2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-01 00:54:15 +08:00
linux-next/Documentation/locking/seqlock.rst

240 lines
7.5 KiB
ReStructuredText
Raw Normal View History

======================================
Sequence counters and sequential locks
======================================
Introduction
============
Sequence counters are a reader-writer consistency mechanism with
lockless readers (read-only retry loops), and no writer starvation. They
are used for data that's rarely written to (e.g. system time), where the
reader wants a consistent set of information and is willing to retry if
that information changes.
A data set is consistent when the sequence count at the beginning of the
read side critical section is even and the same sequence count value is
read again at the end of the critical section. The data in the set must
be copied out inside the read side critical section. If the sequence
count has changed between the start and the end of the critical section,
the reader must retry.
Writers increment the sequence count at the start and the end of their
critical section. After starting the critical section the sequence count
is odd and indicates to the readers that an update is in progress. At
the end of the write side critical section the sequence count becomes
even again which lets readers make progress.
A sequence counter write side critical section must never be preempted
or interrupted by read side sections. Otherwise the reader will spin for
the entire scheduler tick due to the odd sequence count value and the
interrupted writer. If that reader belongs to a real-time scheduling
class, it can spin forever and the kernel will livelock.
This mechanism cannot be used if the protected data contains pointers,
as the writer can invalidate a pointer that the reader is following.
.. _seqcount_t:
Sequence counters (``seqcount_t``)
==================================
This is the the raw counting mechanism, which does not protect against
multiple writers. Write side critical sections must thus be serialized
by an external lock.
If the write serialization primitive is not implicitly disabling
preemption, preemption must be explicitly disabled before entering the
write side section. If the read section can be invoked from hardirq or
softirq contexts, interrupts or bottom halves must also be respectively
disabled before entering the write section.
If it's desired to automatically handle the sequence counter
requirements of writer serialization and non-preemptibility, use
:ref:`seqlock_t` instead.
Initialization::
/* dynamic */
seqcount_t foo_seqcount;
seqcount_init(&foo_seqcount);
/* static */
static seqcount_t foo_seqcount = SEQCNT_ZERO(foo_seqcount);
/* C99 struct init */
struct {
.seq = SEQCNT_ZERO(foo.seq),
} foo;
Write path::
/* Serialized context with disabled preemption */
write_seqcount_begin(&foo_seqcount);
/* ... [[write-side critical section]] ... */
write_seqcount_end(&foo_seqcount);
Read path::
do {
seq = read_seqcount_begin(&foo_seqcount);
/* ... [[read-side critical section]] ... */
} while (read_seqcount_retry(&foo_seqcount, seq));
seqlock: Extend seqcount API with associated locks A sequence counter write side critical section must be protected by some form of locking to serialize writers. If the serialization primitive is not disabling preemption implicitly, preemption has to be explicitly disabled before entering the write side critical section. There is no built-in debugging mechanism to verify that the lock used for writer serialization is held and preemption is disabled. Some usage sites like dma-buf have explicit lockdep checks for the writer-side lock, but this covers only a small portion of the sequence counter usage in the kernel. Add new sequence counter types which allows to associate a lock to the sequence counter at initialization time. The seqcount API functions are extended to provide appropriate lockdep assertions depending on the seqcount/lock type. For sequence counters with associated locks that do not implicitly disable preemption, preemption protection is enforced in the sequence counter write side functions. This removes the need to explicitly add preempt_disable/enable() around the write side critical sections: the write_begin/end() functions for these new sequence counter types automatically do this. Introduce the following seqcount types with associated locks: seqcount_spinlock_t seqcount_raw_spinlock_t seqcount_rwlock_t seqcount_mutex_t seqcount_ww_mutex_t Extend the seqcount read and write functions to branch out to the specific seqcount_LOCKTYPE_t implementation at compile-time. This avoids kernel API explosion per each new seqcount_LOCKTYPE_t added. Add such compile-time type detection logic into a new, internal, seqlock header. Document the proper seqcount_LOCKTYPE_t usage, and rationale, at Documentation/locking/seqlock.rst. If lockdep is disabled, this lock association is compiled out and has neither storage size nor runtime overhead. Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200720155530.1173732-10-a.darwish@linutronix.de
2020-07-20 23:55:15 +08:00
.. _seqcount_locktype_t:
Sequence counters with associated locks (``seqcount_LOCKNAME_t``)
seqlock: Extend seqcount API with associated locks A sequence counter write side critical section must be protected by some form of locking to serialize writers. If the serialization primitive is not disabling preemption implicitly, preemption has to be explicitly disabled before entering the write side critical section. There is no built-in debugging mechanism to verify that the lock used for writer serialization is held and preemption is disabled. Some usage sites like dma-buf have explicit lockdep checks for the writer-side lock, but this covers only a small portion of the sequence counter usage in the kernel. Add new sequence counter types which allows to associate a lock to the sequence counter at initialization time. The seqcount API functions are extended to provide appropriate lockdep assertions depending on the seqcount/lock type. For sequence counters with associated locks that do not implicitly disable preemption, preemption protection is enforced in the sequence counter write side functions. This removes the need to explicitly add preempt_disable/enable() around the write side critical sections: the write_begin/end() functions for these new sequence counter types automatically do this. Introduce the following seqcount types with associated locks: seqcount_spinlock_t seqcount_raw_spinlock_t seqcount_rwlock_t seqcount_mutex_t seqcount_ww_mutex_t Extend the seqcount read and write functions to branch out to the specific seqcount_LOCKTYPE_t implementation at compile-time. This avoids kernel API explosion per each new seqcount_LOCKTYPE_t added. Add such compile-time type detection logic into a new, internal, seqlock header. Document the proper seqcount_LOCKTYPE_t usage, and rationale, at Documentation/locking/seqlock.rst. If lockdep is disabled, this lock association is compiled out and has neither storage size nor runtime overhead. Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200720155530.1173732-10-a.darwish@linutronix.de
2020-07-20 23:55:15 +08:00
-----------------------------------------------------------------
As discussed at :ref:`seqcount_t`, sequence count write side critical
sections must be serialized and non-preemptible. This variant of
sequence counters associate the lock used for writer serialization at
initialization time, which enables lockdep to validate that the write
side critical sections are properly serialized.
This lock association is a NOOP if lockdep is disabled and has neither
storage nor runtime overhead. If lockdep is enabled, the lock pointer is
stored in struct seqcount and lockdep's "lock is held" assertions are
injected at the beginning of the write side critical section to validate
that it is properly protected.
For lock types which do not implicitly disable preemption, preemption
protection is enforced in the write side function.
The following sequence counters with associated locks are defined:
- ``seqcount_spinlock_t``
- ``seqcount_raw_spinlock_t``
- ``seqcount_rwlock_t``
- ``seqcount_mutex_t``
- ``seqcount_ww_mutex_t``
The sequence counter read and write APIs can take either a plain
seqcount_t or any of the seqcount_LOCKNAME_t variants above.
seqlock: Extend seqcount API with associated locks A sequence counter write side critical section must be protected by some form of locking to serialize writers. If the serialization primitive is not disabling preemption implicitly, preemption has to be explicitly disabled before entering the write side critical section. There is no built-in debugging mechanism to verify that the lock used for writer serialization is held and preemption is disabled. Some usage sites like dma-buf have explicit lockdep checks for the writer-side lock, but this covers only a small portion of the sequence counter usage in the kernel. Add new sequence counter types which allows to associate a lock to the sequence counter at initialization time. The seqcount API functions are extended to provide appropriate lockdep assertions depending on the seqcount/lock type. For sequence counters with associated locks that do not implicitly disable preemption, preemption protection is enforced in the sequence counter write side functions. This removes the need to explicitly add preempt_disable/enable() around the write side critical sections: the write_begin/end() functions for these new sequence counter types automatically do this. Introduce the following seqcount types with associated locks: seqcount_spinlock_t seqcount_raw_spinlock_t seqcount_rwlock_t seqcount_mutex_t seqcount_ww_mutex_t Extend the seqcount read and write functions to branch out to the specific seqcount_LOCKTYPE_t implementation at compile-time. This avoids kernel API explosion per each new seqcount_LOCKTYPE_t added. Add such compile-time type detection logic into a new, internal, seqlock header. Document the proper seqcount_LOCKTYPE_t usage, and rationale, at Documentation/locking/seqlock.rst. If lockdep is disabled, this lock association is compiled out and has neither storage size nor runtime overhead. Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200720155530.1173732-10-a.darwish@linutronix.de
2020-07-20 23:55:15 +08:00
Initialization (replace "LOCKNAME" with one of the supported locks)::
seqlock: Extend seqcount API with associated locks A sequence counter write side critical section must be protected by some form of locking to serialize writers. If the serialization primitive is not disabling preemption implicitly, preemption has to be explicitly disabled before entering the write side critical section. There is no built-in debugging mechanism to verify that the lock used for writer serialization is held and preemption is disabled. Some usage sites like dma-buf have explicit lockdep checks for the writer-side lock, but this covers only a small portion of the sequence counter usage in the kernel. Add new sequence counter types which allows to associate a lock to the sequence counter at initialization time. The seqcount API functions are extended to provide appropriate lockdep assertions depending on the seqcount/lock type. For sequence counters with associated locks that do not implicitly disable preemption, preemption protection is enforced in the sequence counter write side functions. This removes the need to explicitly add preempt_disable/enable() around the write side critical sections: the write_begin/end() functions for these new sequence counter types automatically do this. Introduce the following seqcount types with associated locks: seqcount_spinlock_t seqcount_raw_spinlock_t seqcount_rwlock_t seqcount_mutex_t seqcount_ww_mutex_t Extend the seqcount read and write functions to branch out to the specific seqcount_LOCKTYPE_t implementation at compile-time. This avoids kernel API explosion per each new seqcount_LOCKTYPE_t added. Add such compile-time type detection logic into a new, internal, seqlock header. Document the proper seqcount_LOCKTYPE_t usage, and rationale, at Documentation/locking/seqlock.rst. If lockdep is disabled, this lock association is compiled out and has neither storage size nor runtime overhead. Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200720155530.1173732-10-a.darwish@linutronix.de
2020-07-20 23:55:15 +08:00
/* dynamic */
seqcount_LOCKNAME_t foo_seqcount;
seqcount_LOCKNAME_init(&foo_seqcount, &lock);
seqlock: Extend seqcount API with associated locks A sequence counter write side critical section must be protected by some form of locking to serialize writers. If the serialization primitive is not disabling preemption implicitly, preemption has to be explicitly disabled before entering the write side critical section. There is no built-in debugging mechanism to verify that the lock used for writer serialization is held and preemption is disabled. Some usage sites like dma-buf have explicit lockdep checks for the writer-side lock, but this covers only a small portion of the sequence counter usage in the kernel. Add new sequence counter types which allows to associate a lock to the sequence counter at initialization time. The seqcount API functions are extended to provide appropriate lockdep assertions depending on the seqcount/lock type. For sequence counters with associated locks that do not implicitly disable preemption, preemption protection is enforced in the sequence counter write side functions. This removes the need to explicitly add preempt_disable/enable() around the write side critical sections: the write_begin/end() functions for these new sequence counter types automatically do this. Introduce the following seqcount types with associated locks: seqcount_spinlock_t seqcount_raw_spinlock_t seqcount_rwlock_t seqcount_mutex_t seqcount_ww_mutex_t Extend the seqcount read and write functions to branch out to the specific seqcount_LOCKTYPE_t implementation at compile-time. This avoids kernel API explosion per each new seqcount_LOCKTYPE_t added. Add such compile-time type detection logic into a new, internal, seqlock header. Document the proper seqcount_LOCKTYPE_t usage, and rationale, at Documentation/locking/seqlock.rst. If lockdep is disabled, this lock association is compiled out and has neither storage size nor runtime overhead. Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200720155530.1173732-10-a.darwish@linutronix.de
2020-07-20 23:55:15 +08:00
/* static */
static seqcount_LOCKNAME_t foo_seqcount =
SEQCNT_LOCKNAME_ZERO(foo_seqcount, &lock);
seqlock: Extend seqcount API with associated locks A sequence counter write side critical section must be protected by some form of locking to serialize writers. If the serialization primitive is not disabling preemption implicitly, preemption has to be explicitly disabled before entering the write side critical section. There is no built-in debugging mechanism to verify that the lock used for writer serialization is held and preemption is disabled. Some usage sites like dma-buf have explicit lockdep checks for the writer-side lock, but this covers only a small portion of the sequence counter usage in the kernel. Add new sequence counter types which allows to associate a lock to the sequence counter at initialization time. The seqcount API functions are extended to provide appropriate lockdep assertions depending on the seqcount/lock type. For sequence counters with associated locks that do not implicitly disable preemption, preemption protection is enforced in the sequence counter write side functions. This removes the need to explicitly add preempt_disable/enable() around the write side critical sections: the write_begin/end() functions for these new sequence counter types automatically do this. Introduce the following seqcount types with associated locks: seqcount_spinlock_t seqcount_raw_spinlock_t seqcount_rwlock_t seqcount_mutex_t seqcount_ww_mutex_t Extend the seqcount read and write functions to branch out to the specific seqcount_LOCKTYPE_t implementation at compile-time. This avoids kernel API explosion per each new seqcount_LOCKTYPE_t added. Add such compile-time type detection logic into a new, internal, seqlock header. Document the proper seqcount_LOCKTYPE_t usage, and rationale, at Documentation/locking/seqlock.rst. If lockdep is disabled, this lock association is compiled out and has neither storage size nor runtime overhead. Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200720155530.1173732-10-a.darwish@linutronix.de
2020-07-20 23:55:15 +08:00
/* C99 struct init */
struct {
.seq = SEQCNT_LOCKNAME_ZERO(foo.seq, &lock),
seqlock: Extend seqcount API with associated locks A sequence counter write side critical section must be protected by some form of locking to serialize writers. If the serialization primitive is not disabling preemption implicitly, preemption has to be explicitly disabled before entering the write side critical section. There is no built-in debugging mechanism to verify that the lock used for writer serialization is held and preemption is disabled. Some usage sites like dma-buf have explicit lockdep checks for the writer-side lock, but this covers only a small portion of the sequence counter usage in the kernel. Add new sequence counter types which allows to associate a lock to the sequence counter at initialization time. The seqcount API functions are extended to provide appropriate lockdep assertions depending on the seqcount/lock type. For sequence counters with associated locks that do not implicitly disable preemption, preemption protection is enforced in the sequence counter write side functions. This removes the need to explicitly add preempt_disable/enable() around the write side critical sections: the write_begin/end() functions for these new sequence counter types automatically do this. Introduce the following seqcount types with associated locks: seqcount_spinlock_t seqcount_raw_spinlock_t seqcount_rwlock_t seqcount_mutex_t seqcount_ww_mutex_t Extend the seqcount read and write functions to branch out to the specific seqcount_LOCKTYPE_t implementation at compile-time. This avoids kernel API explosion per each new seqcount_LOCKTYPE_t added. Add such compile-time type detection logic into a new, internal, seqlock header. Document the proper seqcount_LOCKTYPE_t usage, and rationale, at Documentation/locking/seqlock.rst. If lockdep is disabled, this lock association is compiled out and has neither storage size nor runtime overhead. Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200720155530.1173732-10-a.darwish@linutronix.de
2020-07-20 23:55:15 +08:00
} foo;
Write path: same as in :ref:`seqcount_t`, while running from a context
with the associated write serialization lock acquired.
seqlock: Extend seqcount API with associated locks A sequence counter write side critical section must be protected by some form of locking to serialize writers. If the serialization primitive is not disabling preemption implicitly, preemption has to be explicitly disabled before entering the write side critical section. There is no built-in debugging mechanism to verify that the lock used for writer serialization is held and preemption is disabled. Some usage sites like dma-buf have explicit lockdep checks for the writer-side lock, but this covers only a small portion of the sequence counter usage in the kernel. Add new sequence counter types which allows to associate a lock to the sequence counter at initialization time. The seqcount API functions are extended to provide appropriate lockdep assertions depending on the seqcount/lock type. For sequence counters with associated locks that do not implicitly disable preemption, preemption protection is enforced in the sequence counter write side functions. This removes the need to explicitly add preempt_disable/enable() around the write side critical sections: the write_begin/end() functions for these new sequence counter types automatically do this. Introduce the following seqcount types with associated locks: seqcount_spinlock_t seqcount_raw_spinlock_t seqcount_rwlock_t seqcount_mutex_t seqcount_ww_mutex_t Extend the seqcount read and write functions to branch out to the specific seqcount_LOCKTYPE_t implementation at compile-time. This avoids kernel API explosion per each new seqcount_LOCKTYPE_t added. Add such compile-time type detection logic into a new, internal, seqlock header. Document the proper seqcount_LOCKTYPE_t usage, and rationale, at Documentation/locking/seqlock.rst. If lockdep is disabled, this lock association is compiled out and has neither storage size nor runtime overhead. Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200720155530.1173732-10-a.darwish@linutronix.de
2020-07-20 23:55:15 +08:00
Read path: same as in :ref:`seqcount_t`.
seqlock: Introduce seqcount_latch_t Latch sequence counters are a multiversion concurrency control mechanism where the seqcount_t counter even/odd value is used to switch between two copies of protected data. This allows the seqcount_t read path to safely interrupt its write side critical section (e.g. from NMIs). Initially, latch sequence counters were implemented as a single write function above plain seqcount_t: raw_write_seqcount_latch(). The read side was expected to use plain seqcount_t raw_read_seqcount(). A specialized latch read function, raw_read_seqcount_latch(), was later added. It became the standardized way for latch read paths. Due to the dependent load, it has one read memory barrier less than the plain seqcount_t raw_read_seqcount() API. Only raw_write_seqcount_latch() and raw_read_seqcount_latch() should be used with latch sequence counters. Having *unique* read and write path APIs means that latch sequence counters are actually a data type of their own -- just inappropriately overloading plain seqcount_t. Introduce seqcount_latch_t. This adds type-safety and ensures that only the correct latch-safe APIs are to be used. Not to break bisection, let the latch APIs also accept plain seqcount_t or seqcount_raw_spinlock_t. After converting all call sites to seqcount_latch_t, only that new data type will be allowed. References: 9b0fd802e8c0 ("seqcount: Add raw_write_seqcount_latch()") References: 7fc26327b756 ("seqlock: Introduce raw_read_seqcount_latch()") References: aadd6e5caaac ("time/sched_clock: Use raw_read_seqcount_latch()") Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200827114044.11173-4-a.darwish@linutronix.de
2020-08-27 19:40:39 +08:00
.. _seqcount_latch_t:
Latch sequence counters (``seqcount_latch_t``)
----------------------------------------------
Latch sequence counters are a multiversion concurrency control mechanism
where the embedded seqcount_t counter even/odd value is used to switch
between two copies of protected data. This allows the sequence counter
read path to safely interrupt its own write side critical section.
Use seqcount_latch_t when the write side sections cannot be protected
from interruption by readers. This is typically the case when the read
side can be invoked from NMI handlers.
Check `raw_write_seqcount_latch()` for more information.
.. _seqlock_t:
Sequential locks (``seqlock_t``)
================================
This contains the :ref:`seqcount_t` mechanism earlier discussed, plus an
embedded spinlock for writer serialization and non-preemptibility.
If the read side section can be invoked from hardirq or softirq context,
use the write side function variants which disable interrupts or bottom
halves respectively.
Initialization::
/* dynamic */
seqlock_t foo_seqlock;
seqlock_init(&foo_seqlock);
/* static */
static DEFINE_SEQLOCK(foo_seqlock);
/* C99 struct init */
struct {
.seql = __SEQLOCK_UNLOCKED(foo.seql)
} foo;
Write path::
write_seqlock(&foo_seqlock);
/* ... [[write-side critical section]] ... */
write_sequnlock(&foo_seqlock);
Read path, three categories:
1. Normal Sequence readers which never block a writer but they must
retry if a writer is in progress by detecting change in the sequence
number. Writers do not wait for a sequence reader::
do {
seq = read_seqbegin(&foo_seqlock);
/* ... [[read-side critical section]] ... */
} while (read_seqretry(&foo_seqlock, seq));
2. Locking readers which will wait if a writer or another locking reader
is in progress. A locking reader in progress will also block a writer
from entering its critical section. This read lock is
exclusive. Unlike rwlock_t, only one locking reader can acquire it::
read_seqlock_excl(&foo_seqlock);
/* ... [[read-side critical section]] ... */
read_sequnlock_excl(&foo_seqlock);
3. Conditional lockless reader (as in 1), or locking reader (as in 2),
according to a passed marker. This is used to avoid lockless readers
starvation (too much retry loops) in case of a sharp spike in write
activity. First, a lockless read is tried (even marker passed). If
that trial fails (odd sequence counter is returned, which is used as
the next iteration marker), the lockless read is transformed to a
full locking read and no retry loop is necessary::
/* marker; even initialization */
int seq = 0;
do {
read_seqbegin_or_lock(&foo_seqlock, &seq);
/* ... [[read-side critical section]] ... */
} while (need_seqretry(&foo_seqlock, seq));
done_seqretry(&foo_seqlock, seq);
API documentation
=================
.. kernel-doc:: include/linux/seqlock.h