer calls strp_tcp_data_ready when data is ready on the lower socket for strparser to process. This should be called from a data_ready callback that is set on the socket: void strp_tcp_data_ready(struct strparser *strp); A parser is bound to a TCP socket by setting data_ready function to strp_tcp_data_ready so that all receive indications on the socket go through the parser. This is assumes that sk_user_data is set to the strparser structure. There are four callbacks. - parse_msg is called to parse the message (returns length or error). - rcv_msg is called when a complete message has been received - read_sock_done is called when data_ready function exits - abort_parser is called to abort the parser The input to parse_msg is an skbuff which contains next message under construction. The backend processing of parse_msg will parse the application layer protocol headers to determine the length of the message in the stream. The possible return values are: >0 : indicates length of successfully parsed message 0 : indicates more data must be received to parse the message -ESTRPIPE : current message should not be processed by the kernel, return control of the socket to userspace which can proceed to read the messages itself other < 0 : Error is parsing, give control back to userspace assuming that synchronzation is lost and the stream is unrecoverable (application expected to close TCP socket) In the case of error return (< 0) strparse will stop the parser and report and error to userspace. The application must deal with the error. To handle the error the strparser is unbound from the TCP socket. If the error indicates that the stream TCP socket is at recoverable point (ESTRPIPE) then the application can read the TCP socket to process the stream. Once the application has dealt with the exceptions in the stream, it may again bind the socket to a strparser to continue data operations. Note that ENODATA may be returned to the application. In this case parse_msg returned -ESTRPIPE, however strparser was unable to maintain synchronization of the stream (i.e. some of the message in question was already read by the parser). strp_pause and strp_unpause are used to provide flow control. For instance, if rcv_msg is called but the upper layer can't immediately consume the message it can hold the message and pause strparser. Signed-off-by: Tom Herbert <tom@herbertland.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-16 05:51:01 +08:00
{
return (struct strp_msg *)((void *)skb->cb +
strparser: Stream parser for messages This patch introduces a utility for parsing application layer protocol messages in a TCP stream. This is a generalization of the mechanism implemented of Kernel Connection Multiplexor. The API includes a context structure, a set of callbacks, utility functions, and a data ready function. A stream parser instance is defined by a strparse structure that is bound to a TCP socket. The function to initialize the structure is: int strp_init(struct strparser *strp, struct sock *csk, struct strp_callbacks *cb); csk is the TCP socket being bound to and cb are the parser callbacks. The upper layer calls strp_tcp_data_ready when data is ready on the lower socket for strparser to process. This should be called from a data_ready callback that is set on the socket: void strp_tcp_data_ready(struct strparser *strp); A parser is bound to a TCP socket by setting data_ready function to strp_tcp_data_ready so that all receive indications on the socket go through the parser. This is assumes that sk_user_data is set to the strparser structure. There are four callbacks. - parse_msg is called to parse the message (returns length or error). - rcv_msg is called when a complete message has been received - read_sock_done is called when data_ready function exits - abort_parser is called to abort the parser The input to parse_msg is an skbuff which contains next message under construction. The backend processing of parse_msg will parse the application layer protocol headers to determine the length of the message in the stream. The possible return values are: >0 : indicates length of successfully parsed message 0 : indicates more data must be received to parse the message -ESTRPIPE : current message should not be processed by the kernel, return control of the socket to userspace which can proceed to read the messages itself other < 0 : Error is parsing, give control back to userspace assuming that synchronzation is lost and the stream is unrecoverable (application expected to close TCP socket) In the case of error return (< 0) strparse will stop the parser and report and error to userspace. The application must deal with the error. To handle the error the strparser is unbound from the TCP socket. If the error indicates that the stream TCP socket is at recoverable point (ESTRPIPE) then the application can read the TCP socket to process the stream. Once the application has dealt with the exceptions in the stream, it may again bind the socket to a strparser to continue data operations. Note that ENODATA may be returned to the application. In this case parse_msg returned -ESTRPIPE, however strparser was unable to maintain synchronization of the stream (i.e. some of the message in question was already read by the parser). strp_pause and strp_unpause are used to provide flow control. For instance, if rcv_msg is called but the upper layer can't immediately consume the message it can hold the message and pause strparser. Signed-off-by: Tom Herbert <tom@herbertland.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-16 05:51:01 +08:00
offsetof(struct qdisc_skb_cb, data));
}
/* Structure for an attached lower socket */
struct strparser {
struct sock *sk;
u32 stopped : 1;
u32 paused : 1;
u32 aborted : 1;
u32 interrupted : 1;
u32 unrecov_intr : 1;
struct sk_buff **skb_nextp;
struct sk_buff *skb_head;
unsigned int need_bytes;
struct delayed_work msg_timer_work;
struct work_struct work;
strparser: Stream parser for messages This patch introduces a utility for parsing application layer protocol messages in a TCP stream. This is a generalization of the mechanism implemented of Kernel Connection Multiplexor. The API includes a context structure, a set of callbacks, utility functions, and a data ready function. A stream parser instance is defined by a strparse structure that is bound to a TCP socket. The function to initialize the structure is: int strp_init(struct strparser *strp, struct sock *csk, struct strp_callbacks *cb); csk is the TCP socket being bound to and cb are the parser callbacks. The upper layer calls strp_tcp_data_ready when data is ready on the lower socket for strparser to process. This should be called from a data_ready callback that is set on the socket: void strp_tcp_data_ready(struct strparser *strp); A parser is bound to a TCP socket by setting data_ready function to strp_tcp_data_ready so that all receive indications on the socket go through the parser. This is assumes that sk_user_data is set to the strparser structure. There are four callbacks. - parse_msg is called to parse the message (returns length or error). - rcv_msg is called when a complete message has been received - read_sock_done is called when data_ready function exits - abort_parser is called to abort the parser The input to parse_msg is an skbuff which contains next message under construction. The backend processing of parse_msg will parse the application layer protocol headers to determine the length of the message in the stream. The possible return values are: >0 : indicates length of successfully parsed message 0 : indicates more data must be received to parse the message -ESTRPIPE : current message should not be processed by the kernel, return control of the socket to userspace which can proceed to read the messages itself other < 0 : Error is parsing, give control back to userspace assuming that synchronzation is lost and the stream is unrecoverable (application expected to close TCP socket) In the case of error return (< 0) strparse will stop the parser and report and error to userspace. The application must deal with the error. To handle the error the strparser is unbound from the TCP socket. If the error indicates that the stream TCP socket is at recoverable point (ESTRPIPE) then the application can read the TCP socket to process the stream. Once the application has dealt with the exceptions in the stream, it may again bind the socket to a strparser to continue data operations. Note that ENODATA may be returned to the application. In this case parse_msg returned -ESTRPIPE, however strparser was unable to maintain synchronization of the stream (i.e. some of the message in question was already read by the parser). strp_pause and strp_unpause are used to provide flow control. For instance, if rcv_msg is called but the upper layer can't immediately consume the message it can hold the message and pause strparser. Signed-off-by: Tom Herbert <tom@herbertland.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-16 05:51:01 +08:00
struct strp_stats stats;
struct strp_callbacks cb;
};
/* Must be called with lock held for attached socket */
static inline void strp_pause(struct strparser *strp)
{
strp->paused = 1;
strparser: Stream parser for messages This patch introduces a utility for parsing application layer protocol messages in a TCP stream. This is a generalization of the mechanism implemented of Kernel Connection Multiplexor. The API includes a context structure, a set of callbacks, utility functions, and a data ready function. A stream parser instance is defined by a strparse structure that is bound to a TCP socket. The function to initialize the structure is: int strp_init(struct strparser *strp, struct sock *csk, struct strp_callbacks *cb); csk is the TCP socket being bound to and cb are the parser callbacks. The upper layer calls strp_tcp_data_ready when data is ready on the lower socket for strparser to process. This should be called from a data_ready callback that is set on the socket: void strp_tcp_data_ready(struct strparser *strp); A parser is bound to a TCP socket by setting data_ready function to strp_tcp_data_ready so that all receive indications on the socket go through the parser. This is assumes that sk_user_data is set to the strparser structure. There are four callbacks. - parse_msg is called to parse the message (returns length or error). - rcv_msg is called when a complete message has been received - read_sock_done is called when data_ready function exits - abort_parser is called to abort the parser The input to parse_msg is an skbuff which contains next message under construction. The backend processing of parse_msg will parse the application layer protocol headers to determine the length of the message in the stream. The possible return values are: >0 : indicates length of successfully parsed message 0 : indicates more data must be received to parse the message -ESTRPIPE : current message should not be processed by the kernel, return control of the socket to userspace which can proceed to read the messages itself other < 0 : Error is parsing, give control back to userspace assuming that synchronzation is lost and the stream is unrecoverable (application expected to close TCP socket) In the case of error return (< 0) strparse will stop the parser and report and error to userspace. The application must deal with the error. To handle the error the strparser is unbound from the TCP socket. If the error indicates that the stream TCP socket is at recoverable point (ESTRPIPE) then the application can read the TCP socket to process the stream. Once the application has dealt with the exceptions in the stream, it may again bind the socket to a strparser to continue data operations. Note that ENODATA may be returned to the application. In this case parse_msg returned -ESTRPIPE, however strparser was unable to maintain synchronization of the stream (i.e. some of the message in question was already read by the parser). strp_pause and strp_unpause are used to provide flow control. For instance, if rcv_msg is called but the upper layer can't immediately consume the message it can hold the message and pause strparser. Signed-off-by: Tom Herbert <tom@herbertland.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-16 05:51:01 +08:00
}
/* May be called without holding lock for attached socket */
void strp_unpause(struct strparser *strp);
strparser: Stream parser for messages This patch introduces a utility for parsing application layer protocol messages in a TCP stream. This is a generalization of the mechanism implemented of Kernel Connection Multiplexor. The API includes a context structure, a set of callbacks, utility functions, and a data ready function. A stream parser instance is defined by a strparse structure that is bound to a TCP socket. The function to initialize the structure is: int strp_init(struct strparser *strp, struct sock *csk, struct strp_callbacks *cb); csk is the TCP socket being bound to and cb are the parser callbacks. The upper layer calls strp_tcp_data_ready when data is ready on the lower socket for strparser to process. This should be called from a data_ready callback that is set on the socket: void strp_tcp_data_ready(struct strparser *strp); A parser is bound to a TCP socket by setting data_ready function to strp_tcp_data_ready so that all receive indications on the socket go through the parser. This is assumes that sk_user_data is set to the strparser structure. There are four callbacks. - parse_msg is called to parse the message (returns length or error). - rcv_msg is called when a complete message has been received - read_sock_done is called when data_ready function exits - abort_parser is called to abort the parser The input to parse_msg is an skbuff which contains next message under construction. The backend processing of parse_msg will parse the application layer protocol headers to determine the length of the message in the stream. The possible return values are: >0 : indicates length of successfully parsed message 0 : indicates more data must be received to parse the message -ESTRPIPE : current message should not be processed by the kernel, return control of the socket to userspace which can proceed to read the messages itself other < 0 : Error is parsing, give control back to userspace assuming that synchronzation is lost and the stream is unrecoverable (application expected to close TCP socket) In the case of error return (< 0) strparse will stop the parser and report and error to userspace. The application must deal with the error. To handle the error the strparser is unbound from the TCP socket. If the error indicates that the stream TCP socket is at recoverable point (ESTRPIPE) then the application can read the TCP socket to process the stream. Once the application has dealt with the exceptions in the stream, it may again bind the socket to a strparser to continue data operations. Note that ENODATA may be returned to the application. In this case parse_msg returned -ESTRPIPE, however strparser was unable to maintain synchronization of the stream (i.e. some of the message in question was already read by the parser). strp_pause and strp_unpause are used to provide flow control. For instance, if rcv_msg is called but the upper layer can't immediately consume the message it can hold the message and pause strparser. Signed-off-by: Tom Herbert <tom@herbertland.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-16 05:51:01 +08:00
static inline void save_strp_stats(struct strparser *strp,
struct strp_aggr_stats *agg_stats)
{
/* Save psock statistics in the mux when psock is being unattached. */
#define SAVE_PSOCK_STATS(_stat) (agg_stats->_stat += \
strp->stats._stat)
SAVE_PSOCK_STATS(msgs);
SAVE_PSOCK_STATS(bytes);
SAVE_PSOCK_STATS(mem_fail);
SAVE_PSOCK_STATS(need_more_hdr);
SAVE_PSOCK_STATS(msg_too_big);
SAVE_PSOCK_STATS(msg_timeouts);
SAVE_PSOCK_STATS(bad_hdr_len);
strparser: Stream parser for messages This patch introduces a utility for parsing application layer protocol messages in a TCP stream. This is a generalization of the mechanism implemented of Kernel Connection Multiplexor. The API includes a context structure, a set of callbacks, utility functions, and a data ready function. A stream parser instance is defined by a strparse structure that is bound to a TCP socket. The function to initialize the structure is: int strp_init(struct strparser *strp, struct sock *csk, struct strp_callbacks *cb); csk is the TCP socket being bound to and cb are the parser callbacks. The upper layer calls strp_tcp_data_ready when data is ready on the lower socket for strparser to process. This should be called from a data_ready callback that is set on the socket: void strp_tcp_data_ready(struct strparser *strp); A parser is bound to a TCP socket by setting data_ready function to strp_tcp_data_ready so that all receive indications on the socket go through the parser. This is assumes that sk_user_data is set to the strparser structure. There are four callbacks. - parse_msg is called to parse the message (returns length or error). - rcv_msg is called when a complete message has been received - read_sock_done is called when data_ready function exits - abort_parser is called to abort the parser The input to parse_msg is an skbuff which contains next message under construction. The backend processing of parse_msg will parse the application layer protocol headers to determine the length of the message in the stream. The possible return values are: >0 : indicates length of successfully parsed message 0 : indicates more data must be received to parse the message -ESTRPIPE : current message should not be processed by the kernel, return control of the socket to userspace which can proceed to read the messages itself other < 0 : Error is parsing, give control back to userspace assuming that synchronzation is lost and the stream is unrecoverable (application expected to close TCP socket) In the case of error return (< 0) strparse will stop the parser and report and error to userspace. The application must deal with the error. To handle the error the strparser is unbound from the TCP socket. If the error indicates that the stream TCP socket is at recoverable point (ESTRPIPE) then the application can read the TCP socket to process the stream. Once the application has dealt with the exceptions in the stream, it may again bind the socket to a strparser to continue data operations. Note that ENODATA may be returned to the application. In this case parse_msg returned -ESTRPIPE, however strparser was unable to maintain synchronization of the stream (i.e. some of the message in question was already read by the parser). strp_pause and strp_unpause are used to provide flow control. For instance, if rcv_msg is called but the upper layer can't immediately consume the message it can hold the message and pause strparser. Signed-off-by: Tom Herbert <tom@herbertland.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-16 05:51:01 +08:00
#undef SAVE_PSOCK_STATS
if (strp->aborted)
agg_stats->aborts++;
if (strp->interrupted)
agg_stats->interrupted++;
if (strp->unrecov_intr)
agg_stats->unrecov_intr++;
strparser: Stream parser for messages This patch introduces a utility for parsing application layer protocol messages in a TCP stream. This is a generalization of the mechanism implemented of Kernel Connection Multiplexor. The API includes a context structure, a set of callbacks, utility functions, and a data ready function. A stream parser instance is defined by a strparse structure that is bound to a TCP socket. The function to initialize the structure is: int strp_init(struct strparser *strp, struct sock *csk, struct strp_callbacks *cb); csk is the TCP socket being bound to and cb are the parser callbacks. The upper layer calls strp_tcp_data_ready when data is ready on the lower socket for strparser to process. This should be called from a data_ready callback that is set on the socket: void strp_tcp_data_ready(struct strparser *strp); A parser is bound to a TCP socket by setting data_ready function to strp_tcp_data_ready so that all receive indications on the socket go through the parser. This is assumes that sk_user_data is set to the strparser structure. There are four callbacks. - parse_msg is called to parse the message (returns length or error). - rcv_msg is called when a complete message has been received - read_sock_done is called when data_ready function exits - abort_parser is called to abort the parser The input to parse_msg is an skbuff which contains next message under construction. The backend processing of parse_msg will parse the application layer protocol headers to determine the length of the message in the stream. The possible return values are: >0 : indicates length of successfully parsed message 0 : indicates more data must be received to parse the message -ESTRPIPE : current message should not be processed by the kernel, return control of the socket to userspace which can proceed to read the messages itself other < 0 : Error is parsing, give control back to userspace assuming that synchronzation is lost and the stream is unrecoverable (application expected to close TCP socket) In the case of error return (< 0) strparse will stop the parser and report and error to userspace. The application must deal with the error. To handle the error the strparser is unbound from the TCP socket. If the error indicates that the stream TCP socket is at recoverable point (ESTRPIPE) then the application can read the TCP socket to process the stream. Once the application has dealt with the exceptions in the stream, it may again bind the socket to a strparser to continue data operations. Note that ENODATA may be returned to the application. In this case parse_msg returned -ESTRPIPE, however strparser was unable to maintain synchronization of the stream (i.e. some of the message in question was already read by the parser). strp_pause and strp_unpause are used to provide flow control. For instance, if rcv_msg is called but the upper layer can't immediately consume the message it can hold the message and pause strparser. Signed-off-by: Tom Herbert <tom@herbertland.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-16 05:51:01 +08:00
}
static inline void aggregate_strp_stats(struct strp_aggr_stats *stats,
struct strp_aggr_stats *agg_stats)
{
#define SAVE_PSOCK_STATS(_stat) (agg_stats->_stat += stats->_stat)
SAVE_PSOCK_STATS(msgs);
SAVE_PSOCK_STATS(bytes);
SAVE_PSOCK_STATS(mem_fail);
SAVE_PSOCK_STATS(need_more_hdr);
SAVE_PSOCK_STATS(msg_too_big);
SAVE_PSOCK_STATS(msg_timeouts);
SAVE_PSOCK_STATS(bad_hdr_len);
SAVE_PSOCK_STATS(aborts);
SAVE_PSOCK_STATS(interrupted);
SAVE_PSOCK_STATS(unrecov_intr);
strparser: Stream parser for messages This patch introduces a utility for parsing application layer protocol messages in a TCP stream. This is a generalization of the mechanism implemented of Kernel Connection Multiplexor. The API includes a context structure, a set of callbacks, utility functions, and a data ready function. A stream parser instance is defined by a strparse structure that is bound to a TCP socket. The function to initialize the structure is: int strp_init(struct strparser *strp, struct sock *csk, struct strp_callbacks *cb); csk is the TCP socket being bound to and cb are the parser callbacks. The upper layer calls strp_tcp_data_ready when data is ready on the lower socket for strparser to process. This should be called from a data_ready callback that is set on the socket: void strp_tcp_data_ready(struct strparser *strp); A parser is bound to a TCP socket by setting data_ready function to strp_tcp_data_ready so that all receive indications on the socket go through the parser. This is assumes that sk_user_data is set to the strparser structure. There are four callbacks. - parse_msg is called to parse the message (returns length or error). - rcv_msg is called when a complete message has been received - read_sock_done is called when data_ready function exits - abort_parser is called to abort the parser The input to parse_msg is an skbuff which contains next message under construction. The backend processing of parse_msg will parse the application layer protocol headers to determine the length of the message in the stream. The possible return values are: >0 : indicates length of successfully parsed message 0 : indicates more data must be received to parse the message -ESTRPIPE : current message should not be processed by the kernel, return control of the socket to userspace which can proceed to read the messages itself other < 0 : Error is parsing, give control back to userspace assuming that synchronzation is lost and the stream is unrecoverable (application expected to close TCP socket) In the case of error return (< 0) strparse will stop the parser and report and error to userspace. The application must deal with the error. To handle the error the strparser is unbound from the TCP socket. If the error indicates that the stream TCP socket is at recoverable point (ESTRPIPE) then the application can read the TCP socket to process the stream. Once the application has dealt with the exceptions in the stream, it may again bind the socket to a strparser to continue data operations. Note that ENODATA may be returned to the application. In this case parse_msg returned -ESTRPIPE, however strparser was unable to maintain synchronization of the stream (i.e. some of the message in question was already read by the parser). strp_pause and strp_unpause are used to provide flow control. For instance, if rcv_msg is called but the upper layer can't immediately consume the message it can hold the message and pause strparser. Signed-off-by: Tom Herbert <tom@herbertland.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-16 05:51:01 +08:00
#undef SAVE_PSOCK_STATS
}
void strp_done(struct strparser *strp);
void strp_stop(struct strparser *strp);
void strp_check_rcv(struct strparser *strp);
int strp_init(struct strparser *strp, struct sock *sk,
strparser: initialize all callbacks commit bbb03029a899 ("strparser: Generalize strparser") added more function pointers to 'struct strp_callbacks'; however, kcm_attach() was not updated to initialize them. This could cause the ->lock() and/or ->unlock() function pointers to be set to garbage values, causing a crash in strp_work(). Fix the bug by moving the callback structs into static memory, so unspecified members are zeroed. Also constify them while we're at it. This bug was found by syzkaller, which encountered the following splat: IP: 0x55 PGD 3b1ca067 P4D 3b1ca067 PUD 3b12f067 PMD 0 Oops: 0010 [#1] SMP KASAN Dumping ftrace buffer: (ftrace buffer empty) Modules linked in: CPU: 2 PID: 1194 Comm: kworker/u8:1 Not tainted 4.13.0-rc4-next-20170811 #2 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 Workqueue: kstrp strp_work task: ffff88006bb0e480 task.stack: ffff88006bb10000 RIP: 0010:0x55 RSP: 0018:ffff88006bb17540 EFLAGS: 00010246 RAX: dffffc0000000000 RBX: ffff88006ce4bd60 RCX: 0000000000000000 RDX: 1ffff1000d9c97bd RSI: 0000000000000000 RDI: ffff88006ce4bc48 RBP: ffff88006bb17558 R08: ffffffff81467ab2 R09: 0000000000000000 R10: ffff88006bb17438 R11: ffff88006bb17940 R12: ffff88006ce4bc48 R13: ffff88003c683018 R14: ffff88006bb17980 R15: ffff88003c683000 FS: 0000000000000000(0000) GS:ffff88006de00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000055 CR3: 000000003c145000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: process_one_work+0xbf3/0x1bc0 kernel/workqueue.c:2098 worker_thread+0x223/0x1860 kernel/workqueue.c:2233 kthread+0x35e/0x430 kernel/kthread.c:231 ret_from_fork+0x2a/0x40 arch/x86/entry/entry_64.S:431 Code: Bad RIP value. RIP: 0x55 RSP: ffff88006bb17540 CR2: 0000000000000055 ---[ end trace f0e4920047069cee ]--- Here is a C reproducer (requires CONFIG_BPF_SYSCALL=y and CONFIG_AF_KCM=y): #include <linux/bpf.h> #include <linux/kcm.h> #include <linux/types.h> #include <stdint.h> #include <sys/ioctl.h> #include <sys/socket.h> #include <sys/syscall.h> #include <unistd.h> static const struct bpf_insn bpf_insns[3] = { { .code = 0xb7 }, /* BPF_MOV64_IMM(0, 0) */ { .code = 0x95 }, /* BPF_EXIT_INSN() */ }; static const union bpf_attr bpf_attr = { .prog_type = 1, .insn_cnt = 2, .insns = (uintptr_t)&bpf_insns, .license = (uintptr_t)"", }; int main(void) { int bpf_fd = syscall(__NR_bpf, BPF_PROG_LOAD, &bpf_attr, sizeof(bpf_attr)); int inet_fd = socket(AF_INET, SOCK_STREAM, 0); int kcm_fd = socket(AF_KCM, SOCK_DGRAM, 0); ioctl(kcm_fd, SIOCKCMATTACH, &(struct kcm_attach) { .fd = inet_fd, .bpf_fd = bpf_fd }); } Fixes: bbb03029a899 ("strparser: Generalize strparser") Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Tom Herbert <tom@quantonium.net> Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-25 05:38:51 +08:00
const struct strp_callbacks *cb);
void strp_data_ready(struct strparser *strp);
int strp_process(struct strparser *strp, struct sk_buff *orig_skb,
unsigned int orig_offset, size_t orig_len,
size_t max_msg_size, long timeo);
strparser: Stream parser for messages This patch introduces a utility for parsing application layer protocol messages in a TCP stream. This is a generalization of the mechanism implemented of Kernel Connection Multiplexor. The API includes a context structure, a set of callbacks, utility functions, and a data ready function. A stream parser instance is defined by a strparse structure that is bound to a TCP socket. The function to initialize the structure is: int strp_init(struct strparser *strp, struct sock *csk, struct strp_callbacks *cb); csk is the TCP socket being bound to and cb are the parser callbacks. The upper layer calls strp_tcp_data_ready when data is ready on the lower socket for strparser to process. This should be called from a data_ready callback that is set on the socket: void strp_tcp_data_ready(struct strparser *strp); A parser is bound to a TCP socket by setting data_ready function to strp_tcp_data_ready so that all receive indications on the socket go through the parser. This is assumes that sk_user_data is set to the strparser structure. There are four callbacks. - parse_msg is called to parse the message (returns length or error). - rcv_msg is called when a complete message has been received - read_sock_done is called when data_ready function exits - abort_parser is called to abort the parser The input to parse_msg is an skbuff which contains next message under construction. The backend processing of parse_msg will parse the application layer protocol headers to determine the length of the message in the stream. The possible return values are: >0 : indicates length of successfully parsed message 0 : indicates more data must be received to parse the message -ESTRPIPE : current message should not be processed by the kernel, return control of the socket to userspace which can proceed to read the messages itself other < 0 : Error is parsing, give control back to userspace assuming that synchronzation is lost and the stream is unrecoverable (application expected to close TCP socket) In the case of error return (< 0) strparse will stop the parser and report and error to userspace. The application must deal with the error. To handle the error the strparser is unbound from the TCP socket. If the error indicates that the stream TCP socket is at recoverable point (ESTRPIPE) then the application can read the TCP socket to process the stream. Once the application has dealt with the exceptions in the stream, it may again bind the socket to a strparser to continue data operations. Note that ENODATA may be returned to the application. In this case parse_msg returned -ESTRPIPE, however strparser was unable to maintain synchronization of the stream (i.e. some of the message in question was already read by the parser). strp_pause and strp_unpause are used to provide flow control. For instance, if rcv_msg is called but the upper layer can't immediately consume the message it can hold the message and pause strparser. Signed-off-by: Tom Herbert <tom@herbertland.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-16 05:51:01 +08:00
#endif /* __NET_STRPARSER_H_ */