2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-29 23:53:55 +08:00
linux-next/drivers/power/bq25890_charger.c

995 lines
25 KiB
C
Raw Normal View History

/*
* TI BQ25890 charger driver
*
* Copyright (C) 2015 Intel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/power_supply.h>
#include <linux/regmap.h>
#include <linux/types.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/usb/phy.h>
#include <linux/acpi.h>
#include <linux/of.h>
#define BQ25890_MANUFACTURER "Texas Instruments"
#define BQ25890_IRQ_PIN "bq25890_irq"
#define BQ25890_ID 3
enum bq25890_fields {
F_EN_HIZ, F_EN_ILIM, F_IILIM, /* Reg00 */
F_BHOT, F_BCOLD, F_VINDPM_OFS, /* Reg01 */
F_CONV_START, F_CONV_RATE, F_BOOSTF, F_ICO_EN,
F_HVDCP_EN, F_MAXC_EN, F_FORCE_DPM, F_AUTO_DPDM_EN, /* Reg02 */
F_BAT_LOAD_EN, F_WD_RST, F_OTG_CFG, F_CHG_CFG, F_SYSVMIN, /* Reg03 */
F_PUMPX_EN, F_ICHG, /* Reg04 */
F_IPRECHG, F_ITERM, /* Reg05 */
F_VREG, F_BATLOWV, F_VRECHG, /* Reg06 */
F_TERM_EN, F_STAT_DIS, F_WD, F_TMR_EN, F_CHG_TMR,
F_JEITA_ISET, /* Reg07 */
F_BATCMP, F_VCLAMP, F_TREG, /* Reg08 */
F_FORCE_ICO, F_TMR2X_EN, F_BATFET_DIS, F_JEITA_VSET,
F_BATFET_DLY, F_BATFET_RST_EN, F_PUMPX_UP, F_PUMPX_DN, /* Reg09 */
F_BOOSTV, F_BOOSTI, /* Reg0A */
F_VBUS_STAT, F_CHG_STAT, F_PG_STAT, F_SDP_STAT, F_VSYS_STAT, /* Reg0B */
F_WD_FAULT, F_BOOST_FAULT, F_CHG_FAULT, F_BAT_FAULT,
F_NTC_FAULT, /* Reg0C */
F_FORCE_VINDPM, F_VINDPM, /* Reg0D */
F_THERM_STAT, F_BATV, /* Reg0E */
F_SYSV, /* Reg0F */
F_TSPCT, /* Reg10 */
F_VBUS_GD, F_VBUSV, /* Reg11 */
F_ICHGR, /* Reg12 */
F_VDPM_STAT, F_IDPM_STAT, F_IDPM_LIM, /* Reg13 */
F_REG_RST, F_ICO_OPTIMIZED, F_PN, F_TS_PROFILE, F_DEV_REV, /* Reg14 */
F_MAX_FIELDS
};
/* initial field values, converted to register values */
struct bq25890_init_data {
u8 ichg; /* charge current */
u8 vreg; /* regulation voltage */
u8 iterm; /* termination current */
u8 iprechg; /* precharge current */
u8 sysvmin; /* minimum system voltage limit */
u8 boostv; /* boost regulation voltage */
u8 boosti; /* boost current limit */
u8 boostf; /* boost frequency */
u8 ilim_en; /* enable ILIM pin */
u8 treg; /* thermal regulation threshold */
};
struct bq25890_state {
u8 online;
u8 chrg_status;
u8 chrg_fault;
u8 vsys_status;
u8 boost_fault;
u8 bat_fault;
};
struct bq25890_device {
struct i2c_client *client;
struct device *dev;
struct power_supply *charger;
struct usb_phy *usb_phy;
struct notifier_block usb_nb;
struct work_struct usb_work;
unsigned long usb_event;
struct regmap *rmap;
struct regmap_field *rmap_fields[F_MAX_FIELDS];
int chip_id;
struct bq25890_init_data init_data;
struct bq25890_state state;
struct mutex lock; /* protect state data */
};
static const struct regmap_range bq25890_readonly_reg_ranges[] = {
regmap_reg_range(0x0b, 0x0c),
regmap_reg_range(0x0e, 0x13),
};
static const struct regmap_access_table bq25890_writeable_regs = {
.no_ranges = bq25890_readonly_reg_ranges,
.n_no_ranges = ARRAY_SIZE(bq25890_readonly_reg_ranges),
};
static const struct regmap_range bq25890_volatile_reg_ranges[] = {
regmap_reg_range(0x00, 0x00),
regmap_reg_range(0x09, 0x09),
regmap_reg_range(0x0b, 0x0c),
regmap_reg_range(0x0e, 0x14),
};
static const struct regmap_access_table bq25890_volatile_regs = {
.yes_ranges = bq25890_volatile_reg_ranges,
.n_yes_ranges = ARRAY_SIZE(bq25890_volatile_reg_ranges),
};
static const struct regmap_config bq25890_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = 0x14,
.cache_type = REGCACHE_RBTREE,
.wr_table = &bq25890_writeable_regs,
.volatile_table = &bq25890_volatile_regs,
};
static const struct reg_field bq25890_reg_fields[] = {
/* REG00 */
[F_EN_HIZ] = REG_FIELD(0x00, 7, 7),
[F_EN_ILIM] = REG_FIELD(0x00, 6, 6),
[F_IILIM] = REG_FIELD(0x00, 0, 5),
/* REG01 */
[F_BHOT] = REG_FIELD(0x01, 6, 7),
[F_BCOLD] = REG_FIELD(0x01, 5, 5),
[F_VINDPM_OFS] = REG_FIELD(0x01, 0, 4),
/* REG02 */
[F_CONV_START] = REG_FIELD(0x02, 7, 7),
[F_CONV_RATE] = REG_FIELD(0x02, 6, 6),
[F_BOOSTF] = REG_FIELD(0x02, 5, 5),
[F_ICO_EN] = REG_FIELD(0x02, 4, 4),
[F_HVDCP_EN] = REG_FIELD(0x02, 3, 3),
[F_MAXC_EN] = REG_FIELD(0x02, 2, 2),
[F_FORCE_DPM] = REG_FIELD(0x02, 1, 1),
[F_AUTO_DPDM_EN] = REG_FIELD(0x02, 0, 0),
/* REG03 */
[F_BAT_LOAD_EN] = REG_FIELD(0x03, 7, 7),
[F_WD_RST] = REG_FIELD(0x03, 6, 6),
[F_OTG_CFG] = REG_FIELD(0x03, 5, 5),
[F_CHG_CFG] = REG_FIELD(0x03, 4, 4),
[F_SYSVMIN] = REG_FIELD(0x03, 1, 3),
/* REG04 */
[F_PUMPX_EN] = REG_FIELD(0x04, 7, 7),
[F_ICHG] = REG_FIELD(0x04, 0, 6),
/* REG05 */
[F_IPRECHG] = REG_FIELD(0x05, 4, 7),
[F_ITERM] = REG_FIELD(0x05, 0, 3),
/* REG06 */
[F_VREG] = REG_FIELD(0x06, 2, 7),
[F_BATLOWV] = REG_FIELD(0x06, 1, 1),
[F_VRECHG] = REG_FIELD(0x06, 0, 0),
/* REG07 */
[F_TERM_EN] = REG_FIELD(0x07, 7, 7),
[F_STAT_DIS] = REG_FIELD(0x07, 6, 6),
[F_WD] = REG_FIELD(0x07, 4, 5),
[F_TMR_EN] = REG_FIELD(0x07, 3, 3),
[F_CHG_TMR] = REG_FIELD(0x07, 1, 2),
[F_JEITA_ISET] = REG_FIELD(0x07, 0, 0),
/* REG08 */
[F_BATCMP] = REG_FIELD(0x08, 6, 7),
[F_VCLAMP] = REG_FIELD(0x08, 2, 4),
[F_TREG] = REG_FIELD(0x08, 0, 1),
/* REG09 */
[F_FORCE_ICO] = REG_FIELD(0x09, 7, 7),
[F_TMR2X_EN] = REG_FIELD(0x09, 6, 6),
[F_BATFET_DIS] = REG_FIELD(0x09, 5, 5),
[F_JEITA_VSET] = REG_FIELD(0x09, 4, 4),
[F_BATFET_DLY] = REG_FIELD(0x09, 3, 3),
[F_BATFET_RST_EN] = REG_FIELD(0x09, 2, 2),
[F_PUMPX_UP] = REG_FIELD(0x09, 1, 1),
[F_PUMPX_DN] = REG_FIELD(0x09, 0, 0),
/* REG0A */
[F_BOOSTV] = REG_FIELD(0x0A, 4, 7),
[F_BOOSTI] = REG_FIELD(0x0A, 0, 2),
/* REG0B */
[F_VBUS_STAT] = REG_FIELD(0x0B, 5, 7),
[F_CHG_STAT] = REG_FIELD(0x0B, 3, 4),
[F_PG_STAT] = REG_FIELD(0x0B, 2, 2),
[F_SDP_STAT] = REG_FIELD(0x0B, 1, 1),
[F_VSYS_STAT] = REG_FIELD(0x0B, 0, 0),
/* REG0C */
[F_WD_FAULT] = REG_FIELD(0x0C, 7, 7),
[F_BOOST_FAULT] = REG_FIELD(0x0C, 6, 6),
[F_CHG_FAULT] = REG_FIELD(0x0C, 4, 5),
[F_BAT_FAULT] = REG_FIELD(0x0C, 3, 3),
[F_NTC_FAULT] = REG_FIELD(0x0C, 0, 2),
/* REG0D */
[F_FORCE_VINDPM] = REG_FIELD(0x0D, 7, 7),
[F_VINDPM] = REG_FIELD(0x0D, 0, 6),
/* REG0E */
[F_THERM_STAT] = REG_FIELD(0x0E, 7, 7),
[F_BATV] = REG_FIELD(0x0E, 0, 6),
/* REG0F */
[F_SYSV] = REG_FIELD(0x0F, 0, 6),
/* REG10 */
[F_TSPCT] = REG_FIELD(0x10, 0, 6),
/* REG11 */
[F_VBUS_GD] = REG_FIELD(0x11, 7, 7),
[F_VBUSV] = REG_FIELD(0x11, 0, 6),
/* REG12 */
[F_ICHGR] = REG_FIELD(0x12, 0, 6),
/* REG13 */
[F_VDPM_STAT] = REG_FIELD(0x13, 7, 7),
[F_IDPM_STAT] = REG_FIELD(0x13, 6, 6),
[F_IDPM_LIM] = REG_FIELD(0x13, 0, 5),
/* REG14 */
[F_REG_RST] = REG_FIELD(0x14, 7, 7),
[F_ICO_OPTIMIZED] = REG_FIELD(0x14, 6, 6),
[F_PN] = REG_FIELD(0x14, 3, 5),
[F_TS_PROFILE] = REG_FIELD(0x14, 2, 2),
[F_DEV_REV] = REG_FIELD(0x14, 0, 1)
};
/*
* Most of the val -> idx conversions can be computed, given the minimum,
* maximum and the step between values. For the rest of conversions, we use
* lookup tables.
*/
enum bq25890_table_ids {
/* range tables */
TBL_ICHG,
TBL_ITERM,
TBL_IPRECHG,
TBL_VREG,
TBL_BATCMP,
TBL_VCLAMP,
TBL_BOOSTV,
TBL_SYSVMIN,
/* lookup tables */
TBL_TREG,
TBL_BOOSTI,
};
/* Thermal Regulation Threshold lookup table, in degrees Celsius */
static const u32 bq25890_treg_tbl[] = { 60, 80, 100, 120 };
#define BQ25890_TREG_TBL_SIZE ARRAY_SIZE(bq25890_treg_tbl)
/* Boost mode current limit lookup table, in uA */
static const u32 bq25890_boosti_tbl[] = {
500000, 700000, 1100000, 1300000, 1600000, 1800000, 2100000, 2400000
};
#define BQ25890_BOOSTI_TBL_SIZE ARRAY_SIZE(bq25890_boosti_tbl)
struct bq25890_range {
u32 min;
u32 max;
u32 step;
};
struct bq25890_lookup {
const u32 *tbl;
u32 size;
};
static const union {
struct bq25890_range rt;
struct bq25890_lookup lt;
} bq25890_tables[] = {
/* range tables */
[TBL_ICHG] = { .rt = {0, 5056000, 64000} }, /* uA */
[TBL_ITERM] = { .rt = {64000, 1024000, 64000} }, /* uA */
[TBL_VREG] = { .rt = {3840000, 4608000, 16000} }, /* uV */
[TBL_BATCMP] = { .rt = {0, 140, 20} }, /* mOhm */
[TBL_VCLAMP] = { .rt = {0, 224000, 32000} }, /* uV */
[TBL_BOOSTV] = { .rt = {4550000, 5510000, 64000} }, /* uV */
[TBL_SYSVMIN] = { .rt = {3000000, 3700000, 100000} }, /* uV */
/* lookup tables */
[TBL_TREG] = { .lt = {bq25890_treg_tbl, BQ25890_TREG_TBL_SIZE} },
[TBL_BOOSTI] = { .lt = {bq25890_boosti_tbl, BQ25890_BOOSTI_TBL_SIZE} }
};
static int bq25890_field_read(struct bq25890_device *bq,
enum bq25890_fields field_id)
{
int ret;
int val;
ret = regmap_field_read(bq->rmap_fields[field_id], &val);
if (ret < 0)
return ret;
return val;
}
static int bq25890_field_write(struct bq25890_device *bq,
enum bq25890_fields field_id, u8 val)
{
return regmap_field_write(bq->rmap_fields[field_id], val);
}
static u8 bq25890_find_idx(u32 value, enum bq25890_table_ids id)
{
u8 idx;
if (id >= TBL_TREG) {
const u32 *tbl = bq25890_tables[id].lt.tbl;
u32 tbl_size = bq25890_tables[id].lt.size;
for (idx = 1; idx < tbl_size && tbl[idx] <= value; idx++)
;
} else {
const struct bq25890_range *rtbl = &bq25890_tables[id].rt;
u8 rtbl_size;
rtbl_size = (rtbl->max - rtbl->min) / rtbl->step + 1;
for (idx = 1;
idx < rtbl_size && (idx * rtbl->step + rtbl->min <= value);
idx++)
;
}
return idx - 1;
}
static u32 bq25890_find_val(u8 idx, enum bq25890_table_ids id)
{
const struct bq25890_range *rtbl;
/* lookup table? */
if (id >= TBL_TREG)
return bq25890_tables[id].lt.tbl[idx];
/* range table */
rtbl = &bq25890_tables[id].rt;
return (rtbl->min + idx * rtbl->step);
}
enum bq25890_status {
STATUS_NOT_CHARGING,
STATUS_PRE_CHARGING,
STATUS_FAST_CHARGING,
STATUS_TERMINATION_DONE,
};
enum bq25890_chrg_fault {
CHRG_FAULT_NORMAL,
CHRG_FAULT_INPUT,
CHRG_FAULT_THERMAL_SHUTDOWN,
CHRG_FAULT_TIMER_EXPIRED,
};
static int bq25890_power_supply_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
int ret;
struct bq25890_device *bq = power_supply_get_drvdata(psy);
struct bq25890_state state;
mutex_lock(&bq->lock);
state = bq->state;
mutex_unlock(&bq->lock);
switch (psp) {
case POWER_SUPPLY_PROP_STATUS:
if (!state.online)
val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
else if (state.chrg_status == STATUS_NOT_CHARGING)
val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING;
else if (state.chrg_status == STATUS_PRE_CHARGING ||
state.chrg_status == STATUS_FAST_CHARGING)
val->intval = POWER_SUPPLY_STATUS_CHARGING;
else if (state.chrg_status == STATUS_TERMINATION_DONE)
val->intval = POWER_SUPPLY_STATUS_FULL;
else
val->intval = POWER_SUPPLY_STATUS_UNKNOWN;
break;
case POWER_SUPPLY_PROP_MANUFACTURER:
val->strval = BQ25890_MANUFACTURER;
break;
case POWER_SUPPLY_PROP_ONLINE:
val->intval = state.online;
break;
case POWER_SUPPLY_PROP_HEALTH:
if (!state.chrg_fault && !state.bat_fault && !state.boost_fault)
val->intval = POWER_SUPPLY_HEALTH_GOOD;
else if (state.bat_fault)
val->intval = POWER_SUPPLY_HEALTH_OVERVOLTAGE;
else if (state.chrg_fault == CHRG_FAULT_TIMER_EXPIRED)
val->intval = POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE;
else if (state.chrg_fault == CHRG_FAULT_THERMAL_SHUTDOWN)
val->intval = POWER_SUPPLY_HEALTH_OVERHEAT;
else
val->intval = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE;
break;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
ret = bq25890_field_read(bq, F_ICHGR); /* read measured value */
if (ret < 0)
return ret;
/* converted_val = ADC_val * 50mA (table 10.3.19) */
val->intval = ret * 50000;
break;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
val->intval = bq25890_tables[TBL_ICHG].rt.max;
break;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
if (!state.online) {
val->intval = 0;
break;
}
ret = bq25890_field_read(bq, F_BATV); /* read measured value */
if (ret < 0)
return ret;
/* converted_val = 2.304V + ADC_val * 20mV (table 10.3.15) */
val->intval = 2304000 + ret * 20000;
break;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
val->intval = bq25890_tables[TBL_VREG].rt.max;
break;
case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
val->intval = bq25890_find_val(bq->init_data.iterm, TBL_ITERM);
break;
default:
return -EINVAL;
}
return 0;
}
static int bq25890_get_chip_state(struct bq25890_device *bq,
struct bq25890_state *state)
{
int i, ret;
struct {
enum bq25890_fields id;
u8 *data;
} state_fields[] = {
{F_CHG_STAT, &state->chrg_status},
{F_PG_STAT, &state->online},
{F_VSYS_STAT, &state->vsys_status},
{F_BOOST_FAULT, &state->boost_fault},
{F_BAT_FAULT, &state->bat_fault},
{F_CHG_FAULT, &state->chrg_fault}
};
for (i = 0; i < ARRAY_SIZE(state_fields); i++) {
ret = bq25890_field_read(bq, state_fields[i].id);
if (ret < 0)
return ret;
*state_fields[i].data = ret;
}
dev_dbg(bq->dev, "S:CHG/PG/VSYS=%d/%d/%d, F:CHG/BOOST/BAT=%d/%d/%d\n",
state->chrg_status, state->online, state->vsys_status,
state->chrg_fault, state->boost_fault, state->bat_fault);
return 0;
}
static bool bq25890_state_changed(struct bq25890_device *bq,
struct bq25890_state *new_state)
{
struct bq25890_state old_state;
mutex_lock(&bq->lock);
old_state = bq->state;
mutex_unlock(&bq->lock);
return (old_state.chrg_status != new_state->chrg_status ||
old_state.chrg_fault != new_state->chrg_fault ||
old_state.online != new_state->online ||
old_state.bat_fault != new_state->bat_fault ||
old_state.boost_fault != new_state->boost_fault ||
old_state.vsys_status != new_state->vsys_status);
}
static void bq25890_handle_state_change(struct bq25890_device *bq,
struct bq25890_state *new_state)
{
int ret;
struct bq25890_state old_state;
mutex_lock(&bq->lock);
old_state = bq->state;
mutex_unlock(&bq->lock);
if (!new_state->online) { /* power removed */
/* disable ADC */
ret = bq25890_field_write(bq, F_CONV_START, 0);
if (ret < 0)
goto error;
} else if (!old_state.online) { /* power inserted */
/* enable ADC, to have control of charge current/voltage */
ret = bq25890_field_write(bq, F_CONV_START, 1);
if (ret < 0)
goto error;
}
return;
error:
dev_err(bq->dev, "Error communicating with the chip.\n");
}
static irqreturn_t bq25890_irq_handler_thread(int irq, void *private)
{
struct bq25890_device *bq = private;
int ret;
struct bq25890_state state;
ret = bq25890_get_chip_state(bq, &state);
if (ret < 0)
goto handled;
if (!bq25890_state_changed(bq, &state))
goto handled;
bq25890_handle_state_change(bq, &state);
mutex_lock(&bq->lock);
bq->state = state;
mutex_unlock(&bq->lock);
power_supply_changed(bq->charger);
handled:
return IRQ_HANDLED;
}
static int bq25890_chip_reset(struct bq25890_device *bq)
{
int ret;
int rst_check_counter = 10;
ret = bq25890_field_write(bq, F_REG_RST, 1);
if (ret < 0)
return ret;
do {
ret = bq25890_field_read(bq, F_REG_RST);
if (ret < 0)
return ret;
usleep_range(5, 10);
} while (ret == 1 && --rst_check_counter);
if (!rst_check_counter)
return -ETIMEDOUT;
return 0;
}
static int bq25890_hw_init(struct bq25890_device *bq)
{
int ret;
int i;
struct bq25890_state state;
const struct {
enum bq25890_fields id;
u32 value;
} init_data[] = {
{F_ICHG, bq->init_data.ichg},
{F_VREG, bq->init_data.vreg},
{F_ITERM, bq->init_data.iterm},
{F_IPRECHG, bq->init_data.iprechg},
{F_SYSVMIN, bq->init_data.sysvmin},
{F_BOOSTV, bq->init_data.boostv},
{F_BOOSTI, bq->init_data.boosti},
{F_BOOSTF, bq->init_data.boostf},
{F_EN_ILIM, bq->init_data.ilim_en},
{F_TREG, bq->init_data.treg}
};
ret = bq25890_chip_reset(bq);
if (ret < 0)
return ret;
/* disable watchdog */
ret = bq25890_field_write(bq, F_WD, 0);
if (ret < 0)
return ret;
/* initialize currents/voltages and other parameters */
for (i = 0; i < ARRAY_SIZE(init_data); i++) {
ret = bq25890_field_write(bq, init_data[i].id,
init_data[i].value);
if (ret < 0)
return ret;
}
/* Configure ADC for continuous conversions. This does not enable it. */
ret = bq25890_field_write(bq, F_CONV_RATE, 1);
if (ret < 0)
return ret;
ret = bq25890_get_chip_state(bq, &state);
if (ret < 0)
return ret;
mutex_lock(&bq->lock);
bq->state = state;
mutex_unlock(&bq->lock);
return 0;
}
static enum power_supply_property bq25890_power_supply_props[] = {
POWER_SUPPLY_PROP_MANUFACTURER,
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_ONLINE,
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
};
static char *bq25890_charger_supplied_to[] = {
"main-battery",
};
static const struct power_supply_desc bq25890_power_supply_desc = {
.name = "bq25890-charger",
.type = POWER_SUPPLY_TYPE_USB,
.properties = bq25890_power_supply_props,
.num_properties = ARRAY_SIZE(bq25890_power_supply_props),
.get_property = bq25890_power_supply_get_property,
};
static int bq25890_power_supply_init(struct bq25890_device *bq)
{
struct power_supply_config psy_cfg = { .drv_data = bq, };
psy_cfg.supplied_to = bq25890_charger_supplied_to;
psy_cfg.num_supplicants = ARRAY_SIZE(bq25890_charger_supplied_to);
bq->charger = power_supply_register(bq->dev, &bq25890_power_supply_desc,
&psy_cfg);
return PTR_ERR_OR_ZERO(bq->charger);
}
static void bq25890_usb_work(struct work_struct *data)
{
int ret;
struct bq25890_device *bq =
container_of(data, struct bq25890_device, usb_work);
switch (bq->usb_event) {
case USB_EVENT_ID:
/* Enable boost mode */
ret = bq25890_field_write(bq, F_OTG_CFG, 1);
if (ret < 0)
goto error;
break;
case USB_EVENT_NONE:
/* Disable boost mode */
ret = bq25890_field_write(bq, F_OTG_CFG, 0);
if (ret < 0)
goto error;
power_supply_changed(bq->charger);
break;
}
return;
error:
dev_err(bq->dev, "Error switching to boost/charger mode.\n");
}
static int bq25890_usb_notifier(struct notifier_block *nb, unsigned long val,
void *priv)
{
struct bq25890_device *bq =
container_of(nb, struct bq25890_device, usb_nb);
bq->usb_event = val;
queue_work(system_power_efficient_wq, &bq->usb_work);
return NOTIFY_OK;
}
static int bq25890_irq_probe(struct bq25890_device *bq)
{
struct gpio_desc *irq;
irq = devm_gpiod_get_index(bq->dev, BQ25890_IRQ_PIN, 0, GPIOD_IN);
if (IS_ERR(irq)) {
dev_err(bq->dev, "Could not probe irq pin.\n");
return PTR_ERR(irq);
}
return gpiod_to_irq(irq);
}
static int bq25890_fw_read_u32_props(struct bq25890_device *bq)
{
int ret;
u32 property;
int i;
struct bq25890_init_data *init = &bq->init_data;
struct {
char *name;
bool optional;
enum bq25890_table_ids tbl_id;
u8 *conv_data; /* holds converted value from given property */
} props[] = {
/* required properties */
{"ti,charge-current", false, TBL_ICHG, &init->ichg},
{"ti,battery-regulation-voltage", false, TBL_VREG, &init->vreg},
{"ti,termination-current", false, TBL_ITERM, &init->iterm},
{"ti,precharge-current", false, TBL_ITERM, &init->iprechg},
{"ti,minimum-sys-voltage", false, TBL_SYSVMIN, &init->sysvmin},
{"ti,boost-voltage", false, TBL_BOOSTV, &init->boostv},
{"ti,boost-max-current", false, TBL_BOOSTI, &init->boosti},
/* optional properties */
{"ti,thermal-regulation-threshold", true, TBL_TREG, &init->treg}
};
/* initialize data for optional properties */
init->treg = 3; /* 120 degrees Celsius */
for (i = 0; i < ARRAY_SIZE(props); i++) {
ret = device_property_read_u32(bq->dev, props[i].name,
&property);
if (ret < 0) {
if (props[i].optional)
continue;
return ret;
}
*props[i].conv_data = bq25890_find_idx(property,
props[i].tbl_id);
}
return 0;
}
static int bq25890_fw_probe(struct bq25890_device *bq)
{
int ret;
struct bq25890_init_data *init = &bq->init_data;
ret = bq25890_fw_read_u32_props(bq);
if (ret < 0)
return ret;
init->ilim_en = device_property_read_bool(bq->dev, "ti,use-ilim-pin");
init->boostf = device_property_read_bool(bq->dev, "ti,boost-low-freq");
return 0;
}
static int bq25890_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct i2c_adapter *adapter = to_i2c_adapter(client->dev.parent);
struct device *dev = &client->dev;
struct bq25890_device *bq;
int ret;
int i;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
dev_err(dev, "No support for SMBUS_BYTE_DATA\n");
return -ENODEV;
}
bq = devm_kzalloc(dev, sizeof(*bq), GFP_KERNEL);
if (!bq)
return -ENOMEM;
bq->client = client;
bq->dev = dev;
mutex_init(&bq->lock);
bq->rmap = devm_regmap_init_i2c(client, &bq25890_regmap_config);
if (IS_ERR(bq->rmap)) {
dev_err(dev, "failed to allocate register map\n");
return PTR_ERR(bq->rmap);
}
for (i = 0; i < ARRAY_SIZE(bq25890_reg_fields); i++) {
const struct reg_field *reg_fields = bq25890_reg_fields;
bq->rmap_fields[i] = devm_regmap_field_alloc(dev, bq->rmap,
reg_fields[i]);
if (IS_ERR(bq->rmap_fields[i])) {
dev_err(dev, "cannot allocate regmap field\n");
return PTR_ERR(bq->rmap_fields[i]);
}
}
i2c_set_clientdata(client, bq);
bq->chip_id = bq25890_field_read(bq, F_PN);
if (bq->chip_id < 0) {
dev_err(dev, "Cannot read chip ID.\n");
return bq->chip_id;
}
if (bq->chip_id != BQ25890_ID) {
dev_err(dev, "Chip with ID=%d, not supported!\n", bq->chip_id);
return -ENODEV;
}
if (!dev->platform_data) {
ret = bq25890_fw_probe(bq);
if (ret < 0) {
dev_err(dev, "Cannot read device properties.\n");
return ret;
}
} else {
return -ENODEV;
}
ret = bq25890_hw_init(bq);
if (ret < 0) {
dev_err(dev, "Cannot initialize the chip.\n");
return ret;
}
if (client->irq <= 0)
client->irq = bq25890_irq_probe(bq);
if (client->irq < 0) {
dev_err(dev, "No irq resource found.\n");
return client->irq;
}
/* OTG reporting */
bq->usb_phy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
if (!IS_ERR_OR_NULL(bq->usb_phy)) {
INIT_WORK(&bq->usb_work, bq25890_usb_work);
bq->usb_nb.notifier_call = bq25890_usb_notifier;
usb_register_notifier(bq->usb_phy, &bq->usb_nb);
}
ret = devm_request_threaded_irq(dev, client->irq, NULL,
bq25890_irq_handler_thread,
IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
BQ25890_IRQ_PIN, bq);
if (ret)
goto irq_fail;
ret = bq25890_power_supply_init(bq);
if (ret < 0) {
dev_err(dev, "Failed to register power supply\n");
goto irq_fail;
}
return 0;
irq_fail:
if (!IS_ERR_OR_NULL(bq->usb_phy))
usb_unregister_notifier(bq->usb_phy, &bq->usb_nb);
return ret;
}
static int bq25890_remove(struct i2c_client *client)
{
struct bq25890_device *bq = i2c_get_clientdata(client);
power_supply_unregister(bq->charger);
if (!IS_ERR_OR_NULL(bq->usb_phy))
usb_unregister_notifier(bq->usb_phy, &bq->usb_nb);
/* reset all registers to default values */
bq25890_chip_reset(bq);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int bq25890_suspend(struct device *dev)
{
struct bq25890_device *bq = dev_get_drvdata(dev);
/*
* If charger is removed, while in suspend, make sure ADC is diabled
* since it consumes slightly more power.
*/
return bq25890_field_write(bq, F_CONV_START, 0);
}
static int bq25890_resume(struct device *dev)
{
int ret;
struct bq25890_state state;
struct bq25890_device *bq = dev_get_drvdata(dev);
ret = bq25890_get_chip_state(bq, &state);
if (ret < 0)
return ret;
mutex_lock(&bq->lock);
bq->state = state;
mutex_unlock(&bq->lock);
/* Re-enable ADC only if charger is plugged in. */
if (state.online) {
ret = bq25890_field_write(bq, F_CONV_START, 1);
if (ret < 0)
return ret;
}
/* signal userspace, maybe state changed while suspended */
power_supply_changed(bq->charger);
return 0;
}
#endif
static const struct dev_pm_ops bq25890_pm = {
SET_SYSTEM_SLEEP_PM_OPS(bq25890_suspend, bq25890_resume)
};
static const struct i2c_device_id bq25890_i2c_ids[] = {
{ "bq25890", 0 },
{},
};
MODULE_DEVICE_TABLE(i2c, bq25890_i2c_ids);
static const struct of_device_id bq25890_of_match[] = {
{ .compatible = "ti,bq25890", },
{ },
};
MODULE_DEVICE_TABLE(of, bq25890_of_match);
static const struct acpi_device_id bq25890_acpi_match[] = {
{"BQ258900", 0},
{},
};
MODULE_DEVICE_TABLE(acpi, bq25890_acpi_match);
static struct i2c_driver bq25890_driver = {
.driver = {
.name = "bq25890-charger",
.of_match_table = of_match_ptr(bq25890_of_match),
.acpi_match_table = ACPI_PTR(bq25890_acpi_match),
.pm = &bq25890_pm,
},
.probe = bq25890_probe,
.remove = bq25890_remove,
.id_table = bq25890_i2c_ids,
};
module_i2c_driver(bq25890_driver);
MODULE_AUTHOR("Laurentiu Palcu <laurentiu.palcu@intel.com>");
MODULE_DESCRIPTION("bq25890 charger driver");
MODULE_LICENSE("GPL");