2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-18 10:34:24 +08:00
linux-next/kernel/kexec.c

2771 lines
68 KiB
C
Raw Normal View History

/*
* kexec.c - kexec system call
* Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
*
* This source code is licensed under the GNU General Public License,
* Version 2. See the file COPYING for more details.
*/
#define pr_fmt(fmt) "kexec: " fmt
#include <linux/capability.h>
#include <linux/mm.h>
#include <linux/file.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/kexec.h>
#include <linux/mutex.h>
#include <linux/list.h>
#include <linux/highmem.h>
#include <linux/syscalls.h>
#include <linux/reboot.h>
#include <linux/ioport.h>
#include <linux/hardirq.h>
#include <linux/elf.h>
#include <linux/elfcore.h>
#include <linux/utsname.h>
#include <linux/numa.h>
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:07 +08:00
#include <linux/suspend.h>
#include <linux/device.h>
kexec jump: save/restore device state This patch implements devices state save/restore before after kexec. This patch together with features in kexec_jump patch can be used for following: - A simple hibernation implementation without ACPI support. You can kexec a hibernating kernel, save the memory image of original system and shutdown the system. When resuming, you restore the memory image of original system via ordinary kexec load then jump back. - Kernel/system debug through making system snapshot. You can make system snapshot, jump back, do some thing and make another system snapshot. - Cooperative multi-kernel/system. With kexec jump, you can switch between several kernels/systems quickly without boot process except the first time. This appears like swap a whole kernel/system out/in. - A general method to call program in physical mode (paging turning off). This can be used to invoke BIOS code under Linux. The following user-space tools can be used with kexec jump: - kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 - makedumpfile with patches are used as memory image saving tool, it can exclude free pages from original kernel memory image file. The patches and the precompiled makedumpfile can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile-src_cvs_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile-patches_cvs_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile_cvs_kh10 - An initramfs image can be used as the root file system of kexeced kernel. An initramfs image built with "BuildRoot" can be downloaded from the following URL: initramfs image: http://khibernation.sourceforge.net/download/release_v10/initramfs/rootfs_cvs_kh10.gz All user space tools above are included in the initramfs image. Usage example of simple hibernation: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_RELOCATABLE=y CONFIG_KEXEC=y CONFIG_CRASH_DUMP=y CONFIG_PM=y CONFIG_HIBERNATION=y CONFIG_KEXEC_JUMP=y 2. Build an initramfs image contains kexec-tool and makedumpfile, or download the pre-built initramfs image, called rootfs.gz in following text. 3. Prepare a partition to save memory image of original kernel, called hibernating partition in following text. 4. Boot kernel compiled in step 1 (kernel A). 5. In the kernel A, load kernel compiled in step 1 (kernel B) with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context /boot/bzImage --mem-min=0x100000 --mem-max=0xffffff --initrd=rootfs.gz 6. Boot the kernel B with following shell command line: /sbin/kexec -e 7. The kernel B will boot as normal kexec. In kernel B the memory image of kernel A can be saved into hibernating partition as follow: jump_back_entry=`cat /proc/cmdline | tr ' ' '\n' | grep kexec_jump_back_entry | cut -d '='` echo $jump_back_entry > kexec_jump_back_entry cp /proc/vmcore dump.elf Then you can shutdown the machine as normal. 8. Boot kernel compiled in step 1 (kernel C). Use the rootfs.gz as root file system. 9. In kernel C, load the memory image of kernel A as follow: /sbin/kexec -l --args-none --entry=`cat kexec_jump_back_entry` dump.elf 10. Jump back to the kernel A as follow: /sbin/kexec -e Then, kernel A is resumed. Implementation point: To support jumping between two kernels, before jumping to (executing) the new kernel and jumping back to the original kernel, the devices are put into quiescent state, and the state of devices and CPU is saved. After jumping back from kexeced kernel and jumping to the new kernel, the state of devices and CPU are restored accordingly. The devices/CPU state save/restore code of software suspend is called to implement corresponding function. Known issues: - Because the segment number supported by sys_kexec_load is limited, hibernation image with many segments may not be load. This is planned to be eliminated by adding a new flag to sys_kexec_load to make a image can be loaded with multiple sys_kexec_load invoking. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:10 +08:00
#include <linux/freezer.h>
#include <linux/pm.h>
#include <linux/cpu.h>
#include <linux/console.h>
#include <linux/vmalloc.h>
#include <linux/swap.h>
#include <linux/syscore_ops.h>
#include <linux/compiler.h>
#include <linux/hugetlb.h>
#include <asm/page.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/sections.h>
#include <crypto/hash.h>
#include <crypto/sha.h>
/* Per cpu memory for storing cpu states in case of system crash. */
note_buf_t __percpu *crash_notes;
/* vmcoreinfo stuff */
static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
size_t vmcoreinfo_size;
size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
/* Flag to indicate we are going to kexec a new kernel */
bool kexec_in_progress = false;
/*
* Declare these symbols weak so that if architecture provides a purgatory,
* these will be overridden.
*/
char __weak kexec_purgatory[0];
size_t __weak kexec_purgatory_size = 0;
kexec: create a new config option CONFIG_KEXEC_FILE for new syscall Currently new system call kexec_file_load() and all the associated code compiles if CONFIG_KEXEC=y. But new syscall also compiles purgatory code which currently uses gcc option -mcmodel=large. This option seems to be available only gcc 4.4 onwards. Hiding new functionality behind a new config option will not break existing users of old gcc. Those who wish to enable new functionality will require new gcc. Having said that, I am trying to figure out how can I move away from using -mcmodel=large but that can take a while. I think there are other advantages of introducing this new config option. As this option will be enabled only on x86_64, other arches don't have to compile generic kexec code which will never be used. This new code selects CRYPTO=y and CRYPTO_SHA256=y. And all other arches had to do this for CONFIG_KEXEC. Now with introduction of new config option, we can remove crypto dependency from other arches. Now CONFIG_KEXEC_FILE is available only on x86_64. So whereever I had CONFIG_X86_64 defined, I got rid of that. For CONFIG_KEXEC_FILE, instead of doing select CRYPTO=y, I changed it to "depends on CRYPTO=y". This should be safer as "select" is not recursive. Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: H. Peter Anvin <hpa@zytor.com> Tested-by: Shaun Ruffell <sruffell@digium.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-30 06:18:46 +08:00
#ifdef CONFIG_KEXEC_FILE
static int kexec_calculate_store_digests(struct kimage *image);
kexec: create a new config option CONFIG_KEXEC_FILE for new syscall Currently new system call kexec_file_load() and all the associated code compiles if CONFIG_KEXEC=y. But new syscall also compiles purgatory code which currently uses gcc option -mcmodel=large. This option seems to be available only gcc 4.4 onwards. Hiding new functionality behind a new config option will not break existing users of old gcc. Those who wish to enable new functionality will require new gcc. Having said that, I am trying to figure out how can I move away from using -mcmodel=large but that can take a while. I think there are other advantages of introducing this new config option. As this option will be enabled only on x86_64, other arches don't have to compile generic kexec code which will never be used. This new code selects CRYPTO=y and CRYPTO_SHA256=y. And all other arches had to do this for CONFIG_KEXEC. Now with introduction of new config option, we can remove crypto dependency from other arches. Now CONFIG_KEXEC_FILE is available only on x86_64. So whereever I had CONFIG_X86_64 defined, I got rid of that. For CONFIG_KEXEC_FILE, instead of doing select CRYPTO=y, I changed it to "depends on CRYPTO=y". This should be safer as "select" is not recursive. Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: H. Peter Anvin <hpa@zytor.com> Tested-by: Shaun Ruffell <sruffell@digium.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-30 06:18:46 +08:00
#endif
/* Location of the reserved area for the crash kernel */
struct resource crashk_res = {
.name = "Crash kernel",
.start = 0,
.end = 0,
.flags = IORESOURCE_BUSY | IORESOURCE_MEM
};
struct resource crashk_low_res = {
.name = "Crash kernel",
.start = 0,
.end = 0,
.flags = IORESOURCE_BUSY | IORESOURCE_MEM
};
int kexec_should_crash(struct task_struct *p)
{
pid namespaces: define is_global_init() and is_container_init() is_init() is an ambiguous name for the pid==1 check. Split it into is_global_init() and is_container_init(). A cgroup init has it's tsk->pid == 1. A global init also has it's tsk->pid == 1 and it's active pid namespace is the init_pid_ns. But rather than check the active pid namespace, compare the task structure with 'init_pid_ns.child_reaper', which is initialized during boot to the /sbin/init process and never changes. Changelog: 2.6.22-rc4-mm2-pidns1: - Use 'init_pid_ns.child_reaper' to determine if a given task is the global init (/sbin/init) process. This would improve performance and remove dependence on the task_pid(). 2.6.21-mm2-pidns2: - [Sukadev Bhattiprolu] Changed is_container_init() calls in {powerpc, ppc,avr32}/traps.c for the _exception() call to is_global_init(). This way, we kill only the cgroup if the cgroup's init has a bug rather than force a kernel panic. [akpm@linux-foundation.org: fix comment] [sukadev@us.ibm.com: Use is_global_init() in arch/m32r/mm/fault.c] [bunk@stusta.de: kernel/pid.c: remove unused exports] [sukadev@us.ibm.com: Fix capability.c to work with threaded init] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com> Acked-by: Pavel Emelianov <xemul@openvz.org> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Cedric Le Goater <clg@fr.ibm.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: Herbert Poetzel <herbert@13thfloor.at> Cc: Kirill Korotaev <dev@sw.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:39:52 +08:00
if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
return 1;
return 0;
}
/*
* When kexec transitions to the new kernel there is a one-to-one
* mapping between physical and virtual addresses. On processors
* where you can disable the MMU this is trivial, and easy. For
* others it is still a simple predictable page table to setup.
*
* In that environment kexec copies the new kernel to its final
* resting place. This means I can only support memory whose
* physical address can fit in an unsigned long. In particular
* addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
* If the assembly stub has more restrictive requirements
* KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
* defined more restrictively in <asm/kexec.h>.
*
* The code for the transition from the current kernel to the
* the new kernel is placed in the control_code_buffer, whose size
* is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
* page of memory is necessary, but some architectures require more.
* Because this memory must be identity mapped in the transition from
* virtual to physical addresses it must live in the range
* 0 - TASK_SIZE, as only the user space mappings are arbitrarily
* modifiable.
*
* The assembly stub in the control code buffer is passed a linked list
* of descriptor pages detailing the source pages of the new kernel,
* and the destination addresses of those source pages. As this data
* structure is not used in the context of the current OS, it must
* be self-contained.
*
* The code has been made to work with highmem pages and will use a
* destination page in its final resting place (if it happens
* to allocate it). The end product of this is that most of the
* physical address space, and most of RAM can be used.
*
* Future directions include:
* - allocating a page table with the control code buffer identity
* mapped, to simplify machine_kexec and make kexec_on_panic more
* reliable.
*/
/*
* KIMAGE_NO_DEST is an impossible destination address..., for
* allocating pages whose destination address we do not care about.
*/
#define KIMAGE_NO_DEST (-1UL)
static int kimage_is_destination_range(struct kimage *image,
unsigned long start, unsigned long end);
static struct page *kimage_alloc_page(struct kimage *image,
gfp_t gfp_mask,
unsigned long dest);
static int copy_user_segment_list(struct kimage *image,
unsigned long nr_segments,
struct kexec_segment __user *segments)
{
int ret;
size_t segment_bytes;
/* Read in the segments */
image->nr_segments = nr_segments;
segment_bytes = nr_segments * sizeof(*segments);
ret = copy_from_user(image->segment, segments, segment_bytes);
if (ret)
ret = -EFAULT;
return ret;
}
static int sanity_check_segment_list(struct kimage *image)
{
int result, i;
unsigned long nr_segments = image->nr_segments;
/*
* Verify we have good destination addresses. The caller is
* responsible for making certain we don't attempt to load
* the new image into invalid or reserved areas of RAM. This
* just verifies it is an address we can use.
*
* Since the kernel does everything in page size chunks ensure
* the destination addresses are page aligned. Too many
* special cases crop of when we don't do this. The most
* insidious is getting overlapping destination addresses
* simply because addresses are changed to page size
* granularity.
*/
result = -EADDRNOTAVAIL;
for (i = 0; i < nr_segments; i++) {
unsigned long mstart, mend;
mstart = image->segment[i].mem;
mend = mstart + image->segment[i].memsz;
if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
return result;
if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
return result;
}
/* Verify our destination addresses do not overlap.
* If we alloed overlapping destination addresses
* through very weird things can happen with no
* easy explanation as one segment stops on another.
*/
result = -EINVAL;
for (i = 0; i < nr_segments; i++) {
unsigned long mstart, mend;
unsigned long j;
mstart = image->segment[i].mem;
mend = mstart + image->segment[i].memsz;
for (j = 0; j < i; j++) {
unsigned long pstart, pend;
pstart = image->segment[j].mem;
pend = pstart + image->segment[j].memsz;
/* Do the segments overlap ? */
if ((mend > pstart) && (mstart < pend))
return result;
}
}
/* Ensure our buffer sizes are strictly less than
* our memory sizes. This should always be the case,
* and it is easier to check up front than to be surprised
* later on.
*/
result = -EINVAL;
for (i = 0; i < nr_segments; i++) {
if (image->segment[i].bufsz > image->segment[i].memsz)
return result;
}
/*
* Verify we have good destination addresses. Normally
* the caller is responsible for making certain we don't
* attempt to load the new image into invalid or reserved
* areas of RAM. But crash kernels are preloaded into a
* reserved area of ram. We must ensure the addresses
* are in the reserved area otherwise preloading the
* kernel could corrupt things.
*/
if (image->type == KEXEC_TYPE_CRASH) {
result = -EADDRNOTAVAIL;
for (i = 0; i < nr_segments; i++) {
unsigned long mstart, mend;
mstart = image->segment[i].mem;
mend = mstart + image->segment[i].memsz - 1;
/* Ensure we are within the crash kernel limits */
if ((mstart < crashk_res.start) ||
(mend > crashk_res.end))
return result;
}
}
return 0;
}
static struct kimage *do_kimage_alloc_init(void)
{
struct kimage *image;
/* Allocate a controlling structure */
image = kzalloc(sizeof(*image), GFP_KERNEL);
if (!image)
return NULL;
image->head = 0;
image->entry = &image->head;
image->last_entry = &image->head;
image->control_page = ~0; /* By default this does not apply */
image->type = KEXEC_TYPE_DEFAULT;
/* Initialize the list of control pages */
INIT_LIST_HEAD(&image->control_pages);
/* Initialize the list of destination pages */
INIT_LIST_HEAD(&image->dest_pages);
/* Initialize the list of unusable pages */
INIT_LIST_HEAD(&image->unusable_pages);
return image;
}
static void kimage_free_page_list(struct list_head *list);
static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
unsigned long nr_segments,
struct kexec_segment __user *segments,
unsigned long flags)
{
int ret;
struct kimage *image;
bool kexec_on_panic = flags & KEXEC_ON_CRASH;
if (kexec_on_panic) {
/* Verify we have a valid entry point */
if ((entry < crashk_res.start) || (entry > crashk_res.end))
return -EADDRNOTAVAIL;
}
/* Allocate and initialize a controlling structure */
image = do_kimage_alloc_init();
if (!image)
return -ENOMEM;
image->start = entry;
ret = copy_user_segment_list(image, nr_segments, segments);
if (ret)
goto out_free_image;
ret = sanity_check_segment_list(image);
if (ret)
goto out_free_image;
/* Enable the special crash kernel control page allocation policy. */
if (kexec_on_panic) {
image->control_page = crashk_res.start;
image->type = KEXEC_TYPE_CRASH;
}
/*
* Find a location for the control code buffer, and add it
* the vector of segments so that it's pages will also be
* counted as destination pages.
*/
ret = -ENOMEM;
image->control_code_page = kimage_alloc_control_pages(image,
get_order(KEXEC_CONTROL_PAGE_SIZE));
if (!image->control_code_page) {
pr_err("Could not allocate control_code_buffer\n");
goto out_free_image;
}
if (!kexec_on_panic) {
image->swap_page = kimage_alloc_control_pages(image, 0);
if (!image->swap_page) {
pr_err("Could not allocate swap buffer\n");
goto out_free_control_pages;
}
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:07 +08:00
}
*rimage = image;
return 0;
out_free_control_pages:
kimage_free_page_list(&image->control_pages);
out_free_image:
kfree(image);
return ret;
}
kexec: create a new config option CONFIG_KEXEC_FILE for new syscall Currently new system call kexec_file_load() and all the associated code compiles if CONFIG_KEXEC=y. But new syscall also compiles purgatory code which currently uses gcc option -mcmodel=large. This option seems to be available only gcc 4.4 onwards. Hiding new functionality behind a new config option will not break existing users of old gcc. Those who wish to enable new functionality will require new gcc. Having said that, I am trying to figure out how can I move away from using -mcmodel=large but that can take a while. I think there are other advantages of introducing this new config option. As this option will be enabled only on x86_64, other arches don't have to compile generic kexec code which will never be used. This new code selects CRYPTO=y and CRYPTO_SHA256=y. And all other arches had to do this for CONFIG_KEXEC. Now with introduction of new config option, we can remove crypto dependency from other arches. Now CONFIG_KEXEC_FILE is available only on x86_64. So whereever I had CONFIG_X86_64 defined, I got rid of that. For CONFIG_KEXEC_FILE, instead of doing select CRYPTO=y, I changed it to "depends on CRYPTO=y". This should be safer as "select" is not recursive. Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: H. Peter Anvin <hpa@zytor.com> Tested-by: Shaun Ruffell <sruffell@digium.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-30 06:18:46 +08:00
#ifdef CONFIG_KEXEC_FILE
static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len)
{
struct fd f = fdget(fd);
int ret;
struct kstat stat;
loff_t pos;
ssize_t bytes = 0;
if (!f.file)
return -EBADF;
ret = vfs_getattr(&f.file->f_path, &stat);
if (ret)
goto out;
if (stat.size > INT_MAX) {
ret = -EFBIG;
goto out;
}
/* Don't hand 0 to vmalloc, it whines. */
if (stat.size == 0) {
ret = -EINVAL;
goto out;
}
*buf = vmalloc(stat.size);
if (!*buf) {
ret = -ENOMEM;
goto out;
}
pos = 0;
while (pos < stat.size) {
bytes = kernel_read(f.file, pos, (char *)(*buf) + pos,
stat.size - pos);
if (bytes < 0) {
vfree(*buf);
ret = bytes;
goto out;
}
if (bytes == 0)
break;
pos += bytes;
}
if (pos != stat.size) {
ret = -EBADF;
vfree(*buf);
goto out;
}
*buf_len = pos;
out:
fdput(f);
return ret;
}
/* Architectures can provide this probe function */
int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
unsigned long buf_len)
{
return -ENOEXEC;
}
void * __weak arch_kexec_kernel_image_load(struct kimage *image)
{
return ERR_PTR(-ENOEXEC);
}
void __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
{
}
kexec: verify the signature of signed PE bzImage This is the final piece of the puzzle of verifying kernel image signature during kexec_file_load() syscall. This patch calls into PE file routines to verify signature of bzImage. If signature are valid, kexec_file_load() succeeds otherwise it fails. Two new config options have been introduced. First one is CONFIG_KEXEC_VERIFY_SIG. This option enforces that kernel has to be validly signed otherwise kernel load will fail. If this option is not set, no signature verification will be done. Only exception will be when secureboot is enabled. In that case signature verification should be automatically enforced when secureboot is enabled. But that will happen when secureboot patches are merged. Second config option is CONFIG_KEXEC_BZIMAGE_VERIFY_SIG. This option enables signature verification support on bzImage. If this option is not set and previous one is set, kernel image loading will fail because kernel does not have support to verify signature of bzImage. I tested these patches with both "pesign" and "sbsign" signed bzImages. I used signing_key.priv key and signing_key.x509 cert for signing as generated during kernel build process (if module signing is enabled). Used following method to sign bzImage. pesign ====== - Convert DER format cert to PEM format cert openssl x509 -in signing_key.x509 -inform DER -out signing_key.x509.PEM -outform PEM - Generate a .p12 file from existing cert and private key file openssl pkcs12 -export -out kernel-key.p12 -inkey signing_key.priv -in signing_key.x509.PEM - Import .p12 file into pesign db pk12util -i /tmp/kernel-key.p12 -d /etc/pki/pesign - Sign bzImage pesign -i /boot/vmlinuz-3.16.0-rc3+ -o /boot/vmlinuz-3.16.0-rc3+.signed.pesign -c "Glacier signing key - Magrathea" -s sbsign ====== sbsign --key signing_key.priv --cert signing_key.x509.PEM --output /boot/vmlinuz-3.16.0-rc3+.signed.sbsign /boot/vmlinuz-3.16.0-rc3+ Patch details: Well all the hard work is done in previous patches. Now bzImage loader has just call into that code and verify whether bzImage signature are valid or not. Also create two config options. First one is CONFIG_KEXEC_VERIFY_SIG. This option enforces that kernel has to be validly signed otherwise kernel load will fail. If this option is not set, no signature verification will be done. Only exception will be when secureboot is enabled. In that case signature verification should be automatically enforced when secureboot is enabled. But that will happen when secureboot patches are merged. Second config option is CONFIG_KEXEC_BZIMAGE_VERIFY_SIG. This option enables signature verification support on bzImage. If this option is not set and previous one is set, kernel image loading will fail because kernel does not have support to verify signature of bzImage. Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Cc: Borislav Petkov <bp@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Eric Biederman <ebiederm@xmission.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Matthew Garrett <mjg59@srcf.ucam.org> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Dave Young <dyoung@redhat.com> Cc: WANG Chao <chaowang@redhat.com> Cc: Baoquan He <bhe@redhat.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Matt Fleming <matt@console-pimps.org> Cc: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-09 05:26:13 +08:00
int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
unsigned long buf_len)
{
return -EKEYREJECTED;
}
/* Apply relocations of type RELA */
int __weak
arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
unsigned int relsec)
{
pr_err("RELA relocation unsupported.\n");
return -ENOEXEC;
}
/* Apply relocations of type REL */
int __weak
arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
unsigned int relsec)
{
pr_err("REL relocation unsupported.\n");
return -ENOEXEC;
}
/*
* Free up memory used by kernel, initrd, and comand line. This is temporary
* memory allocation which is not needed any more after these buffers have
* been loaded into separate segments and have been copied elsewhere.
*/
static void kimage_file_post_load_cleanup(struct kimage *image)
{
struct purgatory_info *pi = &image->purgatory_info;
vfree(image->kernel_buf);
image->kernel_buf = NULL;
vfree(image->initrd_buf);
image->initrd_buf = NULL;
kfree(image->cmdline_buf);
image->cmdline_buf = NULL;
vfree(pi->purgatory_buf);
pi->purgatory_buf = NULL;
vfree(pi->sechdrs);
pi->sechdrs = NULL;
/* See if architecture has anything to cleanup post load */
arch_kimage_file_post_load_cleanup(image);
/*
* Above call should have called into bootloader to free up
* any data stored in kimage->image_loader_data. It should
* be ok now to free it up.
*/
kfree(image->image_loader_data);
image->image_loader_data = NULL;
}
/*
* In file mode list of segments is prepared by kernel. Copy relevant
* data from user space, do error checking, prepare segment list
*/
static int
kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
const char __user *cmdline_ptr,
unsigned long cmdline_len, unsigned flags)
{
int ret = 0;
void *ldata;
ret = copy_file_from_fd(kernel_fd, &image->kernel_buf,
&image->kernel_buf_len);
if (ret)
return ret;
/* Call arch image probe handlers */
ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
image->kernel_buf_len);
if (ret)
goto out;
kexec: verify the signature of signed PE bzImage This is the final piece of the puzzle of verifying kernel image signature during kexec_file_load() syscall. This patch calls into PE file routines to verify signature of bzImage. If signature are valid, kexec_file_load() succeeds otherwise it fails. Two new config options have been introduced. First one is CONFIG_KEXEC_VERIFY_SIG. This option enforces that kernel has to be validly signed otherwise kernel load will fail. If this option is not set, no signature verification will be done. Only exception will be when secureboot is enabled. In that case signature verification should be automatically enforced when secureboot is enabled. But that will happen when secureboot patches are merged. Second config option is CONFIG_KEXEC_BZIMAGE_VERIFY_SIG. This option enables signature verification support on bzImage. If this option is not set and previous one is set, kernel image loading will fail because kernel does not have support to verify signature of bzImage. I tested these patches with both "pesign" and "sbsign" signed bzImages. I used signing_key.priv key and signing_key.x509 cert for signing as generated during kernel build process (if module signing is enabled). Used following method to sign bzImage. pesign ====== - Convert DER format cert to PEM format cert openssl x509 -in signing_key.x509 -inform DER -out signing_key.x509.PEM -outform PEM - Generate a .p12 file from existing cert and private key file openssl pkcs12 -export -out kernel-key.p12 -inkey signing_key.priv -in signing_key.x509.PEM - Import .p12 file into pesign db pk12util -i /tmp/kernel-key.p12 -d /etc/pki/pesign - Sign bzImage pesign -i /boot/vmlinuz-3.16.0-rc3+ -o /boot/vmlinuz-3.16.0-rc3+.signed.pesign -c "Glacier signing key - Magrathea" -s sbsign ====== sbsign --key signing_key.priv --cert signing_key.x509.PEM --output /boot/vmlinuz-3.16.0-rc3+.signed.sbsign /boot/vmlinuz-3.16.0-rc3+ Patch details: Well all the hard work is done in previous patches. Now bzImage loader has just call into that code and verify whether bzImage signature are valid or not. Also create two config options. First one is CONFIG_KEXEC_VERIFY_SIG. This option enforces that kernel has to be validly signed otherwise kernel load will fail. If this option is not set, no signature verification will be done. Only exception will be when secureboot is enabled. In that case signature verification should be automatically enforced when secureboot is enabled. But that will happen when secureboot patches are merged. Second config option is CONFIG_KEXEC_BZIMAGE_VERIFY_SIG. This option enables signature verification support on bzImage. If this option is not set and previous one is set, kernel image loading will fail because kernel does not have support to verify signature of bzImage. Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Cc: Borislav Petkov <bp@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Eric Biederman <ebiederm@xmission.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Matthew Garrett <mjg59@srcf.ucam.org> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Dave Young <dyoung@redhat.com> Cc: WANG Chao <chaowang@redhat.com> Cc: Baoquan He <bhe@redhat.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Matt Fleming <matt@console-pimps.org> Cc: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-09 05:26:13 +08:00
#ifdef CONFIG_KEXEC_VERIFY_SIG
ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
image->kernel_buf_len);
if (ret) {
pr_debug("kernel signature verification failed.\n");
goto out;
}
pr_debug("kernel signature verification successful.\n");
#endif
/* It is possible that there no initramfs is being loaded */
if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
ret = copy_file_from_fd(initrd_fd, &image->initrd_buf,
&image->initrd_buf_len);
if (ret)
goto out;
}
if (cmdline_len) {
image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
if (!image->cmdline_buf) {
ret = -ENOMEM;
goto out;
}
ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
cmdline_len);
if (ret) {
ret = -EFAULT;
goto out;
}
image->cmdline_buf_len = cmdline_len;
/* command line should be a string with last byte null */
if (image->cmdline_buf[cmdline_len - 1] != '\0') {
ret = -EINVAL;
goto out;
}
}
/* Call arch image load handlers */
ldata = arch_kexec_kernel_image_load(image);
if (IS_ERR(ldata)) {
ret = PTR_ERR(ldata);
goto out;
}
image->image_loader_data = ldata;
out:
/* In case of error, free up all allocated memory in this function */
if (ret)
kimage_file_post_load_cleanup(image);
return ret;
}
static int
kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
int initrd_fd, const char __user *cmdline_ptr,
unsigned long cmdline_len, unsigned long flags)
{
int ret;
struct kimage *image;
bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
image = do_kimage_alloc_init();
if (!image)
return -ENOMEM;
image->file_mode = 1;
if (kexec_on_panic) {
/* Enable special crash kernel control page alloc policy. */
image->control_page = crashk_res.start;
image->type = KEXEC_TYPE_CRASH;
}
ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
cmdline_ptr, cmdline_len, flags);
if (ret)
goto out_free_image;
ret = sanity_check_segment_list(image);
if (ret)
goto out_free_post_load_bufs;
ret = -ENOMEM;
image->control_code_page = kimage_alloc_control_pages(image,
get_order(KEXEC_CONTROL_PAGE_SIZE));
if (!image->control_code_page) {
pr_err("Could not allocate control_code_buffer\n");
goto out_free_post_load_bufs;
}
if (!kexec_on_panic) {
image->swap_page = kimage_alloc_control_pages(image, 0);
if (!image->swap_page) {
pr_err(KERN_ERR "Could not allocate swap buffer\n");
goto out_free_control_pages;
}
}
*rimage = image;
return 0;
out_free_control_pages:
kimage_free_page_list(&image->control_pages);
out_free_post_load_bufs:
kimage_file_post_load_cleanup(image);
out_free_image:
kfree(image);
return ret;
}
kexec: create a new config option CONFIG_KEXEC_FILE for new syscall Currently new system call kexec_file_load() and all the associated code compiles if CONFIG_KEXEC=y. But new syscall also compiles purgatory code which currently uses gcc option -mcmodel=large. This option seems to be available only gcc 4.4 onwards. Hiding new functionality behind a new config option will not break existing users of old gcc. Those who wish to enable new functionality will require new gcc. Having said that, I am trying to figure out how can I move away from using -mcmodel=large but that can take a while. I think there are other advantages of introducing this new config option. As this option will be enabled only on x86_64, other arches don't have to compile generic kexec code which will never be used. This new code selects CRYPTO=y and CRYPTO_SHA256=y. And all other arches had to do this for CONFIG_KEXEC. Now with introduction of new config option, we can remove crypto dependency from other arches. Now CONFIG_KEXEC_FILE is available only on x86_64. So whereever I had CONFIG_X86_64 defined, I got rid of that. For CONFIG_KEXEC_FILE, instead of doing select CRYPTO=y, I changed it to "depends on CRYPTO=y". This should be safer as "select" is not recursive. Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: H. Peter Anvin <hpa@zytor.com> Tested-by: Shaun Ruffell <sruffell@digium.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-30 06:18:46 +08:00
#else /* CONFIG_KEXEC_FILE */
static inline void kimage_file_post_load_cleanup(struct kimage *image) { }
#endif /* CONFIG_KEXEC_FILE */
static int kimage_is_destination_range(struct kimage *image,
unsigned long start,
unsigned long end)
{
unsigned long i;
for (i = 0; i < image->nr_segments; i++) {
unsigned long mstart, mend;
mstart = image->segment[i].mem;
mend = mstart + image->segment[i].memsz;
if ((end > mstart) && (start < mend))
return 1;
}
return 0;
}
static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
{
struct page *pages;
pages = alloc_pages(gfp_mask, order);
if (pages) {
unsigned int count, i;
pages->mapping = NULL;
[PATCH] mm: split page table lock Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with a many-threaded application which concurrently initializes different parts of a large anonymous area. This patch corrects that, by using a separate spinlock per page table page, to guard the page table entries in that page, instead of using the mm's single page_table_lock. (But even then, page_table_lock is still used to guard page table allocation, and anon_vma allocation.) In this implementation, the spinlock is tucked inside the struct page of the page table page: with a BUILD_BUG_ON in case it overflows - which it would in the case of 32-bit PA-RISC with spinlock debugging enabled. Splitting the lock is not quite for free: another cacheline access. Ideally, I suppose we would use split ptlock only for multi-threaded processes on multi-cpu machines; but deciding that dynamically would have its own costs. So for now enable it by config, at some number of cpus - since the Kconfig language doesn't support inequalities, let preprocessor compare that with NR_CPUS. But I don't think it's worth being user-configurable: for good testing of both split and unsplit configs, split now at 4 cpus, and perhaps change that to 8 later. There is a benefit even for singly threaded processes: kswapd can be attacking one part of the mm while another part is busy faulting. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 09:16:40 +08:00
set_page_private(pages, order);
count = 1 << order;
for (i = 0; i < count; i++)
SetPageReserved(pages + i);
}
return pages;
}
static void kimage_free_pages(struct page *page)
{
unsigned int order, count, i;
[PATCH] mm: split page table lock Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with a many-threaded application which concurrently initializes different parts of a large anonymous area. This patch corrects that, by using a separate spinlock per page table page, to guard the page table entries in that page, instead of using the mm's single page_table_lock. (But even then, page_table_lock is still used to guard page table allocation, and anon_vma allocation.) In this implementation, the spinlock is tucked inside the struct page of the page table page: with a BUILD_BUG_ON in case it overflows - which it would in the case of 32-bit PA-RISC with spinlock debugging enabled. Splitting the lock is not quite for free: another cacheline access. Ideally, I suppose we would use split ptlock only for multi-threaded processes on multi-cpu machines; but deciding that dynamically would have its own costs. So for now enable it by config, at some number of cpus - since the Kconfig language doesn't support inequalities, let preprocessor compare that with NR_CPUS. But I don't think it's worth being user-configurable: for good testing of both split and unsplit configs, split now at 4 cpus, and perhaps change that to 8 later. There is a benefit even for singly threaded processes: kswapd can be attacking one part of the mm while another part is busy faulting. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 09:16:40 +08:00
order = page_private(page);
count = 1 << order;
for (i = 0; i < count; i++)
ClearPageReserved(page + i);
__free_pages(page, order);
}
static void kimage_free_page_list(struct list_head *list)
{
struct list_head *pos, *next;
list_for_each_safe(pos, next, list) {
struct page *page;
page = list_entry(pos, struct page, lru);
list_del(&page->lru);
kimage_free_pages(page);
}
}
static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
unsigned int order)
{
/* Control pages are special, they are the intermediaries
* that are needed while we copy the rest of the pages
* to their final resting place. As such they must
* not conflict with either the destination addresses
* or memory the kernel is already using.
*
* The only case where we really need more than one of
* these are for architectures where we cannot disable
* the MMU and must instead generate an identity mapped
* page table for all of the memory.
*
* At worst this runs in O(N) of the image size.
*/
struct list_head extra_pages;
struct page *pages;
unsigned int count;
count = 1 << order;
INIT_LIST_HEAD(&extra_pages);
/* Loop while I can allocate a page and the page allocated
* is a destination page.
*/
do {
unsigned long pfn, epfn, addr, eaddr;
pages = kimage_alloc_pages(GFP_KERNEL, order);
if (!pages)
break;
pfn = page_to_pfn(pages);
epfn = pfn + count;
addr = pfn << PAGE_SHIFT;
eaddr = epfn << PAGE_SHIFT;
if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
kimage_is_destination_range(image, addr, eaddr)) {
list_add(&pages->lru, &extra_pages);
pages = NULL;
}
} while (!pages);
if (pages) {
/* Remember the allocated page... */
list_add(&pages->lru, &image->control_pages);
/* Because the page is already in it's destination
* location we will never allocate another page at
* that address. Therefore kimage_alloc_pages
* will not return it (again) and we don't need
* to give it an entry in image->segment[].
*/
}
/* Deal with the destination pages I have inadvertently allocated.
*
* Ideally I would convert multi-page allocations into single
* page allocations, and add everything to image->dest_pages.
*
* For now it is simpler to just free the pages.
*/
kimage_free_page_list(&extra_pages);
return pages;
}
static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
unsigned int order)
{
/* Control pages are special, they are the intermediaries
* that are needed while we copy the rest of the pages
* to their final resting place. As such they must
* not conflict with either the destination addresses
* or memory the kernel is already using.
*
* Control pages are also the only pags we must allocate
* when loading a crash kernel. All of the other pages
* are specified by the segments and we just memcpy
* into them directly.
*
* The only case where we really need more than one of
* these are for architectures where we cannot disable
* the MMU and must instead generate an identity mapped
* page table for all of the memory.
*
* Given the low demand this implements a very simple
* allocator that finds the first hole of the appropriate
* size in the reserved memory region, and allocates all
* of the memory up to and including the hole.
*/
unsigned long hole_start, hole_end, size;
struct page *pages;
pages = NULL;
size = (1 << order) << PAGE_SHIFT;
hole_start = (image->control_page + (size - 1)) & ~(size - 1);
hole_end = hole_start + size - 1;
while (hole_end <= crashk_res.end) {
unsigned long i;
if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
break;
/* See if I overlap any of the segments */
for (i = 0; i < image->nr_segments; i++) {
unsigned long mstart, mend;
mstart = image->segment[i].mem;
mend = mstart + image->segment[i].memsz - 1;
if ((hole_end >= mstart) && (hole_start <= mend)) {
/* Advance the hole to the end of the segment */
hole_start = (mend + (size - 1)) & ~(size - 1);
hole_end = hole_start + size - 1;
break;
}
}
/* If I don't overlap any segments I have found my hole! */
if (i == image->nr_segments) {
pages = pfn_to_page(hole_start >> PAGE_SHIFT);
break;
}
}
if (pages)
image->control_page = hole_end;
return pages;
}
struct page *kimage_alloc_control_pages(struct kimage *image,
unsigned int order)
{
struct page *pages = NULL;
switch (image->type) {
case KEXEC_TYPE_DEFAULT:
pages = kimage_alloc_normal_control_pages(image, order);
break;
case KEXEC_TYPE_CRASH:
pages = kimage_alloc_crash_control_pages(image, order);
break;
}
return pages;
}
static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
{
if (*image->entry != 0)
image->entry++;
if (image->entry == image->last_entry) {
kimage_entry_t *ind_page;
struct page *page;
page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
if (!page)
return -ENOMEM;
ind_page = page_address(page);
*image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
image->entry = ind_page;
image->last_entry = ind_page +
((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
}
*image->entry = entry;
image->entry++;
*image->entry = 0;
return 0;
}
static int kimage_set_destination(struct kimage *image,
unsigned long destination)
{
int result;
destination &= PAGE_MASK;
result = kimage_add_entry(image, destination | IND_DESTINATION);
if (result == 0)
image->destination = destination;
return result;
}
static int kimage_add_page(struct kimage *image, unsigned long page)
{
int result;
page &= PAGE_MASK;
result = kimage_add_entry(image, page | IND_SOURCE);
if (result == 0)
image->destination += PAGE_SIZE;
return result;
}
static void kimage_free_extra_pages(struct kimage *image)
{
/* Walk through and free any extra destination pages I may have */
kimage_free_page_list(&image->dest_pages);
/* Walk through and free any unusable pages I have cached */
kimage_free_page_list(&image->unusable_pages);
}
static void kimage_terminate(struct kimage *image)
{
if (*image->entry != 0)
image->entry++;
*image->entry = IND_DONE;
}
#define for_each_kimage_entry(image, ptr, entry) \
for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
ptr = (entry & IND_INDIRECTION) ? \
phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
static void kimage_free_entry(kimage_entry_t entry)
{
struct page *page;
page = pfn_to_page(entry >> PAGE_SHIFT);
kimage_free_pages(page);
}
static void kimage_free(struct kimage *image)
{
kimage_entry_t *ptr, entry;
kimage_entry_t ind = 0;
if (!image)
return;
kimage_free_extra_pages(image);
for_each_kimage_entry(image, ptr, entry) {
if (entry & IND_INDIRECTION) {
/* Free the previous indirection page */
if (ind & IND_INDIRECTION)
kimage_free_entry(ind);
/* Save this indirection page until we are
* done with it.
*/
ind = entry;
} else if (entry & IND_SOURCE)
kimage_free_entry(entry);
}
/* Free the final indirection page */
if (ind & IND_INDIRECTION)
kimage_free_entry(ind);
/* Handle any machine specific cleanup */
machine_kexec_cleanup(image);
/* Free the kexec control pages... */
kimage_free_page_list(&image->control_pages);
/*
* Free up any temporary buffers allocated. This might hit if
* error occurred much later after buffer allocation.
*/
if (image->file_mode)
kimage_file_post_load_cleanup(image);
kfree(image);
}
static kimage_entry_t *kimage_dst_used(struct kimage *image,
unsigned long page)
{
kimage_entry_t *ptr, entry;
unsigned long destination = 0;
for_each_kimage_entry(image, ptr, entry) {
if (entry & IND_DESTINATION)
destination = entry & PAGE_MASK;
else if (entry & IND_SOURCE) {
if (page == destination)
return ptr;
destination += PAGE_SIZE;
}
}
return NULL;
}
static struct page *kimage_alloc_page(struct kimage *image,
gfp_t gfp_mask,
unsigned long destination)
{
/*
* Here we implement safeguards to ensure that a source page
* is not copied to its destination page before the data on
* the destination page is no longer useful.
*
* To do this we maintain the invariant that a source page is
* either its own destination page, or it is not a
* destination page at all.
*
* That is slightly stronger than required, but the proof
* that no problems will not occur is trivial, and the
* implementation is simply to verify.
*
* When allocating all pages normally this algorithm will run
* in O(N) time, but in the worst case it will run in O(N^2)
* time. If the runtime is a problem the data structures can
* be fixed.
*/
struct page *page;
unsigned long addr;
/*
* Walk through the list of destination pages, and see if I
* have a match.
*/
list_for_each_entry(page, &image->dest_pages, lru) {
addr = page_to_pfn(page) << PAGE_SHIFT;
if (addr == destination) {
list_del(&page->lru);
return page;
}
}
page = NULL;
while (1) {
kimage_entry_t *old;
/* Allocate a page, if we run out of memory give up */
page = kimage_alloc_pages(gfp_mask, 0);
if (!page)
return NULL;
/* If the page cannot be used file it away */
if (page_to_pfn(page) >
(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
list_add(&page->lru, &image->unusable_pages);
continue;
}
addr = page_to_pfn(page) << PAGE_SHIFT;
/* If it is the destination page we want use it */
if (addr == destination)
break;
/* If the page is not a destination page use it */
if (!kimage_is_destination_range(image, addr,
addr + PAGE_SIZE))
break;
/*
* I know that the page is someones destination page.
* See if there is already a source page for this
* destination page. And if so swap the source pages.
*/
old = kimage_dst_used(image, addr);
if (old) {
/* If so move it */
unsigned long old_addr;
struct page *old_page;
old_addr = *old & PAGE_MASK;
old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
copy_highpage(page, old_page);
*old = addr | (*old & ~PAGE_MASK);
/* The old page I have found cannot be a
* destination page, so return it if it's
* gfp_flags honor the ones passed in.
*/
if (!(gfp_mask & __GFP_HIGHMEM) &&
PageHighMem(old_page)) {
kimage_free_pages(old_page);
continue;
}
addr = old_addr;
page = old_page;
break;
} else {
/* Place the page on the destination list I
* will use it later.
*/
list_add(&page->lru, &image->dest_pages);
}
}
return page;
}
static int kimage_load_normal_segment(struct kimage *image,
struct kexec_segment *segment)
{
unsigned long maddr;
size_t ubytes, mbytes;
int result;
unsigned char __user *buf = NULL;
unsigned char *kbuf = NULL;
result = 0;
if (image->file_mode)
kbuf = segment->kbuf;
else
buf = segment->buf;
ubytes = segment->bufsz;
mbytes = segment->memsz;
maddr = segment->mem;
result = kimage_set_destination(image, maddr);
if (result < 0)
goto out;
while (mbytes) {
struct page *page;
char *ptr;
size_t uchunk, mchunk;
page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
if (!page) {
result = -ENOMEM;
goto out;
}
result = kimage_add_page(image, page_to_pfn(page)
<< PAGE_SHIFT);
if (result < 0)
goto out;
ptr = kmap(page);
/* Start with a clear page */
clear_page(ptr);
ptr += maddr & ~PAGE_MASK;
mchunk = min_t(size_t, mbytes,
PAGE_SIZE - (maddr & ~PAGE_MASK));
uchunk = min(ubytes, mchunk);
/* For file based kexec, source pages are in kernel memory */
if (image->file_mode)
memcpy(ptr, kbuf, uchunk);
else
result = copy_from_user(ptr, buf, uchunk);
kunmap(page);
if (result) {
result = -EFAULT;
goto out;
}
ubytes -= uchunk;
maddr += mchunk;
if (image->file_mode)
kbuf += mchunk;
else
buf += mchunk;
mbytes -= mchunk;
}
out:
return result;
}
static int kimage_load_crash_segment(struct kimage *image,
struct kexec_segment *segment)
{
/* For crash dumps kernels we simply copy the data from
* user space to it's destination.
* We do things a page at a time for the sake of kmap.
*/
unsigned long maddr;
size_t ubytes, mbytes;
int result;
unsigned char __user *buf = NULL;
unsigned char *kbuf = NULL;
result = 0;
if (image->file_mode)
kbuf = segment->kbuf;
else
buf = segment->buf;
ubytes = segment->bufsz;
mbytes = segment->memsz;
maddr = segment->mem;
while (mbytes) {
struct page *page;
char *ptr;
size_t uchunk, mchunk;
page = pfn_to_page(maddr >> PAGE_SHIFT);
if (!page) {
result = -ENOMEM;
goto out;
}
ptr = kmap(page);
ptr += maddr & ~PAGE_MASK;
mchunk = min_t(size_t, mbytes,
PAGE_SIZE - (maddr & ~PAGE_MASK));
uchunk = min(ubytes, mchunk);
if (mchunk > uchunk) {
/* Zero the trailing part of the page */
memset(ptr + uchunk, 0, mchunk - uchunk);
}
/* For file based kexec, source pages are in kernel memory */
if (image->file_mode)
memcpy(ptr, kbuf, uchunk);
else
result = copy_from_user(ptr, buf, uchunk);
kexec_flush_icache_page(page);
kunmap(page);
if (result) {
result = -EFAULT;
goto out;
}
ubytes -= uchunk;
maddr += mchunk;
if (image->file_mode)
kbuf += mchunk;
else
buf += mchunk;
mbytes -= mchunk;
}
out:
return result;
}
static int kimage_load_segment(struct kimage *image,
struct kexec_segment *segment)
{
int result = -ENOMEM;
switch (image->type) {
case KEXEC_TYPE_DEFAULT:
result = kimage_load_normal_segment(image, segment);
break;
case KEXEC_TYPE_CRASH:
result = kimage_load_crash_segment(image, segment);
break;
}
return result;
}
/*
* Exec Kernel system call: for obvious reasons only root may call it.
*
* This call breaks up into three pieces.
* - A generic part which loads the new kernel from the current
* address space, and very carefully places the data in the
* allocated pages.
*
* - A generic part that interacts with the kernel and tells all of
* the devices to shut down. Preventing on-going dmas, and placing
* the devices in a consistent state so a later kernel can
* reinitialize them.
*
* - A machine specific part that includes the syscall number
* and then copies the image to it's final destination. And
* jumps into the image at entry.
*
* kexec does not sync, or unmount filesystems so if you need
* that to happen you need to do that yourself.
*/
struct kimage *kexec_image;
struct kimage *kexec_crash_image;
kexec: add sysctl to disable kexec_load For general-purpose (i.e. distro) kernel builds it makes sense to build with CONFIG_KEXEC to allow end users to choose what kind of things they want to do with kexec. However, in the face of trying to lock down a system with such a kernel, there needs to be a way to disable kexec_load (much like module loading can be disabled). Without this, it is too easy for the root user to modify kernel memory even when CONFIG_STRICT_DEVMEM and modules_disabled are set. With this change, it is still possible to load an image for use later, then disable kexec_load so the image (or lack of image) can't be altered. The intention is for using this in environments where "perfect" enforcement is hard. Without a verified boot, along with verified modules, and along with verified kexec, this is trying to give a system a better chance to defend itself (or at least grow the window of discoverability) against attack in the face of a privilege escalation. In my mind, I consider several boot scenarios: 1) Verified boot of read-only verified root fs loading fd-based verification of kexec images. 2) Secure boot of writable root fs loading signed kexec images. 3) Regular boot loading kexec (e.g. kcrash) image early and locking it. 4) Regular boot with no control of kexec image at all. 1 and 2 don't exist yet, but will soon once the verified kexec series has landed. 4 is the state of things now. The gap between 2 and 4 is too large, so this change creates scenario 3, a middle-ground above 4 when 2 and 1 are not possible for a system. Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Rik van Riel <riel@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-24 07:55:59 +08:00
int kexec_load_disabled;
static DEFINE_MUTEX(kexec_mutex);
SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
struct kexec_segment __user *, segments, unsigned long, flags)
{
struct kimage **dest_image, *image;
int result;
/* We only trust the superuser with rebooting the system. */
kexec: add sysctl to disable kexec_load For general-purpose (i.e. distro) kernel builds it makes sense to build with CONFIG_KEXEC to allow end users to choose what kind of things they want to do with kexec. However, in the face of trying to lock down a system with such a kernel, there needs to be a way to disable kexec_load (much like module loading can be disabled). Without this, it is too easy for the root user to modify kernel memory even when CONFIG_STRICT_DEVMEM and modules_disabled are set. With this change, it is still possible to load an image for use later, then disable kexec_load so the image (or lack of image) can't be altered. The intention is for using this in environments where "perfect" enforcement is hard. Without a verified boot, along with verified modules, and along with verified kexec, this is trying to give a system a better chance to defend itself (or at least grow the window of discoverability) against attack in the face of a privilege escalation. In my mind, I consider several boot scenarios: 1) Verified boot of read-only verified root fs loading fd-based verification of kexec images. 2) Secure boot of writable root fs loading signed kexec images. 3) Regular boot loading kexec (e.g. kcrash) image early and locking it. 4) Regular boot with no control of kexec image at all. 1 and 2 don't exist yet, but will soon once the verified kexec series has landed. 4 is the state of things now. The gap between 2 and 4 is too large, so this change creates scenario 3, a middle-ground above 4 when 2 and 1 are not possible for a system. Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Rik van Riel <riel@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-24 07:55:59 +08:00
if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
return -EPERM;
/*
* Verify we have a legal set of flags
* This leaves us room for future extensions.
*/
if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
return -EINVAL;
/* Verify we are on the appropriate architecture */
if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
return -EINVAL;
/* Put an artificial cap on the number
* of segments passed to kexec_load.
*/
if (nr_segments > KEXEC_SEGMENT_MAX)
return -EINVAL;
image = NULL;
result = 0;
/* Because we write directly to the reserved memory
* region when loading crash kernels we need a mutex here to
* prevent multiple crash kernels from attempting to load
* simultaneously, and to prevent a crash kernel from loading
* over the top of a in use crash kernel.
*
* KISS: always take the mutex.
*/
if (!mutex_trylock(&kexec_mutex))
return -EBUSY;
dest_image = &kexec_image;
if (flags & KEXEC_ON_CRASH)
dest_image = &kexec_crash_image;
if (nr_segments > 0) {
unsigned long i;
/* Loading another kernel to reboot into */
if ((flags & KEXEC_ON_CRASH) == 0)
result = kimage_alloc_init(&image, entry, nr_segments,
segments, flags);
/* Loading another kernel to switch to if this one crashes */
else if (flags & KEXEC_ON_CRASH) {
/* Free any current crash dump kernel before
* we corrupt it.
*/
kimage_free(xchg(&kexec_crash_image, NULL));
result = kimage_alloc_init(&image, entry, nr_segments,
segments, flags);
crash_map_reserved_pages();
}
if (result)
goto out;
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:07 +08:00
if (flags & KEXEC_PRESERVE_CONTEXT)
image->preserve_context = 1;
result = machine_kexec_prepare(image);
if (result)
goto out;
for (i = 0; i < nr_segments; i++) {
result = kimage_load_segment(image, &image->segment[i]);
if (result)
goto out;
}
kimage_terminate(image);
if (flags & KEXEC_ON_CRASH)
crash_unmap_reserved_pages();
}
/* Install the new kernel, and Uninstall the old */
image = xchg(dest_image, image);
out:
mutex_unlock(&kexec_mutex);
kimage_free(image);
return result;
}
/*
* Add and remove page tables for crashkernel memory
*
* Provide an empty default implementation here -- architecture
* code may override this
*/
void __weak crash_map_reserved_pages(void)
{}
void __weak crash_unmap_reserved_pages(void)
{}
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
compat_ulong_t, nr_segments,
struct compat_kexec_segment __user *, segments,
compat_ulong_t, flags)
{
struct compat_kexec_segment in;
struct kexec_segment out, __user *ksegments;
unsigned long i, result;
/* Don't allow clients that don't understand the native
* architecture to do anything.
*/
if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
return -EINVAL;
if (nr_segments > KEXEC_SEGMENT_MAX)
return -EINVAL;
ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
for (i = 0; i < nr_segments; i++) {
result = copy_from_user(&in, &segments[i], sizeof(in));
if (result)
return -EFAULT;
out.buf = compat_ptr(in.buf);
out.bufsz = in.bufsz;
out.mem = in.mem;
out.memsz = in.memsz;
result = copy_to_user(&ksegments[i], &out, sizeof(out));
if (result)
return -EFAULT;
}
return sys_kexec_load(entry, nr_segments, ksegments, flags);
}
#endif
kexec: create a new config option CONFIG_KEXEC_FILE for new syscall Currently new system call kexec_file_load() and all the associated code compiles if CONFIG_KEXEC=y. But new syscall also compiles purgatory code which currently uses gcc option -mcmodel=large. This option seems to be available only gcc 4.4 onwards. Hiding new functionality behind a new config option will not break existing users of old gcc. Those who wish to enable new functionality will require new gcc. Having said that, I am trying to figure out how can I move away from using -mcmodel=large but that can take a while. I think there are other advantages of introducing this new config option. As this option will be enabled only on x86_64, other arches don't have to compile generic kexec code which will never be used. This new code selects CRYPTO=y and CRYPTO_SHA256=y. And all other arches had to do this for CONFIG_KEXEC. Now with introduction of new config option, we can remove crypto dependency from other arches. Now CONFIG_KEXEC_FILE is available only on x86_64. So whereever I had CONFIG_X86_64 defined, I got rid of that. For CONFIG_KEXEC_FILE, instead of doing select CRYPTO=y, I changed it to "depends on CRYPTO=y". This should be safer as "select" is not recursive. Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: H. Peter Anvin <hpa@zytor.com> Tested-by: Shaun Ruffell <sruffell@digium.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-30 06:18:46 +08:00
#ifdef CONFIG_KEXEC_FILE
SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
unsigned long, cmdline_len, const char __user *, cmdline_ptr,
unsigned long, flags)
{
int ret = 0, i;
struct kimage **dest_image, *image;
/* We only trust the superuser with rebooting the system. */
if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
return -EPERM;
/* Make sure we have a legal set of flags */
if (flags != (flags & KEXEC_FILE_FLAGS))
return -EINVAL;
image = NULL;
if (!mutex_trylock(&kexec_mutex))
return -EBUSY;
dest_image = &kexec_image;
if (flags & KEXEC_FILE_ON_CRASH)
dest_image = &kexec_crash_image;
if (flags & KEXEC_FILE_UNLOAD)
goto exchange;
/*
* In case of crash, new kernel gets loaded in reserved region. It is
* same memory where old crash kernel might be loaded. Free any
* current crash dump kernel before we corrupt it.
*/
if (flags & KEXEC_FILE_ON_CRASH)
kimage_free(xchg(&kexec_crash_image, NULL));
ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
cmdline_len, flags);
if (ret)
goto out;
ret = machine_kexec_prepare(image);
if (ret)
goto out;
ret = kexec_calculate_store_digests(image);
if (ret)
goto out;
for (i = 0; i < image->nr_segments; i++) {
struct kexec_segment *ksegment;
ksegment = &image->segment[i];
pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
i, ksegment->buf, ksegment->bufsz, ksegment->mem,
ksegment->memsz);
ret = kimage_load_segment(image, &image->segment[i]);
if (ret)
goto out;
}
kimage_terminate(image);
/*
* Free up any temporary buffers allocated which are not needed
* after image has been loaded
*/
kimage_file_post_load_cleanup(image);
exchange:
image = xchg(dest_image, image);
out:
mutex_unlock(&kexec_mutex);
kimage_free(image);
return ret;
}
kexec: create a new config option CONFIG_KEXEC_FILE for new syscall Currently new system call kexec_file_load() and all the associated code compiles if CONFIG_KEXEC=y. But new syscall also compiles purgatory code which currently uses gcc option -mcmodel=large. This option seems to be available only gcc 4.4 onwards. Hiding new functionality behind a new config option will not break existing users of old gcc. Those who wish to enable new functionality will require new gcc. Having said that, I am trying to figure out how can I move away from using -mcmodel=large but that can take a while. I think there are other advantages of introducing this new config option. As this option will be enabled only on x86_64, other arches don't have to compile generic kexec code which will never be used. This new code selects CRYPTO=y and CRYPTO_SHA256=y. And all other arches had to do this for CONFIG_KEXEC. Now with introduction of new config option, we can remove crypto dependency from other arches. Now CONFIG_KEXEC_FILE is available only on x86_64. So whereever I had CONFIG_X86_64 defined, I got rid of that. For CONFIG_KEXEC_FILE, instead of doing select CRYPTO=y, I changed it to "depends on CRYPTO=y". This should be safer as "select" is not recursive. Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: H. Peter Anvin <hpa@zytor.com> Tested-by: Shaun Ruffell <sruffell@digium.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-30 06:18:46 +08:00
#endif /* CONFIG_KEXEC_FILE */
void crash_kexec(struct pt_regs *regs)
{
/* Take the kexec_mutex here to prevent sys_kexec_load
* running on one cpu from replacing the crash kernel
* we are using after a panic on a different cpu.
*
* If the crash kernel was not located in a fixed area
* of memory the xchg(&kexec_crash_image) would be
* sufficient. But since I reuse the memory...
*/
if (mutex_trylock(&kexec_mutex)) {
[POWERPC] Add the use of the firmware soft-reset-nmi to kdump. With this patch, kdump uses the firmware soft-reset NMI for two purposes: 1) Initiate the kdump (take a crash dump) by issuing a soft-reset. 2) Break a CPU out of a deadlock condition that is detected during kdump processing. When a soft-reset is initiated each CPU will enter system_reset_exception() and set its corresponding bit in the global bit-array cpus_in_sr then call die(). When die() finds the CPU's bit set in cpu_in_sr crash_kexec() is called to initiate a crash dump. The first CPU to enter crash_kexec() is called the "crashing CPU". All other CPUs are "secondary CPUs". The secondary CPU's pass through to crash_kexec_secondary() and sleep. The crashing CPU waits for all CPUs to enter via soft-reset then boots the kdump kernel (see crash_soft_reset_check()) When the system crashes due to a panic or exception, crash_kexec() is called by panic() or die(). The crashing CPU sends an IPI to all other CPUs to notify them of the pending shutdown. If a CPU is in a deadlock or hung state with interrupts disabled, the IPI will not be delivered. The result being, that the kdump kernel is not booted. This problem is solved with the use of a firmware generated soft-reset. After the crashing_cpu has issued the IPI, it waits for 10 sec for all CPUs to enter crash_ipi_callback(). A CPU signifies its entry to crash_ipi_callback() by setting its corresponding bit in the cpus_in_crash bit array. After 10 sec, if one or more CPUs have not set their bit in cpus_in_crash we assume that the CPU(s) is deadlocked. The operator is then prompted to generate a soft-reset to break the deadlock. Each CPU enters the soft reset handler as described above. Two conditions must be handled at this point: 1) The system crashed because the operator generated a soft-reset. See 2) The system had crashed before the soft-reset was generated ( in the case of a Panic or oops). The first CPU to enter crash_kexec() uses the state of the kexec_lock to determine this state. If kexec_lock is already held then condition 2 is true and crash_kexec_secondary() is called, else; this CPU is flagged as the crashing CPU, the kexec_lock is acquired and crash_kexec() proceeds as described above. Each additional CPUs responding to the soft-reset will pass through crash_kexec() to kexec_secondary(). All secondary CPUs call crash_ipi_callback() readying them self's for the shutdown. When ready they clear their bit in cpus_in_sr. The crashing CPU waits in kexec_secondary() until all other CPUs have cleared their bits in cpus_in_sr. The kexec kernel boot is then started. Signed-off-by: Haren Myneni <haren@us.ibm.com> Signed-off-by: David Wilder <dwilder@us.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-06-24 06:29:34 +08:00
if (kexec_crash_image) {
struct pt_regs fixed_regs;
crash_setup_regs(&fixed_regs, regs);
crash_save_vmcoreinfo();
machine_crash_shutdown(&fixed_regs);
[POWERPC] Add the use of the firmware soft-reset-nmi to kdump. With this patch, kdump uses the firmware soft-reset NMI for two purposes: 1) Initiate the kdump (take a crash dump) by issuing a soft-reset. 2) Break a CPU out of a deadlock condition that is detected during kdump processing. When a soft-reset is initiated each CPU will enter system_reset_exception() and set its corresponding bit in the global bit-array cpus_in_sr then call die(). When die() finds the CPU's bit set in cpu_in_sr crash_kexec() is called to initiate a crash dump. The first CPU to enter crash_kexec() is called the "crashing CPU". All other CPUs are "secondary CPUs". The secondary CPU's pass through to crash_kexec_secondary() and sleep. The crashing CPU waits for all CPUs to enter via soft-reset then boots the kdump kernel (see crash_soft_reset_check()) When the system crashes due to a panic or exception, crash_kexec() is called by panic() or die(). The crashing CPU sends an IPI to all other CPUs to notify them of the pending shutdown. If a CPU is in a deadlock or hung state with interrupts disabled, the IPI will not be delivered. The result being, that the kdump kernel is not booted. This problem is solved with the use of a firmware generated soft-reset. After the crashing_cpu has issued the IPI, it waits for 10 sec for all CPUs to enter crash_ipi_callback(). A CPU signifies its entry to crash_ipi_callback() by setting its corresponding bit in the cpus_in_crash bit array. After 10 sec, if one or more CPUs have not set their bit in cpus_in_crash we assume that the CPU(s) is deadlocked. The operator is then prompted to generate a soft-reset to break the deadlock. Each CPU enters the soft reset handler as described above. Two conditions must be handled at this point: 1) The system crashed because the operator generated a soft-reset. See 2) The system had crashed before the soft-reset was generated ( in the case of a Panic or oops). The first CPU to enter crash_kexec() uses the state of the kexec_lock to determine this state. If kexec_lock is already held then condition 2 is true and crash_kexec_secondary() is called, else; this CPU is flagged as the crashing CPU, the kexec_lock is acquired and crash_kexec() proceeds as described above. Each additional CPUs responding to the soft-reset will pass through crash_kexec() to kexec_secondary(). All secondary CPUs call crash_ipi_callback() readying them self's for the shutdown. When ready they clear their bit in cpus_in_sr. The crashing CPU waits in kexec_secondary() until all other CPUs have cleared their bits in cpus_in_sr. The kexec kernel boot is then started. Signed-off-by: Haren Myneni <haren@us.ibm.com> Signed-off-by: David Wilder <dwilder@us.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-06-24 06:29:34 +08:00
machine_kexec(kexec_crash_image);
}
mutex_unlock(&kexec_mutex);
}
}
size_t crash_get_memory_size(void)
{
size_t size = 0;
mutex_lock(&kexec_mutex);
if (crashk_res.end != crashk_res.start)
size = resource_size(&crashk_res);
mutex_unlock(&kexec_mutex);
return size;
}
void __weak crash_free_reserved_phys_range(unsigned long begin,
unsigned long end)
{
unsigned long addr;
for (addr = begin; addr < end; addr += PAGE_SIZE)
free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
}
int crash_shrink_memory(unsigned long new_size)
{
int ret = 0;
unsigned long start, end;
unsigned long old_size;
kdump: add missing RAM resource in crash_shrink_memory() When shrinking crashkernel memory using /sys/kernel/kexec_crash_size for the newly added memory no RAM resource is created at the moment. Example: $ cat /proc/iomem 00000000-bfffffff : System RAM 00000000-005b7ac3 : Kernel code 005b7ac4-009743bf : Kernel data 009bb000-00a85c33 : Kernel bss c0000000-cfffffff : Crash kernel d0000000-ffffffff : System RAM $ echo 0 > /sys/kernel/kexec_crash_size $ cat /proc/iomem 00000000-bfffffff : System RAM 00000000-005b7ac3 : Kernel code 005b7ac4-009743bf : Kernel data 009bb000-00a85c33 : Kernel bss <<-- here is System RAM missing d0000000-ffffffff : System RAM One result of this bug is that the memory chunk can never be set offline using memory hotplug. With this patch I insert a new "System RAM" resource for the released memory. Then the upper example looks like the following: $ echo 0 > /sys/kernel/kexec_crash_size $ cat /proc/iomem 00000000-bfffffff : System RAM 00000000-005b7ac3 : Kernel code 005b7ac4-009743bf : Kernel data 009bb000-00a85c33 : Kernel bss c0000000-cfffffff : System RAM <<-- new rescoure d0000000-ffffffff : System RAM And now I can set chunk c0000000-cfffffff offline. Signed-off-by: Michael Holzheu <holzheu@linux.vnet.ibm.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-13 09:20:14 +08:00
struct resource *ram_res;
mutex_lock(&kexec_mutex);
if (kexec_crash_image) {
ret = -ENOENT;
goto unlock;
}
start = crashk_res.start;
end = crashk_res.end;
old_size = (end == 0) ? 0 : end - start + 1;
if (new_size >= old_size) {
ret = (new_size == old_size) ? 0 : -EINVAL;
goto unlock;
}
kdump: add missing RAM resource in crash_shrink_memory() When shrinking crashkernel memory using /sys/kernel/kexec_crash_size for the newly added memory no RAM resource is created at the moment. Example: $ cat /proc/iomem 00000000-bfffffff : System RAM 00000000-005b7ac3 : Kernel code 005b7ac4-009743bf : Kernel data 009bb000-00a85c33 : Kernel bss c0000000-cfffffff : Crash kernel d0000000-ffffffff : System RAM $ echo 0 > /sys/kernel/kexec_crash_size $ cat /proc/iomem 00000000-bfffffff : System RAM 00000000-005b7ac3 : Kernel code 005b7ac4-009743bf : Kernel data 009bb000-00a85c33 : Kernel bss <<-- here is System RAM missing d0000000-ffffffff : System RAM One result of this bug is that the memory chunk can never be set offline using memory hotplug. With this patch I insert a new "System RAM" resource for the released memory. Then the upper example looks like the following: $ echo 0 > /sys/kernel/kexec_crash_size $ cat /proc/iomem 00000000-bfffffff : System RAM 00000000-005b7ac3 : Kernel code 005b7ac4-009743bf : Kernel data 009bb000-00a85c33 : Kernel bss c0000000-cfffffff : System RAM <<-- new rescoure d0000000-ffffffff : System RAM And now I can set chunk c0000000-cfffffff offline. Signed-off-by: Michael Holzheu <holzheu@linux.vnet.ibm.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-13 09:20:14 +08:00
ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
if (!ram_res) {
ret = -ENOMEM;
goto unlock;
}
start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
crash_map_reserved_pages();
crash_free_reserved_phys_range(end, crashk_res.end);
if ((start == end) && (crashk_res.parent != NULL))
release_resource(&crashk_res);
kdump: add missing RAM resource in crash_shrink_memory() When shrinking crashkernel memory using /sys/kernel/kexec_crash_size for the newly added memory no RAM resource is created at the moment. Example: $ cat /proc/iomem 00000000-bfffffff : System RAM 00000000-005b7ac3 : Kernel code 005b7ac4-009743bf : Kernel data 009bb000-00a85c33 : Kernel bss c0000000-cfffffff : Crash kernel d0000000-ffffffff : System RAM $ echo 0 > /sys/kernel/kexec_crash_size $ cat /proc/iomem 00000000-bfffffff : System RAM 00000000-005b7ac3 : Kernel code 005b7ac4-009743bf : Kernel data 009bb000-00a85c33 : Kernel bss <<-- here is System RAM missing d0000000-ffffffff : System RAM One result of this bug is that the memory chunk can never be set offline using memory hotplug. With this patch I insert a new "System RAM" resource for the released memory. Then the upper example looks like the following: $ echo 0 > /sys/kernel/kexec_crash_size $ cat /proc/iomem 00000000-bfffffff : System RAM 00000000-005b7ac3 : Kernel code 005b7ac4-009743bf : Kernel data 009bb000-00a85c33 : Kernel bss c0000000-cfffffff : System RAM <<-- new rescoure d0000000-ffffffff : System RAM And now I can set chunk c0000000-cfffffff offline. Signed-off-by: Michael Holzheu <holzheu@linux.vnet.ibm.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-13 09:20:14 +08:00
ram_res->start = end;
ram_res->end = crashk_res.end;
ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
ram_res->name = "System RAM";
crashk_res.end = end - 1;
kdump: add missing RAM resource in crash_shrink_memory() When shrinking crashkernel memory using /sys/kernel/kexec_crash_size for the newly added memory no RAM resource is created at the moment. Example: $ cat /proc/iomem 00000000-bfffffff : System RAM 00000000-005b7ac3 : Kernel code 005b7ac4-009743bf : Kernel data 009bb000-00a85c33 : Kernel bss c0000000-cfffffff : Crash kernel d0000000-ffffffff : System RAM $ echo 0 > /sys/kernel/kexec_crash_size $ cat /proc/iomem 00000000-bfffffff : System RAM 00000000-005b7ac3 : Kernel code 005b7ac4-009743bf : Kernel data 009bb000-00a85c33 : Kernel bss <<-- here is System RAM missing d0000000-ffffffff : System RAM One result of this bug is that the memory chunk can never be set offline using memory hotplug. With this patch I insert a new "System RAM" resource for the released memory. Then the upper example looks like the following: $ echo 0 > /sys/kernel/kexec_crash_size $ cat /proc/iomem 00000000-bfffffff : System RAM 00000000-005b7ac3 : Kernel code 005b7ac4-009743bf : Kernel data 009bb000-00a85c33 : Kernel bss c0000000-cfffffff : System RAM <<-- new rescoure d0000000-ffffffff : System RAM And now I can set chunk c0000000-cfffffff offline. Signed-off-by: Michael Holzheu <holzheu@linux.vnet.ibm.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-13 09:20:14 +08:00
insert_resource(&iomem_resource, ram_res);
crash_unmap_reserved_pages();
unlock:
mutex_unlock(&kexec_mutex);
return ret;
}
static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
size_t data_len)
{
struct elf_note note;
note.n_namesz = strlen(name) + 1;
note.n_descsz = data_len;
note.n_type = type;
memcpy(buf, &note, sizeof(note));
buf += (sizeof(note) + 3)/4;
memcpy(buf, name, note.n_namesz);
buf += (note.n_namesz + 3)/4;
memcpy(buf, data, note.n_descsz);
buf += (note.n_descsz + 3)/4;
return buf;
}
static void final_note(u32 *buf)
{
struct elf_note note;
note.n_namesz = 0;
note.n_descsz = 0;
note.n_type = 0;
memcpy(buf, &note, sizeof(note));
}
void crash_save_cpu(struct pt_regs *regs, int cpu)
{
struct elf_prstatus prstatus;
u32 *buf;
if ((cpu < 0) || (cpu >= nr_cpu_ids))
return;
/* Using ELF notes here is opportunistic.
* I need a well defined structure format
* for the data I pass, and I need tags
* on the data to indicate what information I have
* squirrelled away. ELF notes happen to provide
* all of that, so there is no need to invent something new.
*/
buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
if (!buf)
return;
memset(&prstatus, 0, sizeof(prstatus));
prstatus.pr_pid = current->pid;
elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
&prstatus, sizeof(prstatus));
final_note(buf);
}
static int __init crash_notes_memory_init(void)
{
/* Allocate memory for saving cpu registers. */
crash_notes = alloc_percpu(note_buf_t);
if (!crash_notes) {
pr_warn("Kexec: Memory allocation for saving cpu register states failed\n");
return -ENOMEM;
}
return 0;
}
2014-04-04 05:48:35 +08:00
subsys_initcall(crash_notes_memory_init);
Extended crashkernel command line This patch adds a extended crashkernel syntax that makes the value of reserved system RAM dependent on the system RAM itself: crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset] range=start-[end] For example: crashkernel=512M-2G:64M,2G-:128M The motivation comes from distributors that configure their crashkernel command line automatically with some configuration tool (YaST, you know ;)). Of course that tool knows the value of System RAM, but if the user removes RAM, then the system becomes unbootable or at least unusable and error handling is very difficult. This series implements this change for i386, x86_64, ia64, ppc64 and sh. That should be all platforms that support kdump in current mainline. I tested all platforms except sh due to the lack of a sh processor. This patch: This is the generic part of the patch. It adds a parse_crashkernel() function in kernel/kexec.c that is called by the architecture specific code that actually reserves the memory. That function takes the whole command line and looks itself for "crashkernel=" in it. If there are multiple occurrences, then the last one is taken. The advantage is that if you have a bootloader like lilo or elilo which allows you to append a command line parameter but not to remove one (like in GRUB), then you can add another crashkernel value for testing at the boot command line and this one overwrites the command line in the configuration then. Signed-off-by: Bernhard Walle <bwalle@suse.de> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Vivek Goyal <vgoyal@in.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:40:58 +08:00
/*
* parsing the "crashkernel" commandline
*
* this code is intended to be called from architecture specific code
*/
/*
* This function parses command lines in the format
*
* crashkernel=ramsize-range:size[,...][@offset]
*
* The function returns 0 on success and -EINVAL on failure.
*/
static int __init parse_crashkernel_mem(char *cmdline,
unsigned long long system_ram,
unsigned long long *crash_size,
unsigned long long *crash_base)
Extended crashkernel command line This patch adds a extended crashkernel syntax that makes the value of reserved system RAM dependent on the system RAM itself: crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset] range=start-[end] For example: crashkernel=512M-2G:64M,2G-:128M The motivation comes from distributors that configure their crashkernel command line automatically with some configuration tool (YaST, you know ;)). Of course that tool knows the value of System RAM, but if the user removes RAM, then the system becomes unbootable or at least unusable and error handling is very difficult. This series implements this change for i386, x86_64, ia64, ppc64 and sh. That should be all platforms that support kdump in current mainline. I tested all platforms except sh due to the lack of a sh processor. This patch: This is the generic part of the patch. It adds a parse_crashkernel() function in kernel/kexec.c that is called by the architecture specific code that actually reserves the memory. That function takes the whole command line and looks itself for "crashkernel=" in it. If there are multiple occurrences, then the last one is taken. The advantage is that if you have a bootloader like lilo or elilo which allows you to append a command line parameter but not to remove one (like in GRUB), then you can add another crashkernel value for testing at the boot command line and this one overwrites the command line in the configuration then. Signed-off-by: Bernhard Walle <bwalle@suse.de> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Vivek Goyal <vgoyal@in.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:40:58 +08:00
{
char *cur = cmdline, *tmp;
/* for each entry of the comma-separated list */
do {
unsigned long long start, end = ULLONG_MAX, size;
/* get the start of the range */
start = memparse(cur, &tmp);
if (cur == tmp) {
pr_warn("crashkernel: Memory value expected\n");
Extended crashkernel command line This patch adds a extended crashkernel syntax that makes the value of reserved system RAM dependent on the system RAM itself: crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset] range=start-[end] For example: crashkernel=512M-2G:64M,2G-:128M The motivation comes from distributors that configure their crashkernel command line automatically with some configuration tool (YaST, you know ;)). Of course that tool knows the value of System RAM, but if the user removes RAM, then the system becomes unbootable or at least unusable and error handling is very difficult. This series implements this change for i386, x86_64, ia64, ppc64 and sh. That should be all platforms that support kdump in current mainline. I tested all platforms except sh due to the lack of a sh processor. This patch: This is the generic part of the patch. It adds a parse_crashkernel() function in kernel/kexec.c that is called by the architecture specific code that actually reserves the memory. That function takes the whole command line and looks itself for "crashkernel=" in it. If there are multiple occurrences, then the last one is taken. The advantage is that if you have a bootloader like lilo or elilo which allows you to append a command line parameter but not to remove one (like in GRUB), then you can add another crashkernel value for testing at the boot command line and this one overwrites the command line in the configuration then. Signed-off-by: Bernhard Walle <bwalle@suse.de> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Vivek Goyal <vgoyal@in.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:40:58 +08:00
return -EINVAL;
}
cur = tmp;
if (*cur != '-') {
pr_warn("crashkernel: '-' expected\n");
Extended crashkernel command line This patch adds a extended crashkernel syntax that makes the value of reserved system RAM dependent on the system RAM itself: crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset] range=start-[end] For example: crashkernel=512M-2G:64M,2G-:128M The motivation comes from distributors that configure their crashkernel command line automatically with some configuration tool (YaST, you know ;)). Of course that tool knows the value of System RAM, but if the user removes RAM, then the system becomes unbootable or at least unusable and error handling is very difficult. This series implements this change for i386, x86_64, ia64, ppc64 and sh. That should be all platforms that support kdump in current mainline. I tested all platforms except sh due to the lack of a sh processor. This patch: This is the generic part of the patch. It adds a parse_crashkernel() function in kernel/kexec.c that is called by the architecture specific code that actually reserves the memory. That function takes the whole command line and looks itself for "crashkernel=" in it. If there are multiple occurrences, then the last one is taken. The advantage is that if you have a bootloader like lilo or elilo which allows you to append a command line parameter but not to remove one (like in GRUB), then you can add another crashkernel value for testing at the boot command line and this one overwrites the command line in the configuration then. Signed-off-by: Bernhard Walle <bwalle@suse.de> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Vivek Goyal <vgoyal@in.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:40:58 +08:00
return -EINVAL;
}
cur++;
/* if no ':' is here, than we read the end */
if (*cur != ':') {
end = memparse(cur, &tmp);
if (cur == tmp) {
pr_warn("crashkernel: Memory value expected\n");
Extended crashkernel command line This patch adds a extended crashkernel syntax that makes the value of reserved system RAM dependent on the system RAM itself: crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset] range=start-[end] For example: crashkernel=512M-2G:64M,2G-:128M The motivation comes from distributors that configure their crashkernel command line automatically with some configuration tool (YaST, you know ;)). Of course that tool knows the value of System RAM, but if the user removes RAM, then the system becomes unbootable or at least unusable and error handling is very difficult. This series implements this change for i386, x86_64, ia64, ppc64 and sh. That should be all platforms that support kdump in current mainline. I tested all platforms except sh due to the lack of a sh processor. This patch: This is the generic part of the patch. It adds a parse_crashkernel() function in kernel/kexec.c that is called by the architecture specific code that actually reserves the memory. That function takes the whole command line and looks itself for "crashkernel=" in it. If there are multiple occurrences, then the last one is taken. The advantage is that if you have a bootloader like lilo or elilo which allows you to append a command line parameter but not to remove one (like in GRUB), then you can add another crashkernel value for testing at the boot command line and this one overwrites the command line in the configuration then. Signed-off-by: Bernhard Walle <bwalle@suse.de> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Vivek Goyal <vgoyal@in.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:40:58 +08:00
return -EINVAL;
}
cur = tmp;
if (end <= start) {
pr_warn("crashkernel: end <= start\n");
Extended crashkernel command line This patch adds a extended crashkernel syntax that makes the value of reserved system RAM dependent on the system RAM itself: crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset] range=start-[end] For example: crashkernel=512M-2G:64M,2G-:128M The motivation comes from distributors that configure their crashkernel command line automatically with some configuration tool (YaST, you know ;)). Of course that tool knows the value of System RAM, but if the user removes RAM, then the system becomes unbootable or at least unusable and error handling is very difficult. This series implements this change for i386, x86_64, ia64, ppc64 and sh. That should be all platforms that support kdump in current mainline. I tested all platforms except sh due to the lack of a sh processor. This patch: This is the generic part of the patch. It adds a parse_crashkernel() function in kernel/kexec.c that is called by the architecture specific code that actually reserves the memory. That function takes the whole command line and looks itself for "crashkernel=" in it. If there are multiple occurrences, then the last one is taken. The advantage is that if you have a bootloader like lilo or elilo which allows you to append a command line parameter but not to remove one (like in GRUB), then you can add another crashkernel value for testing at the boot command line and this one overwrites the command line in the configuration then. Signed-off-by: Bernhard Walle <bwalle@suse.de> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Vivek Goyal <vgoyal@in.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:40:58 +08:00
return -EINVAL;
}
}
if (*cur != ':') {
pr_warn("crashkernel: ':' expected\n");
Extended crashkernel command line This patch adds a extended crashkernel syntax that makes the value of reserved system RAM dependent on the system RAM itself: crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset] range=start-[end] For example: crashkernel=512M-2G:64M,2G-:128M The motivation comes from distributors that configure their crashkernel command line automatically with some configuration tool (YaST, you know ;)). Of course that tool knows the value of System RAM, but if the user removes RAM, then the system becomes unbootable or at least unusable and error handling is very difficult. This series implements this change for i386, x86_64, ia64, ppc64 and sh. That should be all platforms that support kdump in current mainline. I tested all platforms except sh due to the lack of a sh processor. This patch: This is the generic part of the patch. It adds a parse_crashkernel() function in kernel/kexec.c that is called by the architecture specific code that actually reserves the memory. That function takes the whole command line and looks itself for "crashkernel=" in it. If there are multiple occurrences, then the last one is taken. The advantage is that if you have a bootloader like lilo or elilo which allows you to append a command line parameter but not to remove one (like in GRUB), then you can add another crashkernel value for testing at the boot command line and this one overwrites the command line in the configuration then. Signed-off-by: Bernhard Walle <bwalle@suse.de> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Vivek Goyal <vgoyal@in.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:40:58 +08:00
return -EINVAL;
}
cur++;
size = memparse(cur, &tmp);
if (cur == tmp) {
pr_warn("Memory value expected\n");
Extended crashkernel command line This patch adds a extended crashkernel syntax that makes the value of reserved system RAM dependent on the system RAM itself: crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset] range=start-[end] For example: crashkernel=512M-2G:64M,2G-:128M The motivation comes from distributors that configure their crashkernel command line automatically with some configuration tool (YaST, you know ;)). Of course that tool knows the value of System RAM, but if the user removes RAM, then the system becomes unbootable or at least unusable and error handling is very difficult. This series implements this change for i386, x86_64, ia64, ppc64 and sh. That should be all platforms that support kdump in current mainline. I tested all platforms except sh due to the lack of a sh processor. This patch: This is the generic part of the patch. It adds a parse_crashkernel() function in kernel/kexec.c that is called by the architecture specific code that actually reserves the memory. That function takes the whole command line and looks itself for "crashkernel=" in it. If there are multiple occurrences, then the last one is taken. The advantage is that if you have a bootloader like lilo or elilo which allows you to append a command line parameter but not to remove one (like in GRUB), then you can add another crashkernel value for testing at the boot command line and this one overwrites the command line in the configuration then. Signed-off-by: Bernhard Walle <bwalle@suse.de> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Vivek Goyal <vgoyal@in.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:40:58 +08:00
return -EINVAL;
}
cur = tmp;
if (size >= system_ram) {
pr_warn("crashkernel: invalid size\n");
Extended crashkernel command line This patch adds a extended crashkernel syntax that makes the value of reserved system RAM dependent on the system RAM itself: crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset] range=start-[end] For example: crashkernel=512M-2G:64M,2G-:128M The motivation comes from distributors that configure their crashkernel command line automatically with some configuration tool (YaST, you know ;)). Of course that tool knows the value of System RAM, but if the user removes RAM, then the system becomes unbootable or at least unusable and error handling is very difficult. This series implements this change for i386, x86_64, ia64, ppc64 and sh. That should be all platforms that support kdump in current mainline. I tested all platforms except sh due to the lack of a sh processor. This patch: This is the generic part of the patch. It adds a parse_crashkernel() function in kernel/kexec.c that is called by the architecture specific code that actually reserves the memory. That function takes the whole command line and looks itself for "crashkernel=" in it. If there are multiple occurrences, then the last one is taken. The advantage is that if you have a bootloader like lilo or elilo which allows you to append a command line parameter but not to remove one (like in GRUB), then you can add another crashkernel value for testing at the boot command line and this one overwrites the command line in the configuration then. Signed-off-by: Bernhard Walle <bwalle@suse.de> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Vivek Goyal <vgoyal@in.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:40:58 +08:00
return -EINVAL;
}
/* match ? */
if (system_ram >= start && system_ram < end) {
Extended crashkernel command line This patch adds a extended crashkernel syntax that makes the value of reserved system RAM dependent on the system RAM itself: crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset] range=start-[end] For example: crashkernel=512M-2G:64M,2G-:128M The motivation comes from distributors that configure their crashkernel command line automatically with some configuration tool (YaST, you know ;)). Of course that tool knows the value of System RAM, but if the user removes RAM, then the system becomes unbootable or at least unusable and error handling is very difficult. This series implements this change for i386, x86_64, ia64, ppc64 and sh. That should be all platforms that support kdump in current mainline. I tested all platforms except sh due to the lack of a sh processor. This patch: This is the generic part of the patch. It adds a parse_crashkernel() function in kernel/kexec.c that is called by the architecture specific code that actually reserves the memory. That function takes the whole command line and looks itself for "crashkernel=" in it. If there are multiple occurrences, then the last one is taken. The advantage is that if you have a bootloader like lilo or elilo which allows you to append a command line parameter but not to remove one (like in GRUB), then you can add another crashkernel value for testing at the boot command line and this one overwrites the command line in the configuration then. Signed-off-by: Bernhard Walle <bwalle@suse.de> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Vivek Goyal <vgoyal@in.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:40:58 +08:00
*crash_size = size;
break;
}
} while (*cur++ == ',');
if (*crash_size > 0) {
while (*cur && *cur != ' ' && *cur != '@')
Extended crashkernel command line This patch adds a extended crashkernel syntax that makes the value of reserved system RAM dependent on the system RAM itself: crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset] range=start-[end] For example: crashkernel=512M-2G:64M,2G-:128M The motivation comes from distributors that configure their crashkernel command line automatically with some configuration tool (YaST, you know ;)). Of course that tool knows the value of System RAM, but if the user removes RAM, then the system becomes unbootable or at least unusable and error handling is very difficult. This series implements this change for i386, x86_64, ia64, ppc64 and sh. That should be all platforms that support kdump in current mainline. I tested all platforms except sh due to the lack of a sh processor. This patch: This is the generic part of the patch. It adds a parse_crashkernel() function in kernel/kexec.c that is called by the architecture specific code that actually reserves the memory. That function takes the whole command line and looks itself for "crashkernel=" in it. If there are multiple occurrences, then the last one is taken. The advantage is that if you have a bootloader like lilo or elilo which allows you to append a command line parameter but not to remove one (like in GRUB), then you can add another crashkernel value for testing at the boot command line and this one overwrites the command line in the configuration then. Signed-off-by: Bernhard Walle <bwalle@suse.de> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Vivek Goyal <vgoyal@in.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:40:58 +08:00
cur++;
if (*cur == '@') {
cur++;
*crash_base = memparse(cur, &tmp);
if (cur == tmp) {
pr_warn("Memory value expected after '@'\n");
Extended crashkernel command line This patch adds a extended crashkernel syntax that makes the value of reserved system RAM dependent on the system RAM itself: crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset] range=start-[end] For example: crashkernel=512M-2G:64M,2G-:128M The motivation comes from distributors that configure their crashkernel command line automatically with some configuration tool (YaST, you know ;)). Of course that tool knows the value of System RAM, but if the user removes RAM, then the system becomes unbootable or at least unusable and error handling is very difficult. This series implements this change for i386, x86_64, ia64, ppc64 and sh. That should be all platforms that support kdump in current mainline. I tested all platforms except sh due to the lack of a sh processor. This patch: This is the generic part of the patch. It adds a parse_crashkernel() function in kernel/kexec.c that is called by the architecture specific code that actually reserves the memory. That function takes the whole command line and looks itself for "crashkernel=" in it. If there are multiple occurrences, then the last one is taken. The advantage is that if you have a bootloader like lilo or elilo which allows you to append a command line parameter but not to remove one (like in GRUB), then you can add another crashkernel value for testing at the boot command line and this one overwrites the command line in the configuration then. Signed-off-by: Bernhard Walle <bwalle@suse.de> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Vivek Goyal <vgoyal@in.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:40:58 +08:00
return -EINVAL;
}
}
}
return 0;
}
/*
* That function parses "simple" (old) crashkernel command lines like
*
* crashkernel=size[@offset]
Extended crashkernel command line This patch adds a extended crashkernel syntax that makes the value of reserved system RAM dependent on the system RAM itself: crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset] range=start-[end] For example: crashkernel=512M-2G:64M,2G-:128M The motivation comes from distributors that configure their crashkernel command line automatically with some configuration tool (YaST, you know ;)). Of course that tool knows the value of System RAM, but if the user removes RAM, then the system becomes unbootable or at least unusable and error handling is very difficult. This series implements this change for i386, x86_64, ia64, ppc64 and sh. That should be all platforms that support kdump in current mainline. I tested all platforms except sh due to the lack of a sh processor. This patch: This is the generic part of the patch. It adds a parse_crashkernel() function in kernel/kexec.c that is called by the architecture specific code that actually reserves the memory. That function takes the whole command line and looks itself for "crashkernel=" in it. If there are multiple occurrences, then the last one is taken. The advantage is that if you have a bootloader like lilo or elilo which allows you to append a command line parameter but not to remove one (like in GRUB), then you can add another crashkernel value for testing at the boot command line and this one overwrites the command line in the configuration then. Signed-off-by: Bernhard Walle <bwalle@suse.de> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Vivek Goyal <vgoyal@in.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:40:58 +08:00
*
* It returns 0 on success and -EINVAL on failure.
*/
static int __init parse_crashkernel_simple(char *cmdline,
unsigned long long *crash_size,
unsigned long long *crash_base)
Extended crashkernel command line This patch adds a extended crashkernel syntax that makes the value of reserved system RAM dependent on the system RAM itself: crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset] range=start-[end] For example: crashkernel=512M-2G:64M,2G-:128M The motivation comes from distributors that configure their crashkernel command line automatically with some configuration tool (YaST, you know ;)). Of course that tool knows the value of System RAM, but if the user removes RAM, then the system becomes unbootable or at least unusable and error handling is very difficult. This series implements this change for i386, x86_64, ia64, ppc64 and sh. That should be all platforms that support kdump in current mainline. I tested all platforms except sh due to the lack of a sh processor. This patch: This is the generic part of the patch. It adds a parse_crashkernel() function in kernel/kexec.c that is called by the architecture specific code that actually reserves the memory. That function takes the whole command line and looks itself for "crashkernel=" in it. If there are multiple occurrences, then the last one is taken. The advantage is that if you have a bootloader like lilo or elilo which allows you to append a command line parameter but not to remove one (like in GRUB), then you can add another crashkernel value for testing at the boot command line and this one overwrites the command line in the configuration then. Signed-off-by: Bernhard Walle <bwalle@suse.de> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Vivek Goyal <vgoyal@in.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:40:58 +08:00
{
char *cur = cmdline;
*crash_size = memparse(cmdline, &cur);
if (cmdline == cur) {
pr_warn("crashkernel: memory value expected\n");
Extended crashkernel command line This patch adds a extended crashkernel syntax that makes the value of reserved system RAM dependent on the system RAM itself: crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset] range=start-[end] For example: crashkernel=512M-2G:64M,2G-:128M The motivation comes from distributors that configure their crashkernel command line automatically with some configuration tool (YaST, you know ;)). Of course that tool knows the value of System RAM, but if the user removes RAM, then the system becomes unbootable or at least unusable and error handling is very difficult. This series implements this change for i386, x86_64, ia64, ppc64 and sh. That should be all platforms that support kdump in current mainline. I tested all platforms except sh due to the lack of a sh processor. This patch: This is the generic part of the patch. It adds a parse_crashkernel() function in kernel/kexec.c that is called by the architecture specific code that actually reserves the memory. That function takes the whole command line and looks itself for "crashkernel=" in it. If there are multiple occurrences, then the last one is taken. The advantage is that if you have a bootloader like lilo or elilo which allows you to append a command line parameter but not to remove one (like in GRUB), then you can add another crashkernel value for testing at the boot command line and this one overwrites the command line in the configuration then. Signed-off-by: Bernhard Walle <bwalle@suse.de> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Vivek Goyal <vgoyal@in.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:40:58 +08:00
return -EINVAL;
}
if (*cur == '@')
*crash_base = memparse(cur+1, &cur);
else if (*cur != ' ' && *cur != '\0') {
pr_warn("crashkernel: unrecognized char\n");
return -EINVAL;
}
Extended crashkernel command line This patch adds a extended crashkernel syntax that makes the value of reserved system RAM dependent on the system RAM itself: crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset] range=start-[end] For example: crashkernel=512M-2G:64M,2G-:128M The motivation comes from distributors that configure their crashkernel command line automatically with some configuration tool (YaST, you know ;)). Of course that tool knows the value of System RAM, but if the user removes RAM, then the system becomes unbootable or at least unusable and error handling is very difficult. This series implements this change for i386, x86_64, ia64, ppc64 and sh. That should be all platforms that support kdump in current mainline. I tested all platforms except sh due to the lack of a sh processor. This patch: This is the generic part of the patch. It adds a parse_crashkernel() function in kernel/kexec.c that is called by the architecture specific code that actually reserves the memory. That function takes the whole command line and looks itself for "crashkernel=" in it. If there are multiple occurrences, then the last one is taken. The advantage is that if you have a bootloader like lilo or elilo which allows you to append a command line parameter but not to remove one (like in GRUB), then you can add another crashkernel value for testing at the boot command line and this one overwrites the command line in the configuration then. Signed-off-by: Bernhard Walle <bwalle@suse.de> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Vivek Goyal <vgoyal@in.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:40:58 +08:00
return 0;
}
#define SUFFIX_HIGH 0
#define SUFFIX_LOW 1
#define SUFFIX_NULL 2
static __initdata char *suffix_tbl[] = {
[SUFFIX_HIGH] = ",high",
[SUFFIX_LOW] = ",low",
[SUFFIX_NULL] = NULL,
};
Extended crashkernel command line This patch adds a extended crashkernel syntax that makes the value of reserved system RAM dependent on the system RAM itself: crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset] range=start-[end] For example: crashkernel=512M-2G:64M,2G-:128M The motivation comes from distributors that configure their crashkernel command line automatically with some configuration tool (YaST, you know ;)). Of course that tool knows the value of System RAM, but if the user removes RAM, then the system becomes unbootable or at least unusable and error handling is very difficult. This series implements this change for i386, x86_64, ia64, ppc64 and sh. That should be all platforms that support kdump in current mainline. I tested all platforms except sh due to the lack of a sh processor. This patch: This is the generic part of the patch. It adds a parse_crashkernel() function in kernel/kexec.c that is called by the architecture specific code that actually reserves the memory. That function takes the whole command line and looks itself for "crashkernel=" in it. If there are multiple occurrences, then the last one is taken. The advantage is that if you have a bootloader like lilo or elilo which allows you to append a command line parameter but not to remove one (like in GRUB), then you can add another crashkernel value for testing at the boot command line and this one overwrites the command line in the configuration then. Signed-off-by: Bernhard Walle <bwalle@suse.de> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Vivek Goyal <vgoyal@in.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:40:58 +08:00
/*
* That function parses "suffix" crashkernel command lines like
*
* crashkernel=size,[high|low]
*
* It returns 0 on success and -EINVAL on failure.
Extended crashkernel command line This patch adds a extended crashkernel syntax that makes the value of reserved system RAM dependent on the system RAM itself: crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset] range=start-[end] For example: crashkernel=512M-2G:64M,2G-:128M The motivation comes from distributors that configure their crashkernel command line automatically with some configuration tool (YaST, you know ;)). Of course that tool knows the value of System RAM, but if the user removes RAM, then the system becomes unbootable or at least unusable and error handling is very difficult. This series implements this change for i386, x86_64, ia64, ppc64 and sh. That should be all platforms that support kdump in current mainline. I tested all platforms except sh due to the lack of a sh processor. This patch: This is the generic part of the patch. It adds a parse_crashkernel() function in kernel/kexec.c that is called by the architecture specific code that actually reserves the memory. That function takes the whole command line and looks itself for "crashkernel=" in it. If there are multiple occurrences, then the last one is taken. The advantage is that if you have a bootloader like lilo or elilo which allows you to append a command line parameter but not to remove one (like in GRUB), then you can add another crashkernel value for testing at the boot command line and this one overwrites the command line in the configuration then. Signed-off-by: Bernhard Walle <bwalle@suse.de> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Vivek Goyal <vgoyal@in.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:40:58 +08:00
*/
static int __init parse_crashkernel_suffix(char *cmdline,
unsigned long long *crash_size,
const char *suffix)
{
char *cur = cmdline;
*crash_size = memparse(cmdline, &cur);
if (cmdline == cur) {
pr_warn("crashkernel: memory value expected\n");
return -EINVAL;
}
/* check with suffix */
if (strncmp(cur, suffix, strlen(suffix))) {
pr_warn("crashkernel: unrecognized char\n");
return -EINVAL;
}
cur += strlen(suffix);
if (*cur != ' ' && *cur != '\0') {
pr_warn("crashkernel: unrecognized char\n");
return -EINVAL;
}
return 0;
}
static __init char *get_last_crashkernel(char *cmdline,
const char *name,
const char *suffix)
{
char *p = cmdline, *ck_cmdline = NULL;
/* find crashkernel and use the last one if there are more */
p = strstr(p, name);
while (p) {
char *end_p = strchr(p, ' ');
char *q;
if (!end_p)
end_p = p + strlen(p);
if (!suffix) {
int i;
/* skip the one with any known suffix */
for (i = 0; suffix_tbl[i]; i++) {
q = end_p - strlen(suffix_tbl[i]);
if (!strncmp(q, suffix_tbl[i],
strlen(suffix_tbl[i])))
goto next;
}
ck_cmdline = p;
} else {
q = end_p - strlen(suffix);
if (!strncmp(q, suffix, strlen(suffix)))
ck_cmdline = p;
}
next:
p = strstr(p+1, name);
}
if (!ck_cmdline)
return NULL;
return ck_cmdline;
}
static int __init __parse_crashkernel(char *cmdline,
Extended crashkernel command line This patch adds a extended crashkernel syntax that makes the value of reserved system RAM dependent on the system RAM itself: crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset] range=start-[end] For example: crashkernel=512M-2G:64M,2G-:128M The motivation comes from distributors that configure their crashkernel command line automatically with some configuration tool (YaST, you know ;)). Of course that tool knows the value of System RAM, but if the user removes RAM, then the system becomes unbootable or at least unusable and error handling is very difficult. This series implements this change for i386, x86_64, ia64, ppc64 and sh. That should be all platforms that support kdump in current mainline. I tested all platforms except sh due to the lack of a sh processor. This patch: This is the generic part of the patch. It adds a parse_crashkernel() function in kernel/kexec.c that is called by the architecture specific code that actually reserves the memory. That function takes the whole command line and looks itself for "crashkernel=" in it. If there are multiple occurrences, then the last one is taken. The advantage is that if you have a bootloader like lilo or elilo which allows you to append a command line parameter but not to remove one (like in GRUB), then you can add another crashkernel value for testing at the boot command line and this one overwrites the command line in the configuration then. Signed-off-by: Bernhard Walle <bwalle@suse.de> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Vivek Goyal <vgoyal@in.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:40:58 +08:00
unsigned long long system_ram,
unsigned long long *crash_size,
unsigned long long *crash_base,
const char *name,
const char *suffix)
Extended crashkernel command line This patch adds a extended crashkernel syntax that makes the value of reserved system RAM dependent on the system RAM itself: crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset] range=start-[end] For example: crashkernel=512M-2G:64M,2G-:128M The motivation comes from distributors that configure their crashkernel command line automatically with some configuration tool (YaST, you know ;)). Of course that tool knows the value of System RAM, but if the user removes RAM, then the system becomes unbootable or at least unusable and error handling is very difficult. This series implements this change for i386, x86_64, ia64, ppc64 and sh. That should be all platforms that support kdump in current mainline. I tested all platforms except sh due to the lack of a sh processor. This patch: This is the generic part of the patch. It adds a parse_crashkernel() function in kernel/kexec.c that is called by the architecture specific code that actually reserves the memory. That function takes the whole command line and looks itself for "crashkernel=" in it. If there are multiple occurrences, then the last one is taken. The advantage is that if you have a bootloader like lilo or elilo which allows you to append a command line parameter but not to remove one (like in GRUB), then you can add another crashkernel value for testing at the boot command line and this one overwrites the command line in the configuration then. Signed-off-by: Bernhard Walle <bwalle@suse.de> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Vivek Goyal <vgoyal@in.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:40:58 +08:00
{
char *first_colon, *first_space;
char *ck_cmdline;
Extended crashkernel command line This patch adds a extended crashkernel syntax that makes the value of reserved system RAM dependent on the system RAM itself: crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset] range=start-[end] For example: crashkernel=512M-2G:64M,2G-:128M The motivation comes from distributors that configure their crashkernel command line automatically with some configuration tool (YaST, you know ;)). Of course that tool knows the value of System RAM, but if the user removes RAM, then the system becomes unbootable or at least unusable and error handling is very difficult. This series implements this change for i386, x86_64, ia64, ppc64 and sh. That should be all platforms that support kdump in current mainline. I tested all platforms except sh due to the lack of a sh processor. This patch: This is the generic part of the patch. It adds a parse_crashkernel() function in kernel/kexec.c that is called by the architecture specific code that actually reserves the memory. That function takes the whole command line and looks itself for "crashkernel=" in it. If there are multiple occurrences, then the last one is taken. The advantage is that if you have a bootloader like lilo or elilo which allows you to append a command line parameter but not to remove one (like in GRUB), then you can add another crashkernel value for testing at the boot command line and this one overwrites the command line in the configuration then. Signed-off-by: Bernhard Walle <bwalle@suse.de> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Vivek Goyal <vgoyal@in.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:40:58 +08:00
BUG_ON(!crash_size || !crash_base);
*crash_size = 0;
*crash_base = 0;
ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
Extended crashkernel command line This patch adds a extended crashkernel syntax that makes the value of reserved system RAM dependent on the system RAM itself: crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset] range=start-[end] For example: crashkernel=512M-2G:64M,2G-:128M The motivation comes from distributors that configure their crashkernel command line automatically with some configuration tool (YaST, you know ;)). Of course that tool knows the value of System RAM, but if the user removes RAM, then the system becomes unbootable or at least unusable and error handling is very difficult. This series implements this change for i386, x86_64, ia64, ppc64 and sh. That should be all platforms that support kdump in current mainline. I tested all platforms except sh due to the lack of a sh processor. This patch: This is the generic part of the patch. It adds a parse_crashkernel() function in kernel/kexec.c that is called by the architecture specific code that actually reserves the memory. That function takes the whole command line and looks itself for "crashkernel=" in it. If there are multiple occurrences, then the last one is taken. The advantage is that if you have a bootloader like lilo or elilo which allows you to append a command line parameter but not to remove one (like in GRUB), then you can add another crashkernel value for testing at the boot command line and this one overwrites the command line in the configuration then. Signed-off-by: Bernhard Walle <bwalle@suse.de> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Vivek Goyal <vgoyal@in.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:40:58 +08:00
if (!ck_cmdline)
return -EINVAL;
ck_cmdline += strlen(name);
Extended crashkernel command line This patch adds a extended crashkernel syntax that makes the value of reserved system RAM dependent on the system RAM itself: crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset] range=start-[end] For example: crashkernel=512M-2G:64M,2G-:128M The motivation comes from distributors that configure their crashkernel command line automatically with some configuration tool (YaST, you know ;)). Of course that tool knows the value of System RAM, but if the user removes RAM, then the system becomes unbootable or at least unusable and error handling is very difficult. This series implements this change for i386, x86_64, ia64, ppc64 and sh. That should be all platforms that support kdump in current mainline. I tested all platforms except sh due to the lack of a sh processor. This patch: This is the generic part of the patch. It adds a parse_crashkernel() function in kernel/kexec.c that is called by the architecture specific code that actually reserves the memory. That function takes the whole command line and looks itself for "crashkernel=" in it. If there are multiple occurrences, then the last one is taken. The advantage is that if you have a bootloader like lilo or elilo which allows you to append a command line parameter but not to remove one (like in GRUB), then you can add another crashkernel value for testing at the boot command line and this one overwrites the command line in the configuration then. Signed-off-by: Bernhard Walle <bwalle@suse.de> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Vivek Goyal <vgoyal@in.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:40:58 +08:00
if (suffix)
return parse_crashkernel_suffix(ck_cmdline, crash_size,
suffix);
Extended crashkernel command line This patch adds a extended crashkernel syntax that makes the value of reserved system RAM dependent on the system RAM itself: crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset] range=start-[end] For example: crashkernel=512M-2G:64M,2G-:128M The motivation comes from distributors that configure their crashkernel command line automatically with some configuration tool (YaST, you know ;)). Of course that tool knows the value of System RAM, but if the user removes RAM, then the system becomes unbootable or at least unusable and error handling is very difficult. This series implements this change for i386, x86_64, ia64, ppc64 and sh. That should be all platforms that support kdump in current mainline. I tested all platforms except sh due to the lack of a sh processor. This patch: This is the generic part of the patch. It adds a parse_crashkernel() function in kernel/kexec.c that is called by the architecture specific code that actually reserves the memory. That function takes the whole command line and looks itself for "crashkernel=" in it. If there are multiple occurrences, then the last one is taken. The advantage is that if you have a bootloader like lilo or elilo which allows you to append a command line parameter but not to remove one (like in GRUB), then you can add another crashkernel value for testing at the boot command line and this one overwrites the command line in the configuration then. Signed-off-by: Bernhard Walle <bwalle@suse.de> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Vivek Goyal <vgoyal@in.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:40:58 +08:00
/*
* if the commandline contains a ':', then that's the extended
* syntax -- if not, it must be the classic syntax
*/
first_colon = strchr(ck_cmdline, ':');
first_space = strchr(ck_cmdline, ' ');
if (first_colon && (!first_space || first_colon < first_space))
return parse_crashkernel_mem(ck_cmdline, system_ram,
crash_size, crash_base);
return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
Extended crashkernel command line This patch adds a extended crashkernel syntax that makes the value of reserved system RAM dependent on the system RAM itself: crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset] range=start-[end] For example: crashkernel=512M-2G:64M,2G-:128M The motivation comes from distributors that configure their crashkernel command line automatically with some configuration tool (YaST, you know ;)). Of course that tool knows the value of System RAM, but if the user removes RAM, then the system becomes unbootable or at least unusable and error handling is very difficult. This series implements this change for i386, x86_64, ia64, ppc64 and sh. That should be all platforms that support kdump in current mainline. I tested all platforms except sh due to the lack of a sh processor. This patch: This is the generic part of the patch. It adds a parse_crashkernel() function in kernel/kexec.c that is called by the architecture specific code that actually reserves the memory. That function takes the whole command line and looks itself for "crashkernel=" in it. If there are multiple occurrences, then the last one is taken. The advantage is that if you have a bootloader like lilo or elilo which allows you to append a command line parameter but not to remove one (like in GRUB), then you can add another crashkernel value for testing at the boot command line and this one overwrites the command line in the configuration then. Signed-off-by: Bernhard Walle <bwalle@suse.de> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Vivek Goyal <vgoyal@in.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:40:58 +08:00
}
/*
* That function is the entry point for command line parsing and should be
* called from the arch-specific code.
*/
int __init parse_crashkernel(char *cmdline,
unsigned long long system_ram,
unsigned long long *crash_size,
unsigned long long *crash_base)
{
return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
"crashkernel=", NULL);
}
int __init parse_crashkernel_high(char *cmdline,
unsigned long long system_ram,
unsigned long long *crash_size,
unsigned long long *crash_base)
{
return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
"crashkernel=", suffix_tbl[SUFFIX_HIGH]);
}
int __init parse_crashkernel_low(char *cmdline,
unsigned long long system_ram,
unsigned long long *crash_size,
unsigned long long *crash_base)
{
return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
"crashkernel=", suffix_tbl[SUFFIX_LOW]);
}
Extended crashkernel command line This patch adds a extended crashkernel syntax that makes the value of reserved system RAM dependent on the system RAM itself: crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset] range=start-[end] For example: crashkernel=512M-2G:64M,2G-:128M The motivation comes from distributors that configure their crashkernel command line automatically with some configuration tool (YaST, you know ;)). Of course that tool knows the value of System RAM, but if the user removes RAM, then the system becomes unbootable or at least unusable and error handling is very difficult. This series implements this change for i386, x86_64, ia64, ppc64 and sh. That should be all platforms that support kdump in current mainline. I tested all platforms except sh due to the lack of a sh processor. This patch: This is the generic part of the patch. It adds a parse_crashkernel() function in kernel/kexec.c that is called by the architecture specific code that actually reserves the memory. That function takes the whole command line and looks itself for "crashkernel=" in it. If there are multiple occurrences, then the last one is taken. The advantage is that if you have a bootloader like lilo or elilo which allows you to append a command line parameter but not to remove one (like in GRUB), then you can add another crashkernel value for testing at the boot command line and this one overwrites the command line in the configuration then. Signed-off-by: Bernhard Walle <bwalle@suse.de> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Vivek Goyal <vgoyal@in.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 14:40:58 +08:00
[S390] kdump: Initialize vmcoreinfo note at startup Currently the vmcoreinfo note is only initialized in case of kdump. On s390 it is possible to create kernel dumps with other dump mechanisms than kdump (e.g. via hypervisor dump or stand-alone dump tools). For those dumps it would also be desirable to include the vmcoreinfo data. To accomplish this, with this patch the vmcoreinfo ELF note is always initialized, not only in case of a (kdump) crash. On s390 we will add an ABI defined pointer at a well known address to vmcoreinfo so that dump analysis tools are able to find this information. In particular on s390 we have a tool named zgetdump. With this tool it is possible to convert dump formats on the fly using fuse. E.g. you can mount a s390 stand-alone dump as ELF dump. When this is done, the tool finds the vmcoreinfo in the stand-alone dump via the well known ABI defined address and it creates the respective VMCOREINFO ELF note in the output ELF dump. This then can be used e.g. by makedumpfile for dump filtering. No more need for a vmlinux file with debug information. So this will look like the following: $ zgetdump --mount standalone.dump -f elf /mnt $ ls /mnt dump.elf $ readelf -n /mnt/dump.elf $ ... VMCOREINFO 0x00000474 Unknown note type: (0x00000000) $ makedumpfile -c -d 31 /mnt/dump.elf dump.kdump Cc: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Michael Holzheu <holzheu@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2011-10-30 22:16:41 +08:00
static void update_vmcoreinfo_note(void)
{
[S390] kdump: Initialize vmcoreinfo note at startup Currently the vmcoreinfo note is only initialized in case of kdump. On s390 it is possible to create kernel dumps with other dump mechanisms than kdump (e.g. via hypervisor dump or stand-alone dump tools). For those dumps it would also be desirable to include the vmcoreinfo data. To accomplish this, with this patch the vmcoreinfo ELF note is always initialized, not only in case of a (kdump) crash. On s390 we will add an ABI defined pointer at a well known address to vmcoreinfo so that dump analysis tools are able to find this information. In particular on s390 we have a tool named zgetdump. With this tool it is possible to convert dump formats on the fly using fuse. E.g. you can mount a s390 stand-alone dump as ELF dump. When this is done, the tool finds the vmcoreinfo in the stand-alone dump via the well known ABI defined address and it creates the respective VMCOREINFO ELF note in the output ELF dump. This then can be used e.g. by makedumpfile for dump filtering. No more need for a vmlinux file with debug information. So this will look like the following: $ zgetdump --mount standalone.dump -f elf /mnt $ ls /mnt dump.elf $ readelf -n /mnt/dump.elf $ ... VMCOREINFO 0x00000474 Unknown note type: (0x00000000) $ makedumpfile -c -d 31 /mnt/dump.elf dump.kdump Cc: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Michael Holzheu <holzheu@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2011-10-30 22:16:41 +08:00
u32 *buf = vmcoreinfo_note;
if (!vmcoreinfo_size)
return;
buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
vmcoreinfo_size);
final_note(buf);
}
[S390] kdump: Initialize vmcoreinfo note at startup Currently the vmcoreinfo note is only initialized in case of kdump. On s390 it is possible to create kernel dumps with other dump mechanisms than kdump (e.g. via hypervisor dump or stand-alone dump tools). For those dumps it would also be desirable to include the vmcoreinfo data. To accomplish this, with this patch the vmcoreinfo ELF note is always initialized, not only in case of a (kdump) crash. On s390 we will add an ABI defined pointer at a well known address to vmcoreinfo so that dump analysis tools are able to find this information. In particular on s390 we have a tool named zgetdump. With this tool it is possible to convert dump formats on the fly using fuse. E.g. you can mount a s390 stand-alone dump as ELF dump. When this is done, the tool finds the vmcoreinfo in the stand-alone dump via the well known ABI defined address and it creates the respective VMCOREINFO ELF note in the output ELF dump. This then can be used e.g. by makedumpfile for dump filtering. No more need for a vmlinux file with debug information. So this will look like the following: $ zgetdump --mount standalone.dump -f elf /mnt $ ls /mnt dump.elf $ readelf -n /mnt/dump.elf $ ... VMCOREINFO 0x00000474 Unknown note type: (0x00000000) $ makedumpfile -c -d 31 /mnt/dump.elf dump.kdump Cc: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Michael Holzheu <holzheu@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2011-10-30 22:16:41 +08:00
void crash_save_vmcoreinfo(void)
{
vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
[S390] kdump: Initialize vmcoreinfo note at startup Currently the vmcoreinfo note is only initialized in case of kdump. On s390 it is possible to create kernel dumps with other dump mechanisms than kdump (e.g. via hypervisor dump or stand-alone dump tools). For those dumps it would also be desirable to include the vmcoreinfo data. To accomplish this, with this patch the vmcoreinfo ELF note is always initialized, not only in case of a (kdump) crash. On s390 we will add an ABI defined pointer at a well known address to vmcoreinfo so that dump analysis tools are able to find this information. In particular on s390 we have a tool named zgetdump. With this tool it is possible to convert dump formats on the fly using fuse. E.g. you can mount a s390 stand-alone dump as ELF dump. When this is done, the tool finds the vmcoreinfo in the stand-alone dump via the well known ABI defined address and it creates the respective VMCOREINFO ELF note in the output ELF dump. This then can be used e.g. by makedumpfile for dump filtering. No more need for a vmlinux file with debug information. So this will look like the following: $ zgetdump --mount standalone.dump -f elf /mnt $ ls /mnt dump.elf $ readelf -n /mnt/dump.elf $ ... VMCOREINFO 0x00000474 Unknown note type: (0x00000000) $ makedumpfile -c -d 31 /mnt/dump.elf dump.kdump Cc: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Michael Holzheu <holzheu@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2011-10-30 22:16:41 +08:00
update_vmcoreinfo_note();
}
void vmcoreinfo_append_str(const char *fmt, ...)
{
va_list args;
char buf[0x50];
size_t r;
va_start(args, fmt);
r = vscnprintf(buf, sizeof(buf), fmt, args);
va_end(args);
r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
vmcoreinfo_size += r;
}
/*
* provide an empty default implementation here -- architecture
* code may override this
*/
void __weak arch_crash_save_vmcoreinfo(void)
{}
unsigned long __weak paddr_vmcoreinfo_note(void)
{
return __pa((unsigned long)(char *)&vmcoreinfo_note);
}
static int __init crash_save_vmcoreinfo_init(void)
{
VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
VMCOREINFO_PAGESIZE(PAGE_SIZE);
VMCOREINFO_SYMBOL(init_uts_ns);
VMCOREINFO_SYMBOL(node_online_map);
#ifdef CONFIG_MMU
VMCOREINFO_SYMBOL(swapper_pg_dir);
#endif
VMCOREINFO_SYMBOL(_stext);
VMCOREINFO_SYMBOL(vmap_area_list);
#ifndef CONFIG_NEED_MULTIPLE_NODES
VMCOREINFO_SYMBOL(mem_map);
VMCOREINFO_SYMBOL(contig_page_data);
#endif
#ifdef CONFIG_SPARSEMEM
VMCOREINFO_SYMBOL(mem_section);
VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
VMCOREINFO_STRUCT_SIZE(mem_section);
VMCOREINFO_OFFSET(mem_section, section_mem_map);
#endif
VMCOREINFO_STRUCT_SIZE(page);
VMCOREINFO_STRUCT_SIZE(pglist_data);
VMCOREINFO_STRUCT_SIZE(zone);
VMCOREINFO_STRUCT_SIZE(free_area);
VMCOREINFO_STRUCT_SIZE(list_head);
VMCOREINFO_SIZE(nodemask_t);
VMCOREINFO_OFFSET(page, flags);
VMCOREINFO_OFFSET(page, _count);
VMCOREINFO_OFFSET(page, mapping);
VMCOREINFO_OFFSET(page, lru);
kexec: add the values related to buddy system for filtering free pages. tAdd adds the values related to buddy system to vmcoreinfo data so that makedumpfile (dump filtering command) can filter out all free pages with the new logic. It's faster than the current logic because it can distinguish free page by analyzing page structure at the same time as filtering for other unnecessary pages (e.g. anonymous page). OTOH, the current logic has to trace free_list to distinguish free pages while analyzing page structure to filter out other unnecessary pages. The new logic uses the fact that buddy page is marked by _mapcount == PAGE_BUDDY_MAPCOUNT_VALUE. But, _mapcount shares its memory with other fields for SLAB/SLUB when PG_slab is set, so we need to check if PG_slab is set or not before looking up _mapcount value. And we can get the order of buddy system from private field. To sum it up, the values below are required for this logic. Required values: - OFFSET(page._mapcount) - OFFSET(page.private) - NUMBER(PG_slab) - NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE) Changelog from v1 to v2: 1. remove SIZE(pageflags) The new logic was changed after I sent v1 patch. Accordingly, SIZE(pageflags) has been unnecessary for makedumpfile. What's makedumpfile: makedumpfile creates a small dumpfile by excluding unnecessary pages for the analysis. To distinguish unnecessary pages, makedumpfile gets the vmcoreinfo data which has the minimum debugging information only for dump filtering. Signed-off-by: Atsushi Kumagai <kumagai-atsushi@mxc.nes.nec.co.jp> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 09:03:25 +08:00
VMCOREINFO_OFFSET(page, _mapcount);
VMCOREINFO_OFFSET(page, private);
VMCOREINFO_OFFSET(pglist_data, node_zones);
VMCOREINFO_OFFSET(pglist_data, nr_zones);
#ifdef CONFIG_FLAT_NODE_MEM_MAP
VMCOREINFO_OFFSET(pglist_data, node_mem_map);
#endif
VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
VMCOREINFO_OFFSET(pglist_data, node_id);
VMCOREINFO_OFFSET(zone, free_area);
VMCOREINFO_OFFSET(zone, vm_stat);
VMCOREINFO_OFFSET(zone, spanned_pages);
VMCOREINFO_OFFSET(free_area, free_list);
VMCOREINFO_OFFSET(list_head, next);
VMCOREINFO_OFFSET(list_head, prev);
VMCOREINFO_OFFSET(vmap_area, va_start);
VMCOREINFO_OFFSET(vmap_area, list);
VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
log_buf_kexec_setup();
VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
VMCOREINFO_NUMBER(NR_FREE_PAGES);
VMCOREINFO_NUMBER(PG_lru);
VMCOREINFO_NUMBER(PG_private);
VMCOREINFO_NUMBER(PG_swapcache);
kexec: add the values related to buddy system for filtering free pages. tAdd adds the values related to buddy system to vmcoreinfo data so that makedumpfile (dump filtering command) can filter out all free pages with the new logic. It's faster than the current logic because it can distinguish free page by analyzing page structure at the same time as filtering for other unnecessary pages (e.g. anonymous page). OTOH, the current logic has to trace free_list to distinguish free pages while analyzing page structure to filter out other unnecessary pages. The new logic uses the fact that buddy page is marked by _mapcount == PAGE_BUDDY_MAPCOUNT_VALUE. But, _mapcount shares its memory with other fields for SLAB/SLUB when PG_slab is set, so we need to check if PG_slab is set or not before looking up _mapcount value. And we can get the order of buddy system from private field. To sum it up, the values below are required for this logic. Required values: - OFFSET(page._mapcount) - OFFSET(page.private) - NUMBER(PG_slab) - NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE) Changelog from v1 to v2: 1. remove SIZE(pageflags) The new logic was changed after I sent v1 patch. Accordingly, SIZE(pageflags) has been unnecessary for makedumpfile. What's makedumpfile: makedumpfile creates a small dumpfile by excluding unnecessary pages for the analysis. To distinguish unnecessary pages, makedumpfile gets the vmcoreinfo data which has the minimum debugging information only for dump filtering. Signed-off-by: Atsushi Kumagai <kumagai-atsushi@mxc.nes.nec.co.jp> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 09:03:25 +08:00
VMCOREINFO_NUMBER(PG_slab);
#ifdef CONFIG_MEMORY_FAILURE
VMCOREINFO_NUMBER(PG_hwpoison);
#endif
VMCOREINFO_NUMBER(PG_head_mask);
kexec: add the values related to buddy system for filtering free pages. tAdd adds the values related to buddy system to vmcoreinfo data so that makedumpfile (dump filtering command) can filter out all free pages with the new logic. It's faster than the current logic because it can distinguish free page by analyzing page structure at the same time as filtering for other unnecessary pages (e.g. anonymous page). OTOH, the current logic has to trace free_list to distinguish free pages while analyzing page structure to filter out other unnecessary pages. The new logic uses the fact that buddy page is marked by _mapcount == PAGE_BUDDY_MAPCOUNT_VALUE. But, _mapcount shares its memory with other fields for SLAB/SLUB when PG_slab is set, so we need to check if PG_slab is set or not before looking up _mapcount value. And we can get the order of buddy system from private field. To sum it up, the values below are required for this logic. Required values: - OFFSET(page._mapcount) - OFFSET(page.private) - NUMBER(PG_slab) - NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE) Changelog from v1 to v2: 1. remove SIZE(pageflags) The new logic was changed after I sent v1 patch. Accordingly, SIZE(pageflags) has been unnecessary for makedumpfile. What's makedumpfile: makedumpfile creates a small dumpfile by excluding unnecessary pages for the analysis. To distinguish unnecessary pages, makedumpfile gets the vmcoreinfo data which has the minimum debugging information only for dump filtering. Signed-off-by: Atsushi Kumagai <kumagai-atsushi@mxc.nes.nec.co.jp> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 09:03:25 +08:00
VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
#ifdef CONFIG_HUGETLBFS
VMCOREINFO_SYMBOL(free_huge_page);
#endif
arch_crash_save_vmcoreinfo();
[S390] kdump: Initialize vmcoreinfo note at startup Currently the vmcoreinfo note is only initialized in case of kdump. On s390 it is possible to create kernel dumps with other dump mechanisms than kdump (e.g. via hypervisor dump or stand-alone dump tools). For those dumps it would also be desirable to include the vmcoreinfo data. To accomplish this, with this patch the vmcoreinfo ELF note is always initialized, not only in case of a (kdump) crash. On s390 we will add an ABI defined pointer at a well known address to vmcoreinfo so that dump analysis tools are able to find this information. In particular on s390 we have a tool named zgetdump. With this tool it is possible to convert dump formats on the fly using fuse. E.g. you can mount a s390 stand-alone dump as ELF dump. When this is done, the tool finds the vmcoreinfo in the stand-alone dump via the well known ABI defined address and it creates the respective VMCOREINFO ELF note in the output ELF dump. This then can be used e.g. by makedumpfile for dump filtering. No more need for a vmlinux file with debug information. So this will look like the following: $ zgetdump --mount standalone.dump -f elf /mnt $ ls /mnt dump.elf $ readelf -n /mnt/dump.elf $ ... VMCOREINFO 0x00000474 Unknown note type: (0x00000000) $ makedumpfile -c -d 31 /mnt/dump.elf dump.kdump Cc: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Michael Holzheu <holzheu@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2011-10-30 22:16:41 +08:00
update_vmcoreinfo_note();
return 0;
}
2014-04-04 05:48:35 +08:00
subsys_initcall(crash_save_vmcoreinfo_init);
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:07 +08:00
kexec: create a new config option CONFIG_KEXEC_FILE for new syscall Currently new system call kexec_file_load() and all the associated code compiles if CONFIG_KEXEC=y. But new syscall also compiles purgatory code which currently uses gcc option -mcmodel=large. This option seems to be available only gcc 4.4 onwards. Hiding new functionality behind a new config option will not break existing users of old gcc. Those who wish to enable new functionality will require new gcc. Having said that, I am trying to figure out how can I move away from using -mcmodel=large but that can take a while. I think there are other advantages of introducing this new config option. As this option will be enabled only on x86_64, other arches don't have to compile generic kexec code which will never be used. This new code selects CRYPTO=y and CRYPTO_SHA256=y. And all other arches had to do this for CONFIG_KEXEC. Now with introduction of new config option, we can remove crypto dependency from other arches. Now CONFIG_KEXEC_FILE is available only on x86_64. So whereever I had CONFIG_X86_64 defined, I got rid of that. For CONFIG_KEXEC_FILE, instead of doing select CRYPTO=y, I changed it to "depends on CRYPTO=y". This should be safer as "select" is not recursive. Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: H. Peter Anvin <hpa@zytor.com> Tested-by: Shaun Ruffell <sruffell@digium.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-30 06:18:46 +08:00
#ifdef CONFIG_KEXEC_FILE
static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
struct kexec_buf *kbuf)
{
struct kimage *image = kbuf->image;
unsigned long temp_start, temp_end;
temp_end = min(end, kbuf->buf_max);
temp_start = temp_end - kbuf->memsz;
do {
/* align down start */
temp_start = temp_start & (~(kbuf->buf_align - 1));
if (temp_start < start || temp_start < kbuf->buf_min)
return 0;
temp_end = temp_start + kbuf->memsz - 1;
/*
* Make sure this does not conflict with any of existing
* segments
*/
if (kimage_is_destination_range(image, temp_start, temp_end)) {
temp_start = temp_start - PAGE_SIZE;
continue;
}
/* We found a suitable memory range */
break;
} while (1);
/* If we are here, we found a suitable memory range */
kbuf->mem = temp_start;
/* Success, stop navigating through remaining System RAM ranges */
return 1;
}
static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
struct kexec_buf *kbuf)
{
struct kimage *image = kbuf->image;
unsigned long temp_start, temp_end;
temp_start = max(start, kbuf->buf_min);
do {
temp_start = ALIGN(temp_start, kbuf->buf_align);
temp_end = temp_start + kbuf->memsz - 1;
if (temp_end > end || temp_end > kbuf->buf_max)
return 0;
/*
* Make sure this does not conflict with any of existing
* segments
*/
if (kimage_is_destination_range(image, temp_start, temp_end)) {
temp_start = temp_start + PAGE_SIZE;
continue;
}
/* We found a suitable memory range */
break;
} while (1);
/* If we are here, we found a suitable memory range */
kbuf->mem = temp_start;
/* Success, stop navigating through remaining System RAM ranges */
return 1;
}
static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
{
struct kexec_buf *kbuf = (struct kexec_buf *)arg;
unsigned long sz = end - start + 1;
/* Returning 0 will take to next memory range */
if (sz < kbuf->memsz)
return 0;
if (end < kbuf->buf_min || start > kbuf->buf_max)
return 0;
/*
* Allocate memory top down with-in ram range. Otherwise bottom up
* allocation.
*/
if (kbuf->top_down)
return locate_mem_hole_top_down(start, end, kbuf);
return locate_mem_hole_bottom_up(start, end, kbuf);
}
/*
* Helper function for placing a buffer in a kexec segment. This assumes
* that kexec_mutex is held.
*/
int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
unsigned long memsz, unsigned long buf_align,
unsigned long buf_min, unsigned long buf_max,
bool top_down, unsigned long *load_addr)
{
struct kexec_segment *ksegment;
struct kexec_buf buf, *kbuf;
int ret;
/* Currently adding segment this way is allowed only in file mode */
if (!image->file_mode)
return -EINVAL;
if (image->nr_segments >= KEXEC_SEGMENT_MAX)
return -EINVAL;
/*
* Make sure we are not trying to add buffer after allocating
* control pages. All segments need to be placed first before
* any control pages are allocated. As control page allocation
* logic goes through list of segments to make sure there are
* no destination overlaps.
*/
if (!list_empty(&image->control_pages)) {
WARN_ON(1);
return -EINVAL;
}
memset(&buf, 0, sizeof(struct kexec_buf));
kbuf = &buf;
kbuf->image = image;
kbuf->buffer = buffer;
kbuf->bufsz = bufsz;
kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
kbuf->buf_align = max(buf_align, PAGE_SIZE);
kbuf->buf_min = buf_min;
kbuf->buf_max = buf_max;
kbuf->top_down = top_down;
/* Walk the RAM ranges and allocate a suitable range for the buffer */
if (image->type == KEXEC_TYPE_CRASH)
ret = walk_iomem_res("Crash kernel",
IORESOURCE_MEM | IORESOURCE_BUSY,
crashk_res.start, crashk_res.end, kbuf,
locate_mem_hole_callback);
else
ret = walk_system_ram_res(0, -1, kbuf,
locate_mem_hole_callback);
if (ret != 1) {
/* A suitable memory range could not be found for buffer */
return -EADDRNOTAVAIL;
}
/* Found a suitable memory range */
ksegment = &image->segment[image->nr_segments];
ksegment->kbuf = kbuf->buffer;
ksegment->bufsz = kbuf->bufsz;
ksegment->mem = kbuf->mem;
ksegment->memsz = kbuf->memsz;
image->nr_segments++;
*load_addr = ksegment->mem;
return 0;
}
/* Calculate and store the digest of segments */
static int kexec_calculate_store_digests(struct kimage *image)
{
struct crypto_shash *tfm;
struct shash_desc *desc;
int ret = 0, i, j, zero_buf_sz, sha_region_sz;
size_t desc_size, nullsz;
char *digest;
void *zero_buf;
struct kexec_sha_region *sha_regions;
struct purgatory_info *pi = &image->purgatory_info;
zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
zero_buf_sz = PAGE_SIZE;
tfm = crypto_alloc_shash("sha256", 0, 0);
if (IS_ERR(tfm)) {
ret = PTR_ERR(tfm);
goto out;
}
desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
desc = kzalloc(desc_size, GFP_KERNEL);
if (!desc) {
ret = -ENOMEM;
goto out_free_tfm;
}
sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
sha_regions = vzalloc(sha_region_sz);
if (!sha_regions)
goto out_free_desc;
desc->tfm = tfm;
desc->flags = 0;
ret = crypto_shash_init(desc);
if (ret < 0)
goto out_free_sha_regions;
digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
if (!digest) {
ret = -ENOMEM;
goto out_free_sha_regions;
}
for (j = i = 0; i < image->nr_segments; i++) {
struct kexec_segment *ksegment;
ksegment = &image->segment[i];
/*
* Skip purgatory as it will be modified once we put digest
* info in purgatory.
*/
if (ksegment->kbuf == pi->purgatory_buf)
continue;
ret = crypto_shash_update(desc, ksegment->kbuf,
ksegment->bufsz);
if (ret)
break;
/*
* Assume rest of the buffer is filled with zero and
* update digest accordingly.
*/
nullsz = ksegment->memsz - ksegment->bufsz;
while (nullsz) {
unsigned long bytes = nullsz;
if (bytes > zero_buf_sz)
bytes = zero_buf_sz;
ret = crypto_shash_update(desc, zero_buf, bytes);
if (ret)
break;
nullsz -= bytes;
}
if (ret)
break;
sha_regions[j].start = ksegment->mem;
sha_regions[j].len = ksegment->memsz;
j++;
}
if (!ret) {
ret = crypto_shash_final(desc, digest);
if (ret)
goto out_free_digest;
ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
sha_regions, sha_region_sz, 0);
if (ret)
goto out_free_digest;
ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
digest, SHA256_DIGEST_SIZE, 0);
if (ret)
goto out_free_digest;
}
out_free_digest:
kfree(digest);
out_free_sha_regions:
vfree(sha_regions);
out_free_desc:
kfree(desc);
out_free_tfm:
kfree(tfm);
out:
return ret;
}
/* Actually load purgatory. Lot of code taken from kexec-tools */
static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
unsigned long max, int top_down)
{
struct purgatory_info *pi = &image->purgatory_info;
unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
unsigned char *buf_addr, *src;
int i, ret = 0, entry_sidx = -1;
const Elf_Shdr *sechdrs_c;
Elf_Shdr *sechdrs = NULL;
void *purgatory_buf = NULL;
/*
* sechdrs_c points to section headers in purgatory and are read
* only. No modifications allowed.
*/
sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
/*
* We can not modify sechdrs_c[] and its fields. It is read only.
* Copy it over to a local copy where one can store some temporary
* data and free it at the end. We need to modify ->sh_addr and
* ->sh_offset fields to keep track of permanent and temporary
* locations of sections.
*/
sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
if (!sechdrs)
return -ENOMEM;
memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
/*
* We seem to have multiple copies of sections. First copy is which
* is embedded in kernel in read only section. Some of these sections
* will be copied to a temporary buffer and relocated. And these
* sections will finally be copied to their final destination at
* segment load time.
*
* Use ->sh_offset to reflect section address in memory. It will
* point to original read only copy if section is not allocatable.
* Otherwise it will point to temporary copy which will be relocated.
*
* Use ->sh_addr to contain final address of the section where it
* will go during execution time.
*/
for (i = 0; i < pi->ehdr->e_shnum; i++) {
if (sechdrs[i].sh_type == SHT_NOBITS)
continue;
sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
sechdrs[i].sh_offset;
}
/*
* Identify entry point section and make entry relative to section
* start.
*/
entry = pi->ehdr->e_entry;
for (i = 0; i < pi->ehdr->e_shnum; i++) {
if (!(sechdrs[i].sh_flags & SHF_ALLOC))
continue;
if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
continue;
/* Make entry section relative */
if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
pi->ehdr->e_entry)) {
entry_sidx = i;
entry -= sechdrs[i].sh_addr;
break;
}
}
/* Determine how much memory is needed to load relocatable object. */
buf_align = 1;
bss_align = 1;
buf_sz = 0;
bss_sz = 0;
for (i = 0; i < pi->ehdr->e_shnum; i++) {
if (!(sechdrs[i].sh_flags & SHF_ALLOC))
continue;
align = sechdrs[i].sh_addralign;
if (sechdrs[i].sh_type != SHT_NOBITS) {
if (buf_align < align)
buf_align = align;
buf_sz = ALIGN(buf_sz, align);
buf_sz += sechdrs[i].sh_size;
} else {
/* bss section */
if (bss_align < align)
bss_align = align;
bss_sz = ALIGN(bss_sz, align);
bss_sz += sechdrs[i].sh_size;
}
}
/* Determine the bss padding required to align bss properly */
bss_pad = 0;
if (buf_sz & (bss_align - 1))
bss_pad = bss_align - (buf_sz & (bss_align - 1));
memsz = buf_sz + bss_pad + bss_sz;
/* Allocate buffer for purgatory */
purgatory_buf = vzalloc(buf_sz);
if (!purgatory_buf) {
ret = -ENOMEM;
goto out;
}
if (buf_align < bss_align)
buf_align = bss_align;
/* Add buffer to segment list */
ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
buf_align, min, max, top_down,
&pi->purgatory_load_addr);
if (ret)
goto out;
/* Load SHF_ALLOC sections */
buf_addr = purgatory_buf;
load_addr = curr_load_addr = pi->purgatory_load_addr;
bss_addr = load_addr + buf_sz + bss_pad;
for (i = 0; i < pi->ehdr->e_shnum; i++) {
if (!(sechdrs[i].sh_flags & SHF_ALLOC))
continue;
align = sechdrs[i].sh_addralign;
if (sechdrs[i].sh_type != SHT_NOBITS) {
curr_load_addr = ALIGN(curr_load_addr, align);
offset = curr_load_addr - load_addr;
/* We already modifed ->sh_offset to keep src addr */
src = (char *) sechdrs[i].sh_offset;
memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
/* Store load address and source address of section */
sechdrs[i].sh_addr = curr_load_addr;
/*
* This section got copied to temporary buffer. Update
* ->sh_offset accordingly.
*/
sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
/* Advance to the next address */
curr_load_addr += sechdrs[i].sh_size;
} else {
bss_addr = ALIGN(bss_addr, align);
sechdrs[i].sh_addr = bss_addr;
bss_addr += sechdrs[i].sh_size;
}
}
/* Update entry point based on load address of text section */
if (entry_sidx >= 0)
entry += sechdrs[entry_sidx].sh_addr;
/* Make kernel jump to purgatory after shutdown */
image->start = entry;
/* Used later to get/set symbol values */
pi->sechdrs = sechdrs;
/*
* Used later to identify which section is purgatory and skip it
* from checksumming.
*/
pi->purgatory_buf = purgatory_buf;
return ret;
out:
vfree(sechdrs);
vfree(purgatory_buf);
return ret;
}
static int kexec_apply_relocations(struct kimage *image)
{
int i, ret;
struct purgatory_info *pi = &image->purgatory_info;
Elf_Shdr *sechdrs = pi->sechdrs;
/* Apply relocations */
for (i = 0; i < pi->ehdr->e_shnum; i++) {
Elf_Shdr *section, *symtab;
if (sechdrs[i].sh_type != SHT_RELA &&
sechdrs[i].sh_type != SHT_REL)
continue;
/*
* For section of type SHT_RELA/SHT_REL,
* ->sh_link contains section header index of associated
* symbol table. And ->sh_info contains section header
* index of section to which relocations apply.
*/
if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
sechdrs[i].sh_link >= pi->ehdr->e_shnum)
return -ENOEXEC;
section = &sechdrs[sechdrs[i].sh_info];
symtab = &sechdrs[sechdrs[i].sh_link];
if (!(section->sh_flags & SHF_ALLOC))
continue;
/*
* symtab->sh_link contain section header index of associated
* string table.
*/
if (symtab->sh_link >= pi->ehdr->e_shnum)
/* Invalid section number? */
continue;
/*
* Respective archicture needs to provide support for applying
* relocations of type SHT_RELA/SHT_REL.
*/
if (sechdrs[i].sh_type == SHT_RELA)
ret = arch_kexec_apply_relocations_add(pi->ehdr,
sechdrs, i);
else if (sechdrs[i].sh_type == SHT_REL)
ret = arch_kexec_apply_relocations(pi->ehdr,
sechdrs, i);
if (ret)
return ret;
}
return 0;
}
/* Load relocatable purgatory object and relocate it appropriately */
int kexec_load_purgatory(struct kimage *image, unsigned long min,
unsigned long max, int top_down,
unsigned long *load_addr)
{
struct purgatory_info *pi = &image->purgatory_info;
int ret;
if (kexec_purgatory_size <= 0)
return -EINVAL;
if (kexec_purgatory_size < sizeof(Elf_Ehdr))
return -ENOEXEC;
pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
|| pi->ehdr->e_type != ET_REL
|| !elf_check_arch(pi->ehdr)
|| pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
return -ENOEXEC;
if (pi->ehdr->e_shoff >= kexec_purgatory_size
|| (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
kexec_purgatory_size - pi->ehdr->e_shoff))
return -ENOEXEC;
ret = __kexec_load_purgatory(image, min, max, top_down);
if (ret)
return ret;
ret = kexec_apply_relocations(image);
if (ret)
goto out;
*load_addr = pi->purgatory_load_addr;
return 0;
out:
vfree(pi->sechdrs);
vfree(pi->purgatory_buf);
return ret;
}
static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
const char *name)
{
Elf_Sym *syms;
Elf_Shdr *sechdrs;
Elf_Ehdr *ehdr;
int i, k;
const char *strtab;
if (!pi->sechdrs || !pi->ehdr)
return NULL;
sechdrs = pi->sechdrs;
ehdr = pi->ehdr;
for (i = 0; i < ehdr->e_shnum; i++) {
if (sechdrs[i].sh_type != SHT_SYMTAB)
continue;
if (sechdrs[i].sh_link >= ehdr->e_shnum)
/* Invalid strtab section number */
continue;
strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
syms = (Elf_Sym *)sechdrs[i].sh_offset;
/* Go through symbols for a match */
for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
continue;
if (strcmp(strtab + syms[k].st_name, name) != 0)
continue;
if (syms[k].st_shndx == SHN_UNDEF ||
syms[k].st_shndx >= ehdr->e_shnum) {
pr_debug("Symbol: %s has bad section index %d.\n",
name, syms[k].st_shndx);
return NULL;
}
/* Found the symbol we are looking for */
return &syms[k];
}
}
return NULL;
}
void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
{
struct purgatory_info *pi = &image->purgatory_info;
Elf_Sym *sym;
Elf_Shdr *sechdr;
sym = kexec_purgatory_find_symbol(pi, name);
if (!sym)
return ERR_PTR(-EINVAL);
sechdr = &pi->sechdrs[sym->st_shndx];
/*
* Returns the address where symbol will finally be loaded after
* kexec_load_segment()
*/
return (void *)(sechdr->sh_addr + sym->st_value);
}
/*
* Get or set value of a symbol. If "get_value" is true, symbol value is
* returned in buf otherwise symbol value is set based on value in buf.
*/
int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
void *buf, unsigned int size, bool get_value)
{
Elf_Sym *sym;
Elf_Shdr *sechdrs;
struct purgatory_info *pi = &image->purgatory_info;
char *sym_buf;
sym = kexec_purgatory_find_symbol(pi, name);
if (!sym)
return -EINVAL;
if (sym->st_size != size) {
pr_err("symbol %s size mismatch: expected %lu actual %u\n",
name, (unsigned long)sym->st_size, size);
return -EINVAL;
}
sechdrs = pi->sechdrs;
if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
pr_err("symbol %s is in a bss section. Cannot %s\n", name,
get_value ? "get" : "set");
return -EINVAL;
}
sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
sym->st_value;
if (get_value)
memcpy((void *)buf, sym_buf, size);
else
memcpy((void *)sym_buf, buf, size);
return 0;
}
kexec: create a new config option CONFIG_KEXEC_FILE for new syscall Currently new system call kexec_file_load() and all the associated code compiles if CONFIG_KEXEC=y. But new syscall also compiles purgatory code which currently uses gcc option -mcmodel=large. This option seems to be available only gcc 4.4 onwards. Hiding new functionality behind a new config option will not break existing users of old gcc. Those who wish to enable new functionality will require new gcc. Having said that, I am trying to figure out how can I move away from using -mcmodel=large but that can take a while. I think there are other advantages of introducing this new config option. As this option will be enabled only on x86_64, other arches don't have to compile generic kexec code which will never be used. This new code selects CRYPTO=y and CRYPTO_SHA256=y. And all other arches had to do this for CONFIG_KEXEC. Now with introduction of new config option, we can remove crypto dependency from other arches. Now CONFIG_KEXEC_FILE is available only on x86_64. So whereever I had CONFIG_X86_64 defined, I got rid of that. For CONFIG_KEXEC_FILE, instead of doing select CRYPTO=y, I changed it to "depends on CRYPTO=y". This should be safer as "select" is not recursive. Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: H. Peter Anvin <hpa@zytor.com> Tested-by: Shaun Ruffell <sruffell@digium.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-30 06:18:46 +08:00
#endif /* CONFIG_KEXEC_FILE */
/*
* Move into place and start executing a preloaded standalone
* executable. If nothing was preloaded return an error.
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:07 +08:00
*/
int kernel_kexec(void)
{
int error = 0;
if (!mutex_trylock(&kexec_mutex))
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:07 +08:00
return -EBUSY;
if (!kexec_image) {
error = -EINVAL;
goto Unlock;
}
#ifdef CONFIG_KEXEC_JUMP
if (kexec_image->preserve_context) {
lock_system_sleep();
kexec jump: save/restore device state This patch implements devices state save/restore before after kexec. This patch together with features in kexec_jump patch can be used for following: - A simple hibernation implementation without ACPI support. You can kexec a hibernating kernel, save the memory image of original system and shutdown the system. When resuming, you restore the memory image of original system via ordinary kexec load then jump back. - Kernel/system debug through making system snapshot. You can make system snapshot, jump back, do some thing and make another system snapshot. - Cooperative multi-kernel/system. With kexec jump, you can switch between several kernels/systems quickly without boot process except the first time. This appears like swap a whole kernel/system out/in. - A general method to call program in physical mode (paging turning off). This can be used to invoke BIOS code under Linux. The following user-space tools can be used with kexec jump: - kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 - makedumpfile with patches are used as memory image saving tool, it can exclude free pages from original kernel memory image file. The patches and the precompiled makedumpfile can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile-src_cvs_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile-patches_cvs_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile_cvs_kh10 - An initramfs image can be used as the root file system of kexeced kernel. An initramfs image built with "BuildRoot" can be downloaded from the following URL: initramfs image: http://khibernation.sourceforge.net/download/release_v10/initramfs/rootfs_cvs_kh10.gz All user space tools above are included in the initramfs image. Usage example of simple hibernation: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_RELOCATABLE=y CONFIG_KEXEC=y CONFIG_CRASH_DUMP=y CONFIG_PM=y CONFIG_HIBERNATION=y CONFIG_KEXEC_JUMP=y 2. Build an initramfs image contains kexec-tool and makedumpfile, or download the pre-built initramfs image, called rootfs.gz in following text. 3. Prepare a partition to save memory image of original kernel, called hibernating partition in following text. 4. Boot kernel compiled in step 1 (kernel A). 5. In the kernel A, load kernel compiled in step 1 (kernel B) with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context /boot/bzImage --mem-min=0x100000 --mem-max=0xffffff --initrd=rootfs.gz 6. Boot the kernel B with following shell command line: /sbin/kexec -e 7. The kernel B will boot as normal kexec. In kernel B the memory image of kernel A can be saved into hibernating partition as follow: jump_back_entry=`cat /proc/cmdline | tr ' ' '\n' | grep kexec_jump_back_entry | cut -d '='` echo $jump_back_entry > kexec_jump_back_entry cp /proc/vmcore dump.elf Then you can shutdown the machine as normal. 8. Boot kernel compiled in step 1 (kernel C). Use the rootfs.gz as root file system. 9. In kernel C, load the memory image of kernel A as follow: /sbin/kexec -l --args-none --entry=`cat kexec_jump_back_entry` dump.elf 10. Jump back to the kernel A as follow: /sbin/kexec -e Then, kernel A is resumed. Implementation point: To support jumping between two kernels, before jumping to (executing) the new kernel and jumping back to the original kernel, the devices are put into quiescent state, and the state of devices and CPU is saved. After jumping back from kexeced kernel and jumping to the new kernel, the state of devices and CPU are restored accordingly. The devices/CPU state save/restore code of software suspend is called to implement corresponding function. Known issues: - Because the segment number supported by sys_kexec_load is limited, hibernation image with many segments may not be load. This is planned to be eliminated by adding a new flag to sys_kexec_load to make a image can be loaded with multiple sys_kexec_load invoking. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:10 +08:00
pm_prepare_console();
error = freeze_processes();
if (error) {
error = -EBUSY;
goto Restore_console;
}
suspend_console();
error = dpm_suspend_start(PMSG_FREEZE);
kexec jump: save/restore device state This patch implements devices state save/restore before after kexec. This patch together with features in kexec_jump patch can be used for following: - A simple hibernation implementation without ACPI support. You can kexec a hibernating kernel, save the memory image of original system and shutdown the system. When resuming, you restore the memory image of original system via ordinary kexec load then jump back. - Kernel/system debug through making system snapshot. You can make system snapshot, jump back, do some thing and make another system snapshot. - Cooperative multi-kernel/system. With kexec jump, you can switch between several kernels/systems quickly without boot process except the first time. This appears like swap a whole kernel/system out/in. - A general method to call program in physical mode (paging turning off). This can be used to invoke BIOS code under Linux. The following user-space tools can be used with kexec jump: - kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 - makedumpfile with patches are used as memory image saving tool, it can exclude free pages from original kernel memory image file. The patches and the precompiled makedumpfile can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile-src_cvs_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile-patches_cvs_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile_cvs_kh10 - An initramfs image can be used as the root file system of kexeced kernel. An initramfs image built with "BuildRoot" can be downloaded from the following URL: initramfs image: http://khibernation.sourceforge.net/download/release_v10/initramfs/rootfs_cvs_kh10.gz All user space tools above are included in the initramfs image. Usage example of simple hibernation: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_RELOCATABLE=y CONFIG_KEXEC=y CONFIG_CRASH_DUMP=y CONFIG_PM=y CONFIG_HIBERNATION=y CONFIG_KEXEC_JUMP=y 2. Build an initramfs image contains kexec-tool and makedumpfile, or download the pre-built initramfs image, called rootfs.gz in following text. 3. Prepare a partition to save memory image of original kernel, called hibernating partition in following text. 4. Boot kernel compiled in step 1 (kernel A). 5. In the kernel A, load kernel compiled in step 1 (kernel B) with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context /boot/bzImage --mem-min=0x100000 --mem-max=0xffffff --initrd=rootfs.gz 6. Boot the kernel B with following shell command line: /sbin/kexec -e 7. The kernel B will boot as normal kexec. In kernel B the memory image of kernel A can be saved into hibernating partition as follow: jump_back_entry=`cat /proc/cmdline | tr ' ' '\n' | grep kexec_jump_back_entry | cut -d '='` echo $jump_back_entry > kexec_jump_back_entry cp /proc/vmcore dump.elf Then you can shutdown the machine as normal. 8. Boot kernel compiled in step 1 (kernel C). Use the rootfs.gz as root file system. 9. In kernel C, load the memory image of kernel A as follow: /sbin/kexec -l --args-none --entry=`cat kexec_jump_back_entry` dump.elf 10. Jump back to the kernel A as follow: /sbin/kexec -e Then, kernel A is resumed. Implementation point: To support jumping between two kernels, before jumping to (executing) the new kernel and jumping back to the original kernel, the devices are put into quiescent state, and the state of devices and CPU is saved. After jumping back from kexeced kernel and jumping to the new kernel, the state of devices and CPU are restored accordingly. The devices/CPU state save/restore code of software suspend is called to implement corresponding function. Known issues: - Because the segment number supported by sys_kexec_load is limited, hibernation image with many segments may not be load. This is planned to be eliminated by adding a new flag to sys_kexec_load to make a image can be loaded with multiple sys_kexec_load invoking. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:10 +08:00
if (error)
goto Resume_console;
/* At this point, dpm_suspend_start() has been called,
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-30 03:38:29 +08:00
* but *not* dpm_suspend_end(). We *must* call
* dpm_suspend_end() now. Otherwise, drivers for
kexec jump: save/restore device state This patch implements devices state save/restore before after kexec. This patch together with features in kexec_jump patch can be used for following: - A simple hibernation implementation without ACPI support. You can kexec a hibernating kernel, save the memory image of original system and shutdown the system. When resuming, you restore the memory image of original system via ordinary kexec load then jump back. - Kernel/system debug through making system snapshot. You can make system snapshot, jump back, do some thing and make another system snapshot. - Cooperative multi-kernel/system. With kexec jump, you can switch between several kernels/systems quickly without boot process except the first time. This appears like swap a whole kernel/system out/in. - A general method to call program in physical mode (paging turning off). This can be used to invoke BIOS code under Linux. The following user-space tools can be used with kexec jump: - kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 - makedumpfile with patches are used as memory image saving tool, it can exclude free pages from original kernel memory image file. The patches and the precompiled makedumpfile can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile-src_cvs_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile-patches_cvs_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile_cvs_kh10 - An initramfs image can be used as the root file system of kexeced kernel. An initramfs image built with "BuildRoot" can be downloaded from the following URL: initramfs image: http://khibernation.sourceforge.net/download/release_v10/initramfs/rootfs_cvs_kh10.gz All user space tools above are included in the initramfs image. Usage example of simple hibernation: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_RELOCATABLE=y CONFIG_KEXEC=y CONFIG_CRASH_DUMP=y CONFIG_PM=y CONFIG_HIBERNATION=y CONFIG_KEXEC_JUMP=y 2. Build an initramfs image contains kexec-tool and makedumpfile, or download the pre-built initramfs image, called rootfs.gz in following text. 3. Prepare a partition to save memory image of original kernel, called hibernating partition in following text. 4. Boot kernel compiled in step 1 (kernel A). 5. In the kernel A, load kernel compiled in step 1 (kernel B) with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context /boot/bzImage --mem-min=0x100000 --mem-max=0xffffff --initrd=rootfs.gz 6. Boot the kernel B with following shell command line: /sbin/kexec -e 7. The kernel B will boot as normal kexec. In kernel B the memory image of kernel A can be saved into hibernating partition as follow: jump_back_entry=`cat /proc/cmdline | tr ' ' '\n' | grep kexec_jump_back_entry | cut -d '='` echo $jump_back_entry > kexec_jump_back_entry cp /proc/vmcore dump.elf Then you can shutdown the machine as normal. 8. Boot kernel compiled in step 1 (kernel C). Use the rootfs.gz as root file system. 9. In kernel C, load the memory image of kernel A as follow: /sbin/kexec -l --args-none --entry=`cat kexec_jump_back_entry` dump.elf 10. Jump back to the kernel A as follow: /sbin/kexec -e Then, kernel A is resumed. Implementation point: To support jumping between two kernels, before jumping to (executing) the new kernel and jumping back to the original kernel, the devices are put into quiescent state, and the state of devices and CPU is saved. After jumping back from kexeced kernel and jumping to the new kernel, the state of devices and CPU are restored accordingly. The devices/CPU state save/restore code of software suspend is called to implement corresponding function. Known issues: - Because the segment number supported by sys_kexec_load is limited, hibernation image with many segments may not be load. This is planned to be eliminated by adding a new flag to sys_kexec_load to make a image can be loaded with multiple sys_kexec_load invoking. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:10 +08:00
* some devices (e.g. interrupt controllers) become
* desynchronized with the actual state of the
* hardware at resume time, and evil weirdness ensues.
*/
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-30 03:38:29 +08:00
error = dpm_suspend_end(PMSG_FREEZE);
kexec jump: save/restore device state This patch implements devices state save/restore before after kexec. This patch together with features in kexec_jump patch can be used for following: - A simple hibernation implementation without ACPI support. You can kexec a hibernating kernel, save the memory image of original system and shutdown the system. When resuming, you restore the memory image of original system via ordinary kexec load then jump back. - Kernel/system debug through making system snapshot. You can make system snapshot, jump back, do some thing and make another system snapshot. - Cooperative multi-kernel/system. With kexec jump, you can switch between several kernels/systems quickly without boot process except the first time. This appears like swap a whole kernel/system out/in. - A general method to call program in physical mode (paging turning off). This can be used to invoke BIOS code under Linux. The following user-space tools can be used with kexec jump: - kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 - makedumpfile with patches are used as memory image saving tool, it can exclude free pages from original kernel memory image file. The patches and the precompiled makedumpfile can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile-src_cvs_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile-patches_cvs_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile_cvs_kh10 - An initramfs image can be used as the root file system of kexeced kernel. An initramfs image built with "BuildRoot" can be downloaded from the following URL: initramfs image: http://khibernation.sourceforge.net/download/release_v10/initramfs/rootfs_cvs_kh10.gz All user space tools above are included in the initramfs image. Usage example of simple hibernation: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_RELOCATABLE=y CONFIG_KEXEC=y CONFIG_CRASH_DUMP=y CONFIG_PM=y CONFIG_HIBERNATION=y CONFIG_KEXEC_JUMP=y 2. Build an initramfs image contains kexec-tool and makedumpfile, or download the pre-built initramfs image, called rootfs.gz in following text. 3. Prepare a partition to save memory image of original kernel, called hibernating partition in following text. 4. Boot kernel compiled in step 1 (kernel A). 5. In the kernel A, load kernel compiled in step 1 (kernel B) with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context /boot/bzImage --mem-min=0x100000 --mem-max=0xffffff --initrd=rootfs.gz 6. Boot the kernel B with following shell command line: /sbin/kexec -e 7. The kernel B will boot as normal kexec. In kernel B the memory image of kernel A can be saved into hibernating partition as follow: jump_back_entry=`cat /proc/cmdline | tr ' ' '\n' | grep kexec_jump_back_entry | cut -d '='` echo $jump_back_entry > kexec_jump_back_entry cp /proc/vmcore dump.elf Then you can shutdown the machine as normal. 8. Boot kernel compiled in step 1 (kernel C). Use the rootfs.gz as root file system. 9. In kernel C, load the memory image of kernel A as follow: /sbin/kexec -l --args-none --entry=`cat kexec_jump_back_entry` dump.elf 10. Jump back to the kernel A as follow: /sbin/kexec -e Then, kernel A is resumed. Implementation point: To support jumping between two kernels, before jumping to (executing) the new kernel and jumping back to the original kernel, the devices are put into quiescent state, and the state of devices and CPU is saved. After jumping back from kexeced kernel and jumping to the new kernel, the state of devices and CPU are restored accordingly. The devices/CPU state save/restore code of software suspend is called to implement corresponding function. Known issues: - Because the segment number supported by sys_kexec_load is limited, hibernation image with many segments may not be load. This is planned to be eliminated by adding a new flag to sys_kexec_load to make a image can be loaded with multiple sys_kexec_load invoking. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:10 +08:00
if (error)
goto Resume_devices;
error = disable_nonboot_cpus();
if (error)
goto Enable_cpus;
local_irq_disable();
error = syscore_suspend();
if (error)
goto Enable_irqs;
} else
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:07 +08:00
#endif
{
kexec_in_progress = true;
kernel_restart_prepare(NULL);
migrate_to_reboot_cpu();
powerpc, kexec: Fix "Processor X is stuck" issue during kexec from ST mode If we try to perform a kexec when the machine is in ST (Single-Threaded) mode (ppc64_cpu --smt=off), the kexec operation doesn't succeed properly, and we get the following messages during boot: [ 0.089866] POWER8 performance monitor hardware support registered [ 0.089985] power8-pmu: PMAO restore workaround active. [ 5.095419] Processor 1 is stuck. [ 10.097933] Processor 2 is stuck. [ 15.100480] Processor 3 is stuck. [ 20.102982] Processor 4 is stuck. [ 25.105489] Processor 5 is stuck. [ 30.108005] Processor 6 is stuck. [ 35.110518] Processor 7 is stuck. [ 40.113369] Processor 9 is stuck. [ 45.115879] Processor 10 is stuck. [ 50.118389] Processor 11 is stuck. [ 55.120904] Processor 12 is stuck. [ 60.123425] Processor 13 is stuck. [ 65.125970] Processor 14 is stuck. [ 70.128495] Processor 15 is stuck. [ 75.131316] Processor 17 is stuck. Note that only the sibling threads are stuck, while the primary threads (0, 8, 16 etc) boot just fine. Looking closer at the previous step of kexec, we observe that kexec tries to wakeup (bring online) the sibling threads of all the cores, before performing kexec: [ 9464.131231] Starting new kernel [ 9464.148507] kexec: Waking offline cpu 1. [ 9464.148552] kexec: Waking offline cpu 2. [ 9464.148600] kexec: Waking offline cpu 3. [ 9464.148636] kexec: Waking offline cpu 4. [ 9464.148671] kexec: Waking offline cpu 5. [ 9464.148708] kexec: Waking offline cpu 6. [ 9464.148743] kexec: Waking offline cpu 7. [ 9464.148779] kexec: Waking offline cpu 9. [ 9464.148815] kexec: Waking offline cpu 10. [ 9464.148851] kexec: Waking offline cpu 11. [ 9464.148887] kexec: Waking offline cpu 12. [ 9464.148922] kexec: Waking offline cpu 13. [ 9464.148958] kexec: Waking offline cpu 14. [ 9464.148994] kexec: Waking offline cpu 15. [ 9464.149030] kexec: Waking offline cpu 17. Instrumenting this piece of code revealed that the cpu_up() operation actually fails with -EBUSY. Thus, only the primary threads of all the cores are online during kexec, and hence this is a sure-shot receipe for disaster, as explained in commit e8e5c2155b (powerpc/kexec: Fix orphaned offline CPUs across kexec), as well as in the comment above wake_offline_cpus(). It turns out that cpu_up() was returning -EBUSY because the variable 'cpu_hotplug_disabled' was set to 1; and this disabling of CPU hotplug was done by migrate_to_reboot_cpu() inside kernel_kexec(). Now, migrate_to_reboot_cpu() was originally written with the assumption that any further code will not need to perform CPU hotplug, since we are anyway in the reboot path. However, kexec is clearly not such a case, since we depend on onlining CPUs, atleast on powerpc. So re-enable cpu-hotplug after returning from migrate_to_reboot_cpu() in the kexec path, to fix this regression in kexec on powerpc. Also, wrap the cpu_up() in powerpc kexec code within a WARN_ON(), so that we can catch such issues more easily in the future. Fixes: c97102ba963 (kexec: migrate to reboot cpu) Cc: stable@vger.kernel.org Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-05-27 18:55:34 +08:00
/*
* migrate_to_reboot_cpu() disables CPU hotplug assuming that
* no further code needs to use CPU hotplug (which is true in
* the reboot case). However, the kexec path depends on using
* CPU hotplug again; so re-enable it here.
*/
cpu_hotplug_enable();
pr_emerg("Starting new kernel\n");
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:07 +08:00
machine_shutdown();
}
machine_kexec(kexec_image);
#ifdef CONFIG_KEXEC_JUMP
if (kexec_image->preserve_context) {
syscore_resume();
Enable_irqs:
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:07 +08:00
local_irq_enable();
Enable_cpus:
kexec jump: save/restore device state This patch implements devices state save/restore before after kexec. This patch together with features in kexec_jump patch can be used for following: - A simple hibernation implementation without ACPI support. You can kexec a hibernating kernel, save the memory image of original system and shutdown the system. When resuming, you restore the memory image of original system via ordinary kexec load then jump back. - Kernel/system debug through making system snapshot. You can make system snapshot, jump back, do some thing and make another system snapshot. - Cooperative multi-kernel/system. With kexec jump, you can switch between several kernels/systems quickly without boot process except the first time. This appears like swap a whole kernel/system out/in. - A general method to call program in physical mode (paging turning off). This can be used to invoke BIOS code under Linux. The following user-space tools can be used with kexec jump: - kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 - makedumpfile with patches are used as memory image saving tool, it can exclude free pages from original kernel memory image file. The patches and the precompiled makedumpfile can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile-src_cvs_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile-patches_cvs_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile_cvs_kh10 - An initramfs image can be used as the root file system of kexeced kernel. An initramfs image built with "BuildRoot" can be downloaded from the following URL: initramfs image: http://khibernation.sourceforge.net/download/release_v10/initramfs/rootfs_cvs_kh10.gz All user space tools above are included in the initramfs image. Usage example of simple hibernation: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_RELOCATABLE=y CONFIG_KEXEC=y CONFIG_CRASH_DUMP=y CONFIG_PM=y CONFIG_HIBERNATION=y CONFIG_KEXEC_JUMP=y 2. Build an initramfs image contains kexec-tool and makedumpfile, or download the pre-built initramfs image, called rootfs.gz in following text. 3. Prepare a partition to save memory image of original kernel, called hibernating partition in following text. 4. Boot kernel compiled in step 1 (kernel A). 5. In the kernel A, load kernel compiled in step 1 (kernel B) with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context /boot/bzImage --mem-min=0x100000 --mem-max=0xffffff --initrd=rootfs.gz 6. Boot the kernel B with following shell command line: /sbin/kexec -e 7. The kernel B will boot as normal kexec. In kernel B the memory image of kernel A can be saved into hibernating partition as follow: jump_back_entry=`cat /proc/cmdline | tr ' ' '\n' | grep kexec_jump_back_entry | cut -d '='` echo $jump_back_entry > kexec_jump_back_entry cp /proc/vmcore dump.elf Then you can shutdown the machine as normal. 8. Boot kernel compiled in step 1 (kernel C). Use the rootfs.gz as root file system. 9. In kernel C, load the memory image of kernel A as follow: /sbin/kexec -l --args-none --entry=`cat kexec_jump_back_entry` dump.elf 10. Jump back to the kernel A as follow: /sbin/kexec -e Then, kernel A is resumed. Implementation point: To support jumping between two kernels, before jumping to (executing) the new kernel and jumping back to the original kernel, the devices are put into quiescent state, and the state of devices and CPU is saved. After jumping back from kexeced kernel and jumping to the new kernel, the state of devices and CPU are restored accordingly. The devices/CPU state save/restore code of software suspend is called to implement corresponding function. Known issues: - Because the segment number supported by sys_kexec_load is limited, hibernation image with many segments may not be load. This is planned to be eliminated by adding a new flag to sys_kexec_load to make a image can be loaded with multiple sys_kexec_load invoking. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:10 +08:00
enable_nonboot_cpus();
PM / Sleep: Introduce "late suspend" and "early resume" of devices The current device suspend/resume phases during system-wide power transitions appear to be insufficient for some platforms that want to use the same callback routines for saving device states and related operations during runtime suspend/resume as well as during system suspend/resume. In principle, they could point their .suspend_noirq() and .resume_noirq() to the same callback routines as their .runtime_suspend() and .runtime_resume(), respectively, but at least some of them require device interrupts to be enabled while the code in those routines is running. It also makes sense to have device suspend-resume callbacks that will be executed with runtime PM disabled and with device interrupts enabled in case someone needs to run some special code in that context during system-wide power transitions. Apart from this, .suspend_noirq() and .resume_noirq() were introduced as a workaround for drivers using shared interrupts and failing to prevent their interrupt handlers from accessing suspended hardware. It appears to be better not to use them for other porposes, or we may have to deal with some serious confusion (which seems to be happening already). For the above reasons, introduce new device suspend/resume phases, "late suspend" and "early resume" (and analogously for hibernation) whose callback will be executed with runtime PM disabled and with device interrupts enabled and whose callback pointers generally may point to runtime suspend/resume routines. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Kevin Hilman <khilman@ti.com>
2012-01-30 03:38:29 +08:00
dpm_resume_start(PMSG_RESTORE);
kexec jump: save/restore device state This patch implements devices state save/restore before after kexec. This patch together with features in kexec_jump patch can be used for following: - A simple hibernation implementation without ACPI support. You can kexec a hibernating kernel, save the memory image of original system and shutdown the system. When resuming, you restore the memory image of original system via ordinary kexec load then jump back. - Kernel/system debug through making system snapshot. You can make system snapshot, jump back, do some thing and make another system snapshot. - Cooperative multi-kernel/system. With kexec jump, you can switch between several kernels/systems quickly without boot process except the first time. This appears like swap a whole kernel/system out/in. - A general method to call program in physical mode (paging turning off). This can be used to invoke BIOS code under Linux. The following user-space tools can be used with kexec jump: - kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 - makedumpfile with patches are used as memory image saving tool, it can exclude free pages from original kernel memory image file. The patches and the precompiled makedumpfile can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile-src_cvs_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile-patches_cvs_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile_cvs_kh10 - An initramfs image can be used as the root file system of kexeced kernel. An initramfs image built with "BuildRoot" can be downloaded from the following URL: initramfs image: http://khibernation.sourceforge.net/download/release_v10/initramfs/rootfs_cvs_kh10.gz All user space tools above are included in the initramfs image. Usage example of simple hibernation: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_RELOCATABLE=y CONFIG_KEXEC=y CONFIG_CRASH_DUMP=y CONFIG_PM=y CONFIG_HIBERNATION=y CONFIG_KEXEC_JUMP=y 2. Build an initramfs image contains kexec-tool and makedumpfile, or download the pre-built initramfs image, called rootfs.gz in following text. 3. Prepare a partition to save memory image of original kernel, called hibernating partition in following text. 4. Boot kernel compiled in step 1 (kernel A). 5. In the kernel A, load kernel compiled in step 1 (kernel B) with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context /boot/bzImage --mem-min=0x100000 --mem-max=0xffffff --initrd=rootfs.gz 6. Boot the kernel B with following shell command line: /sbin/kexec -e 7. The kernel B will boot as normal kexec. In kernel B the memory image of kernel A can be saved into hibernating partition as follow: jump_back_entry=`cat /proc/cmdline | tr ' ' '\n' | grep kexec_jump_back_entry | cut -d '='` echo $jump_back_entry > kexec_jump_back_entry cp /proc/vmcore dump.elf Then you can shutdown the machine as normal. 8. Boot kernel compiled in step 1 (kernel C). Use the rootfs.gz as root file system. 9. In kernel C, load the memory image of kernel A as follow: /sbin/kexec -l --args-none --entry=`cat kexec_jump_back_entry` dump.elf 10. Jump back to the kernel A as follow: /sbin/kexec -e Then, kernel A is resumed. Implementation point: To support jumping between two kernels, before jumping to (executing) the new kernel and jumping back to the original kernel, the devices are put into quiescent state, and the state of devices and CPU is saved. After jumping back from kexeced kernel and jumping to the new kernel, the state of devices and CPU are restored accordingly. The devices/CPU state save/restore code of software suspend is called to implement corresponding function. Known issues: - Because the segment number supported by sys_kexec_load is limited, hibernation image with many segments may not be load. This is planned to be eliminated by adding a new flag to sys_kexec_load to make a image can be loaded with multiple sys_kexec_load invoking. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:10 +08:00
Resume_devices:
dpm_resume_end(PMSG_RESTORE);
kexec jump: save/restore device state This patch implements devices state save/restore before after kexec. This patch together with features in kexec_jump patch can be used for following: - A simple hibernation implementation without ACPI support. You can kexec a hibernating kernel, save the memory image of original system and shutdown the system. When resuming, you restore the memory image of original system via ordinary kexec load then jump back. - Kernel/system debug through making system snapshot. You can make system snapshot, jump back, do some thing and make another system snapshot. - Cooperative multi-kernel/system. With kexec jump, you can switch between several kernels/systems quickly without boot process except the first time. This appears like swap a whole kernel/system out/in. - A general method to call program in physical mode (paging turning off). This can be used to invoke BIOS code under Linux. The following user-space tools can be used with kexec jump: - kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 - makedumpfile with patches are used as memory image saving tool, it can exclude free pages from original kernel memory image file. The patches and the precompiled makedumpfile can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile-src_cvs_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile-patches_cvs_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile_cvs_kh10 - An initramfs image can be used as the root file system of kexeced kernel. An initramfs image built with "BuildRoot" can be downloaded from the following URL: initramfs image: http://khibernation.sourceforge.net/download/release_v10/initramfs/rootfs_cvs_kh10.gz All user space tools above are included in the initramfs image. Usage example of simple hibernation: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_RELOCATABLE=y CONFIG_KEXEC=y CONFIG_CRASH_DUMP=y CONFIG_PM=y CONFIG_HIBERNATION=y CONFIG_KEXEC_JUMP=y 2. Build an initramfs image contains kexec-tool and makedumpfile, or download the pre-built initramfs image, called rootfs.gz in following text. 3. Prepare a partition to save memory image of original kernel, called hibernating partition in following text. 4. Boot kernel compiled in step 1 (kernel A). 5. In the kernel A, load kernel compiled in step 1 (kernel B) with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context /boot/bzImage --mem-min=0x100000 --mem-max=0xffffff --initrd=rootfs.gz 6. Boot the kernel B with following shell command line: /sbin/kexec -e 7. The kernel B will boot as normal kexec. In kernel B the memory image of kernel A can be saved into hibernating partition as follow: jump_back_entry=`cat /proc/cmdline | tr ' ' '\n' | grep kexec_jump_back_entry | cut -d '='` echo $jump_back_entry > kexec_jump_back_entry cp /proc/vmcore dump.elf Then you can shutdown the machine as normal. 8. Boot kernel compiled in step 1 (kernel C). Use the rootfs.gz as root file system. 9. In kernel C, load the memory image of kernel A as follow: /sbin/kexec -l --args-none --entry=`cat kexec_jump_back_entry` dump.elf 10. Jump back to the kernel A as follow: /sbin/kexec -e Then, kernel A is resumed. Implementation point: To support jumping between two kernels, before jumping to (executing) the new kernel and jumping back to the original kernel, the devices are put into quiescent state, and the state of devices and CPU is saved. After jumping back from kexeced kernel and jumping to the new kernel, the state of devices and CPU are restored accordingly. The devices/CPU state save/restore code of software suspend is called to implement corresponding function. Known issues: - Because the segment number supported by sys_kexec_load is limited, hibernation image with many segments may not be load. This is planned to be eliminated by adding a new flag to sys_kexec_load to make a image can be loaded with multiple sys_kexec_load invoking. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:10 +08:00
Resume_console:
resume_console();
thaw_processes();
Restore_console:
pm_restore_console();
unlock_system_sleep();
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:07 +08:00
}
#endif
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:07 +08:00
Unlock:
mutex_unlock(&kexec_mutex);
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 10:45:07 +08:00
return error;
}