2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-16 01:24:08 +08:00
linux-next/drivers/media/i2c/tda9840.c

214 lines
5.4 KiB
C
Raw Normal View History

/*
tda9840 - i2c-driver for the tda9840 by SGS Thomson
Copyright (C) 1998-2003 Michael Hunold <michael@mihu.de>
Copyright (C) 2008 Hans Verkuil <hverkuil@xs4all.nl>
The tda9840 is a stereo/dual sound processor with digital
identification. It can be found at address 0x84 on the i2c-bus.
For detailed informations download the specifications directly
from SGS Thomson at http://www.st.com
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/ioctl.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/i2c.h>
#include <media/v4l2-device.h>
MODULE_AUTHOR("Michael Hunold <michael@mihu.de>");
MODULE_DESCRIPTION("tda9840 driver");
MODULE_LICENSE("GPL");
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Debug level (0-1)");
#define SWITCH 0x00
#define LEVEL_ADJUST 0x02
#define STEREO_ADJUST 0x03
#define TEST 0x04
#define TDA9840_SET_MUTE 0x00
#define TDA9840_SET_MONO 0x10
#define TDA9840_SET_STEREO 0x2a
#define TDA9840_SET_LANG1 0x12
#define TDA9840_SET_LANG2 0x1e
#define TDA9840_SET_BOTH 0x1a
#define TDA9840_SET_BOTH_R 0x16
#define TDA9840_SET_EXTERNAL 0x7a
static void tda9840_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
if (i2c_smbus_write_byte_data(client, reg, val))
v4l2_dbg(1, debug, sd, "error writing %02x to %02x\n",
val, reg);
}
static int tda9840_status(struct v4l2_subdev *sd)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
int rc;
u8 byte;
rc = i2c_master_recv(client, &byte, 1);
if (rc != 1) {
v4l2_dbg(1, debug, sd,
"i2c_master_recv() failed\n");
if (rc < 0)
return rc;
return -EIO;
}
if (byte & 0x80) {
v4l2_dbg(1, debug, sd,
"TDA9840_DETECT: register contents invalid\n");
return -EINVAL;
}
v4l2_dbg(1, debug, sd, "TDA9840_DETECT: byte: 0x%02x\n", byte);
return byte & 0x60;
}
static int tda9840_s_tuner(struct v4l2_subdev *sd, const struct v4l2_tuner *t)
{
int stat = tda9840_status(sd);
int byte;
if (t->index)
return -EINVAL;
stat = stat < 0 ? 0 : stat;
if (stat == 0 || stat == 0x60) /* mono input */
byte = TDA9840_SET_MONO;
else if (stat == 0x40) /* stereo input */
byte = (t->audmode == V4L2_TUNER_MODE_MONO) ?
TDA9840_SET_MONO : TDA9840_SET_STEREO;
else { /* bilingual */
switch (t->audmode) {
case V4L2_TUNER_MODE_LANG1_LANG2:
byte = TDA9840_SET_BOTH;
break;
case V4L2_TUNER_MODE_LANG2:
byte = TDA9840_SET_LANG2;
break;
default:
byte = TDA9840_SET_LANG1;
break;
}
}
v4l2_dbg(1, debug, sd, "TDA9840_SWITCH: 0x%02x\n", byte);
tda9840_write(sd, SWITCH, byte);
return 0;
}
static int tda9840_g_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *t)
{
int stat = tda9840_status(sd);
if (stat < 0)
return stat;
t->rxsubchans = V4L2_TUNER_SUB_MONO;
switch (stat & 0x60) {
case 0x00:
t->rxsubchans = V4L2_TUNER_SUB_MONO;
break;
case 0x20:
t->rxsubchans = V4L2_TUNER_SUB_LANG1 | V4L2_TUNER_SUB_LANG2;
break;
case 0x40:
t->rxsubchans = V4L2_TUNER_SUB_STEREO | V4L2_TUNER_SUB_MONO;
break;
default: /* Incorrect detect */
t->rxsubchans = V4L2_TUNER_MODE_MONO;
break;
}
return 0;
}
/* ----------------------------------------------------------------------- */
static const struct v4l2_subdev_tuner_ops tda9840_tuner_ops = {
.s_tuner = tda9840_s_tuner,
.g_tuner = tda9840_g_tuner,
};
static const struct v4l2_subdev_ops tda9840_ops = {
.tuner = &tda9840_tuner_ops,
};
/* ----------------------------------------------------------------------- */
static int tda9840_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct v4l2_subdev *sd;
/* let's see whether this adapter can support what we need */
if (!i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_READ_BYTE_DATA |
I2C_FUNC_SMBUS_WRITE_BYTE_DATA))
return -EIO;
v4l_info(client, "chip found @ 0x%x (%s)\n",
client->addr << 1, client->adapter->name);
sd = devm_kzalloc(&client->dev, sizeof(*sd), GFP_KERNEL);
if (sd == NULL)
return -ENOMEM;
v4l2_i2c_subdev_init(sd, client, &tda9840_ops);
/* set initial values for level & stereo - adjustment, mode */
tda9840_write(sd, LEVEL_ADJUST, 0);
tda9840_write(sd, STEREO_ADJUST, 0);
tda9840_write(sd, SWITCH, TDA9840_SET_STEREO);
return 0;
}
static int tda9840_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
v4l2_device_unregister_subdev(sd);
return 0;
}
static const struct i2c_device_id tda9840_id[] = {
{ "tda9840", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, tda9840_id);
static struct i2c_driver tda9840_driver = {
.driver = {
.name = "tda9840",
},
.probe = tda9840_probe,
.remove = tda9840_remove,
.id_table = tda9840_id,
};
module_i2c_driver(tda9840_driver);