mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-23 12:43:55 +08:00
491 lines
13 KiB
C
491 lines
13 KiB
C
|
/*
|
||
|
* PXA2xx SPI private DMA support.
|
||
|
*
|
||
|
* Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||
|
*/
|
||
|
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/device.h>
|
||
|
#include <linux/dma-mapping.h>
|
||
|
#include <linux/pxa2xx_ssp.h>
|
||
|
#include <linux/spi/spi.h>
|
||
|
#include <linux/spi/pxa2xx_spi.h>
|
||
|
|
||
|
#include "spi-pxa2xx.h"
|
||
|
|
||
|
#define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
|
||
|
#define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
|
||
|
|
||
|
bool pxa2xx_spi_dma_is_possible(size_t len)
|
||
|
{
|
||
|
/* Try to map dma buffer and do a dma transfer if successful, but
|
||
|
* only if the length is non-zero and less than MAX_DMA_LEN.
|
||
|
*
|
||
|
* Zero-length non-descriptor DMA is illegal on PXA2xx; force use
|
||
|
* of PIO instead. Care is needed above because the transfer may
|
||
|
* have have been passed with buffers that are already dma mapped.
|
||
|
* A zero-length transfer in PIO mode will not try to write/read
|
||
|
* to/from the buffers
|
||
|
*
|
||
|
* REVISIT large transfers are exactly where we most want to be
|
||
|
* using DMA. If this happens much, split those transfers into
|
||
|
* multiple DMA segments rather than forcing PIO.
|
||
|
*/
|
||
|
return len > 0 && len <= MAX_DMA_LEN;
|
||
|
}
|
||
|
|
||
|
int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data)
|
||
|
{
|
||
|
struct spi_message *msg = drv_data->cur_msg;
|
||
|
struct device *dev = &msg->spi->dev;
|
||
|
|
||
|
if (!drv_data->cur_chip->enable_dma)
|
||
|
return 0;
|
||
|
|
||
|
if (msg->is_dma_mapped)
|
||
|
return drv_data->rx_dma && drv_data->tx_dma;
|
||
|
|
||
|
if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
|
||
|
return 0;
|
||
|
|
||
|
/* Modify setup if rx buffer is null */
|
||
|
if (drv_data->rx == NULL) {
|
||
|
*drv_data->null_dma_buf = 0;
|
||
|
drv_data->rx = drv_data->null_dma_buf;
|
||
|
drv_data->rx_map_len = 4;
|
||
|
} else
|
||
|
drv_data->rx_map_len = drv_data->len;
|
||
|
|
||
|
|
||
|
/* Modify setup if tx buffer is null */
|
||
|
if (drv_data->tx == NULL) {
|
||
|
*drv_data->null_dma_buf = 0;
|
||
|
drv_data->tx = drv_data->null_dma_buf;
|
||
|
drv_data->tx_map_len = 4;
|
||
|
} else
|
||
|
drv_data->tx_map_len = drv_data->len;
|
||
|
|
||
|
/* Stream map the tx buffer. Always do DMA_TO_DEVICE first
|
||
|
* so we flush the cache *before* invalidating it, in case
|
||
|
* the tx and rx buffers overlap.
|
||
|
*/
|
||
|
drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
|
||
|
drv_data->tx_map_len, DMA_TO_DEVICE);
|
||
|
if (dma_mapping_error(dev, drv_data->tx_dma))
|
||
|
return 0;
|
||
|
|
||
|
/* Stream map the rx buffer */
|
||
|
drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
|
||
|
drv_data->rx_map_len, DMA_FROM_DEVICE);
|
||
|
if (dma_mapping_error(dev, drv_data->rx_dma)) {
|
||
|
dma_unmap_single(dev, drv_data->tx_dma,
|
||
|
drv_data->tx_map_len, DMA_TO_DEVICE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data)
|
||
|
{
|
||
|
struct device *dev;
|
||
|
|
||
|
if (!drv_data->dma_mapped)
|
||
|
return;
|
||
|
|
||
|
if (!drv_data->cur_msg->is_dma_mapped) {
|
||
|
dev = &drv_data->cur_msg->spi->dev;
|
||
|
dma_unmap_single(dev, drv_data->rx_dma,
|
||
|
drv_data->rx_map_len, DMA_FROM_DEVICE);
|
||
|
dma_unmap_single(dev, drv_data->tx_dma,
|
||
|
drv_data->tx_map_len, DMA_TO_DEVICE);
|
||
|
}
|
||
|
|
||
|
drv_data->dma_mapped = 0;
|
||
|
}
|
||
|
|
||
|
static int wait_ssp_rx_stall(void const __iomem *ioaddr)
|
||
|
{
|
||
|
unsigned long limit = loops_per_jiffy << 1;
|
||
|
|
||
|
while ((read_SSSR(ioaddr) & SSSR_BSY) && --limit)
|
||
|
cpu_relax();
|
||
|
|
||
|
return limit;
|
||
|
}
|
||
|
|
||
|
static int wait_dma_channel_stop(int channel)
|
||
|
{
|
||
|
unsigned long limit = loops_per_jiffy << 1;
|
||
|
|
||
|
while (!(DCSR(channel) & DCSR_STOPSTATE) && --limit)
|
||
|
cpu_relax();
|
||
|
|
||
|
return limit;
|
||
|
}
|
||
|
|
||
|
static void pxa2xx_spi_dma_error_stop(struct driver_data *drv_data,
|
||
|
const char *msg)
|
||
|
{
|
||
|
void __iomem *reg = drv_data->ioaddr;
|
||
|
|
||
|
/* Stop and reset */
|
||
|
DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
|
||
|
DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
|
||
|
write_SSSR_CS(drv_data, drv_data->clear_sr);
|
||
|
write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
|
||
|
if (!pxa25x_ssp_comp(drv_data))
|
||
|
write_SSTO(0, reg);
|
||
|
pxa2xx_spi_flush(drv_data);
|
||
|
write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
|
||
|
|
||
|
pxa2xx_spi_unmap_dma_buffers(drv_data);
|
||
|
|
||
|
dev_err(&drv_data->pdev->dev, "%s\n", msg);
|
||
|
|
||
|
drv_data->cur_msg->state = ERROR_STATE;
|
||
|
tasklet_schedule(&drv_data->pump_transfers);
|
||
|
}
|
||
|
|
||
|
static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data)
|
||
|
{
|
||
|
void __iomem *reg = drv_data->ioaddr;
|
||
|
struct spi_message *msg = drv_data->cur_msg;
|
||
|
|
||
|
/* Clear and disable interrupts on SSP and DMA channels*/
|
||
|
write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
|
||
|
write_SSSR_CS(drv_data, drv_data->clear_sr);
|
||
|
DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
|
||
|
DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
|
||
|
|
||
|
if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
|
||
|
dev_err(&drv_data->pdev->dev,
|
||
|
"dma_handler: dma rx channel stop failed\n");
|
||
|
|
||
|
if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
|
||
|
dev_err(&drv_data->pdev->dev,
|
||
|
"dma_transfer: ssp rx stall failed\n");
|
||
|
|
||
|
pxa2xx_spi_unmap_dma_buffers(drv_data);
|
||
|
|
||
|
/* update the buffer pointer for the amount completed in dma */
|
||
|
drv_data->rx += drv_data->len -
|
||
|
(DCMD(drv_data->rx_channel) & DCMD_LENGTH);
|
||
|
|
||
|
/* read trailing data from fifo, it does not matter how many
|
||
|
* bytes are in the fifo just read until buffer is full
|
||
|
* or fifo is empty, which ever occurs first */
|
||
|
drv_data->read(drv_data);
|
||
|
|
||
|
/* return count of what was actually read */
|
||
|
msg->actual_length += drv_data->len -
|
||
|
(drv_data->rx_end - drv_data->rx);
|
||
|
|
||
|
/* Transfer delays and chip select release are
|
||
|
* handled in pump_transfers or giveback
|
||
|
*/
|
||
|
|
||
|
/* Move to next transfer */
|
||
|
msg->state = pxa2xx_spi_next_transfer(drv_data);
|
||
|
|
||
|
/* Schedule transfer tasklet */
|
||
|
tasklet_schedule(&drv_data->pump_transfers);
|
||
|
}
|
||
|
|
||
|
void pxa2xx_spi_dma_handler(int channel, void *data)
|
||
|
{
|
||
|
struct driver_data *drv_data = data;
|
||
|
u32 irq_status = DCSR(channel) & DMA_INT_MASK;
|
||
|
|
||
|
if (irq_status & DCSR_BUSERR) {
|
||
|
|
||
|
if (channel == drv_data->tx_channel)
|
||
|
pxa2xx_spi_dma_error_stop(drv_data,
|
||
|
"dma_handler: bad bus address on tx channel");
|
||
|
else
|
||
|
pxa2xx_spi_dma_error_stop(drv_data,
|
||
|
"dma_handler: bad bus address on rx channel");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
|
||
|
if ((channel == drv_data->tx_channel)
|
||
|
&& (irq_status & DCSR_ENDINTR)
|
||
|
&& (drv_data->ssp_type == PXA25x_SSP)) {
|
||
|
|
||
|
/* Wait for rx to stall */
|
||
|
if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
|
||
|
dev_err(&drv_data->pdev->dev,
|
||
|
"dma_handler: ssp rx stall failed\n");
|
||
|
|
||
|
/* finish this transfer, start the next */
|
||
|
pxa2xx_spi_dma_transfer_complete(drv_data);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
|
||
|
{
|
||
|
u32 irq_status;
|
||
|
void __iomem *reg = drv_data->ioaddr;
|
||
|
|
||
|
irq_status = read_SSSR(reg) & drv_data->mask_sr;
|
||
|
if (irq_status & SSSR_ROR) {
|
||
|
pxa2xx_spi_dma_error_stop(drv_data,
|
||
|
"dma_transfer: fifo overrun");
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
/* Check for false positive timeout */
|
||
|
if ((irq_status & SSSR_TINT)
|
||
|
&& (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
|
||
|
write_SSSR(SSSR_TINT, reg);
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
|
||
|
|
||
|
/* Clear and disable timeout interrupt, do the rest in
|
||
|
* dma_transfer_complete */
|
||
|
if (!pxa25x_ssp_comp(drv_data))
|
||
|
write_SSTO(0, reg);
|
||
|
|
||
|
/* finish this transfer, start the next */
|
||
|
pxa2xx_spi_dma_transfer_complete(drv_data);
|
||
|
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
/* Opps problem detected */
|
||
|
return IRQ_NONE;
|
||
|
}
|
||
|
|
||
|
int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst)
|
||
|
{
|
||
|
u32 dma_width;
|
||
|
|
||
|
switch (drv_data->n_bytes) {
|
||
|
case 1:
|
||
|
dma_width = DCMD_WIDTH1;
|
||
|
break;
|
||
|
case 2:
|
||
|
dma_width = DCMD_WIDTH2;
|
||
|
break;
|
||
|
default:
|
||
|
dma_width = DCMD_WIDTH4;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* Setup rx DMA Channel */
|
||
|
DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
|
||
|
DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
|
||
|
DTADR(drv_data->rx_channel) = drv_data->rx_dma;
|
||
|
if (drv_data->rx == drv_data->null_dma_buf)
|
||
|
/* No target address increment */
|
||
|
DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
|
||
|
| dma_width
|
||
|
| dma_burst
|
||
|
| drv_data->len;
|
||
|
else
|
||
|
DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
|
||
|
| DCMD_FLOWSRC
|
||
|
| dma_width
|
||
|
| dma_burst
|
||
|
| drv_data->len;
|
||
|
|
||
|
/* Setup tx DMA Channel */
|
||
|
DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
|
||
|
DSADR(drv_data->tx_channel) = drv_data->tx_dma;
|
||
|
DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
|
||
|
if (drv_data->tx == drv_data->null_dma_buf)
|
||
|
/* No source address increment */
|
||
|
DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
|
||
|
| dma_width
|
||
|
| dma_burst
|
||
|
| drv_data->len;
|
||
|
else
|
||
|
DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
|
||
|
| DCMD_FLOWTRG
|
||
|
| dma_width
|
||
|
| dma_burst
|
||
|
| drv_data->len;
|
||
|
|
||
|
/* Enable dma end irqs on SSP to detect end of transfer */
|
||
|
if (drv_data->ssp_type == PXA25x_SSP)
|
||
|
DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void pxa2xx_spi_dma_start(struct driver_data *drv_data)
|
||
|
{
|
||
|
DCSR(drv_data->rx_channel) |= DCSR_RUN;
|
||
|
DCSR(drv_data->tx_channel) |= DCSR_RUN;
|
||
|
}
|
||
|
|
||
|
int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
|
||
|
{
|
||
|
struct device *dev = &drv_data->pdev->dev;
|
||
|
struct ssp_device *ssp = drv_data->ssp;
|
||
|
|
||
|
/* Get two DMA channels (rx and tx) */
|
||
|
drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
|
||
|
DMA_PRIO_HIGH,
|
||
|
pxa2xx_spi_dma_handler,
|
||
|
drv_data);
|
||
|
if (drv_data->rx_channel < 0) {
|
||
|
dev_err(dev, "problem (%d) requesting rx channel\n",
|
||
|
drv_data->rx_channel);
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
|
||
|
DMA_PRIO_MEDIUM,
|
||
|
pxa2xx_spi_dma_handler,
|
||
|
drv_data);
|
||
|
if (drv_data->tx_channel < 0) {
|
||
|
dev_err(dev, "problem (%d) requesting tx channel\n",
|
||
|
drv_data->tx_channel);
|
||
|
pxa_free_dma(drv_data->rx_channel);
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
|
||
|
DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void pxa2xx_spi_dma_release(struct driver_data *drv_data)
|
||
|
{
|
||
|
struct ssp_device *ssp = drv_data->ssp;
|
||
|
|
||
|
DRCMR(ssp->drcmr_rx) = 0;
|
||
|
DRCMR(ssp->drcmr_tx) = 0;
|
||
|
|
||
|
if (drv_data->tx_channel != 0)
|
||
|
pxa_free_dma(drv_data->tx_channel);
|
||
|
if (drv_data->rx_channel != 0)
|
||
|
pxa_free_dma(drv_data->rx_channel);
|
||
|
}
|
||
|
|
||
|
void pxa2xx_spi_dma_resume(struct driver_data *drv_data)
|
||
|
{
|
||
|
if (drv_data->rx_channel != -1)
|
||
|
DRCMR(drv_data->ssp->drcmr_rx) =
|
||
|
DRCMR_MAPVLD | drv_data->rx_channel;
|
||
|
if (drv_data->tx_channel != -1)
|
||
|
DRCMR(drv_data->ssp->drcmr_tx) =
|
||
|
DRCMR_MAPVLD | drv_data->tx_channel;
|
||
|
}
|
||
|
|
||
|
int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
|
||
|
struct spi_device *spi,
|
||
|
u8 bits_per_word, u32 *burst_code,
|
||
|
u32 *threshold)
|
||
|
{
|
||
|
struct pxa2xx_spi_chip *chip_info =
|
||
|
(struct pxa2xx_spi_chip *)spi->controller_data;
|
||
|
int bytes_per_word;
|
||
|
int burst_bytes;
|
||
|
int thresh_words;
|
||
|
int req_burst_size;
|
||
|
int retval = 0;
|
||
|
|
||
|
/* Set the threshold (in registers) to equal the same amount of data
|
||
|
* as represented by burst size (in bytes). The computation below
|
||
|
* is (burst_size rounded up to nearest 8 byte, word or long word)
|
||
|
* divided by (bytes/register); the tx threshold is the inverse of
|
||
|
* the rx, so that there will always be enough data in the rx fifo
|
||
|
* to satisfy a burst, and there will always be enough space in the
|
||
|
* tx fifo to accept a burst (a tx burst will overwrite the fifo if
|
||
|
* there is not enough space), there must always remain enough empty
|
||
|
* space in the rx fifo for any data loaded to the tx fifo.
|
||
|
* Whenever burst_size (in bytes) equals bits/word, the fifo threshold
|
||
|
* will be 8, or half the fifo;
|
||
|
* The threshold can only be set to 2, 4 or 8, but not 16, because
|
||
|
* to burst 16 to the tx fifo, the fifo would have to be empty;
|
||
|
* however, the minimum fifo trigger level is 1, and the tx will
|
||
|
* request service when the fifo is at this level, with only 15 spaces.
|
||
|
*/
|
||
|
|
||
|
/* find bytes/word */
|
||
|
if (bits_per_word <= 8)
|
||
|
bytes_per_word = 1;
|
||
|
else if (bits_per_word <= 16)
|
||
|
bytes_per_word = 2;
|
||
|
else
|
||
|
bytes_per_word = 4;
|
||
|
|
||
|
/* use struct pxa2xx_spi_chip->dma_burst_size if available */
|
||
|
if (chip_info)
|
||
|
req_burst_size = chip_info->dma_burst_size;
|
||
|
else {
|
||
|
switch (chip->dma_burst_size) {
|
||
|
default:
|
||
|
/* if the default burst size is not set,
|
||
|
* do it now */
|
||
|
chip->dma_burst_size = DCMD_BURST8;
|
||
|
case DCMD_BURST8:
|
||
|
req_burst_size = 8;
|
||
|
break;
|
||
|
case DCMD_BURST16:
|
||
|
req_burst_size = 16;
|
||
|
break;
|
||
|
case DCMD_BURST32:
|
||
|
req_burst_size = 32;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (req_burst_size <= 8) {
|
||
|
*burst_code = DCMD_BURST8;
|
||
|
burst_bytes = 8;
|
||
|
} else if (req_burst_size <= 16) {
|
||
|
if (bytes_per_word == 1) {
|
||
|
/* don't burst more than 1/2 the fifo */
|
||
|
*burst_code = DCMD_BURST8;
|
||
|
burst_bytes = 8;
|
||
|
retval = 1;
|
||
|
} else {
|
||
|
*burst_code = DCMD_BURST16;
|
||
|
burst_bytes = 16;
|
||
|
}
|
||
|
} else {
|
||
|
if (bytes_per_word == 1) {
|
||
|
/* don't burst more than 1/2 the fifo */
|
||
|
*burst_code = DCMD_BURST8;
|
||
|
burst_bytes = 8;
|
||
|
retval = 1;
|
||
|
} else if (bytes_per_word == 2) {
|
||
|
/* don't burst more than 1/2 the fifo */
|
||
|
*burst_code = DCMD_BURST16;
|
||
|
burst_bytes = 16;
|
||
|
retval = 1;
|
||
|
} else {
|
||
|
*burst_code = DCMD_BURST32;
|
||
|
burst_bytes = 32;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
thresh_words = burst_bytes / bytes_per_word;
|
||
|
|
||
|
/* thresh_words will be between 2 and 8 */
|
||
|
*threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
|
||
|
| (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
|
||
|
|
||
|
return retval;
|
||
|
}
|