2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-07 05:04:04 +08:00
linux-next/drivers/misc/sgi-xp/xpc_uv.c

1814 lines
47 KiB
C
Raw Normal View History

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (c) 2008-2009 Silicon Graphics, Inc. All Rights Reserved.
*/
/*
* Cross Partition Communication (XPC) uv-based functions.
*
* Architecture specific implementation of common functions.
*
*/
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/err.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <asm/uv/uv_hub.h>
#if defined CONFIG_X86_64
#include <asm/uv/bios.h>
#include <asm/uv/uv_irq.h>
#elif defined CONFIG_IA64_GENERIC || defined CONFIG_IA64_SGI_UV
#include <asm/sn/intr.h>
#include <asm/sn/sn_sal.h>
#endif
#include "../sgi-gru/gru.h"
#include "../sgi-gru/grukservices.h"
#include "xpc.h"
#if defined CONFIG_IA64_GENERIC || defined CONFIG_IA64_SGI_UV
struct uv_IO_APIC_route_entry {
__u64 vector : 8,
delivery_mode : 3,
dest_mode : 1,
delivery_status : 1,
polarity : 1,
__reserved_1 : 1,
trigger : 1,
mask : 1,
__reserved_2 : 15,
dest : 32;
};
#endif
static struct xpc_heartbeat_uv *xpc_heartbeat_uv;
#define XPC_ACTIVATE_MSG_SIZE_UV (1 * GRU_CACHE_LINE_BYTES)
#define XPC_ACTIVATE_MQ_SIZE_UV (4 * XP_MAX_NPARTITIONS_UV * \
XPC_ACTIVATE_MSG_SIZE_UV)
#define XPC_ACTIVATE_IRQ_NAME "xpc_activate"
#define XPC_NOTIFY_MSG_SIZE_UV (2 * GRU_CACHE_LINE_BYTES)
#define XPC_NOTIFY_MQ_SIZE_UV (4 * XP_MAX_NPARTITIONS_UV * \
XPC_NOTIFY_MSG_SIZE_UV)
#define XPC_NOTIFY_IRQ_NAME "xpc_notify"
static int xpc_mq_node = -1;
static struct xpc_gru_mq_uv *xpc_activate_mq_uv;
static struct xpc_gru_mq_uv *xpc_notify_mq_uv;
static int
xpc_setup_partitions_uv(void)
{
short partid;
struct xpc_partition_uv *part_uv;
for (partid = 0; partid < XP_MAX_NPARTITIONS_UV; partid++) {
part_uv = &xpc_partitions[partid].sn.uv;
mutex_init(&part_uv->cached_activate_gru_mq_desc_mutex);
spin_lock_init(&part_uv->flags_lock);
part_uv->remote_act_state = XPC_P_AS_INACTIVE;
}
return 0;
}
static void
xpc_teardown_partitions_uv(void)
{
short partid;
struct xpc_partition_uv *part_uv;
unsigned long irq_flags;
for (partid = 0; partid < XP_MAX_NPARTITIONS_UV; partid++) {
part_uv = &xpc_partitions[partid].sn.uv;
if (part_uv->cached_activate_gru_mq_desc != NULL) {
mutex_lock(&part_uv->cached_activate_gru_mq_desc_mutex);
spin_lock_irqsave(&part_uv->flags_lock, irq_flags);
part_uv->flags &= ~XPC_P_CACHED_ACTIVATE_GRU_MQ_DESC_UV;
spin_unlock_irqrestore(&part_uv->flags_lock, irq_flags);
kfree(part_uv->cached_activate_gru_mq_desc);
part_uv->cached_activate_gru_mq_desc = NULL;
mutex_unlock(&part_uv->
cached_activate_gru_mq_desc_mutex);
}
}
}
static int
xpc_get_gru_mq_irq_uv(struct xpc_gru_mq_uv *mq, int cpu, char *irq_name)
{
int mmr_pnode = uv_blade_to_pnode(mq->mmr_blade);
#if defined CONFIG_X86_64
mq->irq = uv_setup_irq(irq_name, cpu, mq->mmr_blade, mq->mmr_offset,
UV_AFFINITY_CPU);
if (mq->irq < 0)
return mq->irq;
mq->mmr_value = uv_read_global_mmr64(mmr_pnode, mq->mmr_offset);
#elif defined CONFIG_IA64_GENERIC || defined CONFIG_IA64_SGI_UV
if (strcmp(irq_name, XPC_ACTIVATE_IRQ_NAME) == 0)
mq->irq = SGI_XPC_ACTIVATE;
else if (strcmp(irq_name, XPC_NOTIFY_IRQ_NAME) == 0)
mq->irq = SGI_XPC_NOTIFY;
else
return -EINVAL;
mq->mmr_value = (unsigned long)cpu_physical_id(cpu) << 32 | mq->irq;
uv_write_global_mmr64(mmr_pnode, mq->mmr_offset, mq->mmr_value);
#else
#error not a supported configuration
#endif
return 0;
}
static void
xpc_release_gru_mq_irq_uv(struct xpc_gru_mq_uv *mq)
{
#if defined CONFIG_X86_64
uv_teardown_irq(mq->irq);
#elif defined CONFIG_IA64_GENERIC || defined CONFIG_IA64_SGI_UV
int mmr_pnode;
unsigned long mmr_value;
mmr_pnode = uv_blade_to_pnode(mq->mmr_blade);
mmr_value = 1UL << 16;
uv_write_global_mmr64(mmr_pnode, mq->mmr_offset, mmr_value);
#else
#error not a supported configuration
#endif
}
static int
xpc_gru_mq_watchlist_alloc_uv(struct xpc_gru_mq_uv *mq)
{
int ret;
#if defined CONFIG_IA64_GENERIC || defined CONFIG_IA64_SGI_UV
int mmr_pnode = uv_blade_to_pnode(mq->mmr_blade);
ret = sn_mq_watchlist_alloc(mmr_pnode, (void *)uv_gpa(mq->address),
mq->order, &mq->mmr_offset);
if (ret < 0) {
dev_err(xpc_part, "sn_mq_watchlist_alloc() failed, ret=%d\n",
ret);
return -EBUSY;
}
#elif defined CONFIG_X86_64
ret = uv_bios_mq_watchlist_alloc(uv_gpa(mq->address),
mq->order, &mq->mmr_offset);
if (ret < 0) {
dev_err(xpc_part, "uv_bios_mq_watchlist_alloc() failed, "
"ret=%d\n", ret);
return ret;
}
#else
#error not a supported configuration
#endif
mq->watchlist_num = ret;
return 0;
}
static void
xpc_gru_mq_watchlist_free_uv(struct xpc_gru_mq_uv *mq)
{
int ret;
int mmr_pnode = uv_blade_to_pnode(mq->mmr_blade);
#if defined CONFIG_X86_64
ret = uv_bios_mq_watchlist_free(mmr_pnode, mq->watchlist_num);
BUG_ON(ret != BIOS_STATUS_SUCCESS);
#elif defined CONFIG_IA64_GENERIC || defined CONFIG_IA64_SGI_UV
ret = sn_mq_watchlist_free(mmr_pnode, mq->watchlist_num);
BUG_ON(ret != SALRET_OK);
#else
#error not a supported configuration
#endif
}
static struct xpc_gru_mq_uv *
xpc_create_gru_mq_uv(unsigned int mq_size, int cpu, char *irq_name,
irq_handler_t irq_handler)
{
enum xp_retval xp_ret;
int ret;
int nid;
int nasid;
int pg_order;
struct page *page;
struct xpc_gru_mq_uv *mq;
struct uv_IO_APIC_route_entry *mmr_value;
mq = kmalloc(sizeof(struct xpc_gru_mq_uv), GFP_KERNEL);
if (mq == NULL) {
dev_err(xpc_part, "xpc_create_gru_mq_uv() failed to kmalloc() "
"a xpc_gru_mq_uv structure\n");
ret = -ENOMEM;
goto out_0;
}
mq->gru_mq_desc = kzalloc(sizeof(struct gru_message_queue_desc),
GFP_KERNEL);
if (mq->gru_mq_desc == NULL) {
dev_err(xpc_part, "xpc_create_gru_mq_uv() failed to kmalloc() "
"a gru_message_queue_desc structure\n");
ret = -ENOMEM;
goto out_1;
}
pg_order = get_order(mq_size);
mq->order = pg_order + PAGE_SHIFT;
mq_size = 1UL << mq->order;
mq->mmr_blade = uv_cpu_to_blade_id(cpu);
nid = cpu_to_node(cpu);
page = alloc_pages_exact_node(nid,
GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
pg_order);
if (page == NULL) {
dev_err(xpc_part, "xpc_create_gru_mq_uv() failed to alloc %d "
"bytes of memory on nid=%d for GRU mq\n", mq_size, nid);
ret = -ENOMEM;
goto out_2;
}
mq->address = page_address(page);
/* enable generation of irq when GRU mq operation occurs to this mq */
ret = xpc_gru_mq_watchlist_alloc_uv(mq);
if (ret != 0)
goto out_3;
ret = xpc_get_gru_mq_irq_uv(mq, cpu, irq_name);
if (ret != 0)
goto out_4;
ret = request_irq(mq->irq, irq_handler, 0, irq_name, NULL);
if (ret != 0) {
dev_err(xpc_part, "request_irq(irq=%d) returned error=%d\n",
mq->irq, -ret);
goto out_5;
}
nasid = UV_PNODE_TO_NASID(uv_cpu_to_pnode(cpu));
mmr_value = (struct uv_IO_APIC_route_entry *)&mq->mmr_value;
ret = gru_create_message_queue(mq->gru_mq_desc, mq->address, mq_size,
nasid, mmr_value->vector, mmr_value->dest);
if (ret != 0) {
dev_err(xpc_part, "gru_create_message_queue() returned "
"error=%d\n", ret);
ret = -EINVAL;
goto out_6;
}
/* allow other partitions to access this GRU mq */
xp_ret = xp_expand_memprotect(xp_pa(mq->address), mq_size);
if (xp_ret != xpSuccess) {
ret = -EACCES;
goto out_6;
}
return mq;
/* something went wrong */
out_6:
free_irq(mq->irq, NULL);
out_5:
xpc_release_gru_mq_irq_uv(mq);
out_4:
xpc_gru_mq_watchlist_free_uv(mq);
out_3:
free_pages((unsigned long)mq->address, pg_order);
out_2:
kfree(mq->gru_mq_desc);
out_1:
kfree(mq);
out_0:
return ERR_PTR(ret);
}
static void
xpc_destroy_gru_mq_uv(struct xpc_gru_mq_uv *mq)
{
unsigned int mq_size;
int pg_order;
int ret;
/* disallow other partitions to access GRU mq */
mq_size = 1UL << mq->order;
ret = xp_restrict_memprotect(xp_pa(mq->address), mq_size);
BUG_ON(ret != xpSuccess);
/* unregister irq handler and release mq irq/vector mapping */
free_irq(mq->irq, NULL);
xpc_release_gru_mq_irq_uv(mq);
/* disable generation of irq when GRU mq op occurs to this mq */
xpc_gru_mq_watchlist_free_uv(mq);
pg_order = mq->order - PAGE_SHIFT;
free_pages((unsigned long)mq->address, pg_order);
kfree(mq);
}
static enum xp_retval
xpc_send_gru_msg(struct gru_message_queue_desc *gru_mq_desc, void *msg,
size_t msg_size)
{
enum xp_retval xp_ret;
int ret;
while (1) {
ret = gru_send_message_gpa(gru_mq_desc, msg, msg_size);
if (ret == MQE_OK) {
xp_ret = xpSuccess;
break;
}
if (ret == MQE_QUEUE_FULL) {
dev_dbg(xpc_chan, "gru_send_message_gpa() returned "
"error=MQE_QUEUE_FULL\n");
/* !!! handle QLimit reached; delay & try again */
/* ??? Do we add a limit to the number of retries? */
(void)msleep_interruptible(10);
} else if (ret == MQE_CONGESTION) {
dev_dbg(xpc_chan, "gru_send_message_gpa() returned "
"error=MQE_CONGESTION\n");
/* !!! handle LB Overflow; simply try again */
/* ??? Do we add a limit to the number of retries? */
} else {
/* !!! Currently this is MQE_UNEXPECTED_CB_ERR */
dev_err(xpc_chan, "gru_send_message_gpa() returned "
"error=%d\n", ret);
xp_ret = xpGruSendMqError;
break;
}
}
return xp_ret;
}
static void
xpc_process_activate_IRQ_rcvd_uv(void)
{
unsigned long irq_flags;
short partid;
struct xpc_partition *part;
u8 act_state_req;
DBUG_ON(xpc_activate_IRQ_rcvd == 0);
spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
for (partid = 0; partid < XP_MAX_NPARTITIONS_UV; partid++) {
part = &xpc_partitions[partid];
if (part->sn.uv.act_state_req == 0)
continue;
xpc_activate_IRQ_rcvd--;
BUG_ON(xpc_activate_IRQ_rcvd < 0);
act_state_req = part->sn.uv.act_state_req;
part->sn.uv.act_state_req = 0;
spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
if (act_state_req == XPC_P_ASR_ACTIVATE_UV) {
if (part->act_state == XPC_P_AS_INACTIVE)
xpc_activate_partition(part);
else if (part->act_state == XPC_P_AS_DEACTIVATING)
XPC_DEACTIVATE_PARTITION(part, xpReactivating);
} else if (act_state_req == XPC_P_ASR_REACTIVATE_UV) {
if (part->act_state == XPC_P_AS_INACTIVE)
xpc_activate_partition(part);
else
XPC_DEACTIVATE_PARTITION(part, xpReactivating);
} else if (act_state_req == XPC_P_ASR_DEACTIVATE_UV) {
XPC_DEACTIVATE_PARTITION(part, part->sn.uv.reason);
} else {
BUG();
}
spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
if (xpc_activate_IRQ_rcvd == 0)
break;
}
spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
}
static void
xpc_handle_activate_mq_msg_uv(struct xpc_partition *part,
struct xpc_activate_mq_msghdr_uv *msg_hdr,
int part_setup,
int *wakeup_hb_checker)
{
unsigned long irq_flags;
struct xpc_partition_uv *part_uv = &part->sn.uv;
struct xpc_openclose_args *args;
part_uv->remote_act_state = msg_hdr->act_state;
switch (msg_hdr->type) {
case XPC_ACTIVATE_MQ_MSG_SYNC_ACT_STATE_UV:
/* syncing of remote_act_state was just done above */
break;
case XPC_ACTIVATE_MQ_MSG_ACTIVATE_REQ_UV: {
struct xpc_activate_mq_msg_activate_req_uv *msg;
/*
* ??? Do we deal here with ts_jiffies being different
* ??? if act_state != XPC_P_AS_INACTIVE instead of
* ??? below?
*/
msg = container_of(msg_hdr, struct
xpc_activate_mq_msg_activate_req_uv, hdr);
spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
if (part_uv->act_state_req == 0)
xpc_activate_IRQ_rcvd++;
part_uv->act_state_req = XPC_P_ASR_ACTIVATE_UV;
part->remote_rp_pa = msg->rp_gpa; /* !!! _pa is _gpa */
part->remote_rp_ts_jiffies = msg_hdr->rp_ts_jiffies;
part_uv->heartbeat_gpa = msg->heartbeat_gpa;
if (msg->activate_gru_mq_desc_gpa !=
part_uv->activate_gru_mq_desc_gpa) {
spin_lock(&part_uv->flags_lock);
part_uv->flags &= ~XPC_P_CACHED_ACTIVATE_GRU_MQ_DESC_UV;
spin_unlock(&part_uv->flags_lock);
part_uv->activate_gru_mq_desc_gpa =
msg->activate_gru_mq_desc_gpa;
}
spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
(*wakeup_hb_checker)++;
break;
}
case XPC_ACTIVATE_MQ_MSG_DEACTIVATE_REQ_UV: {
struct xpc_activate_mq_msg_deactivate_req_uv *msg;
msg = container_of(msg_hdr, struct
xpc_activate_mq_msg_deactivate_req_uv, hdr);
spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
if (part_uv->act_state_req == 0)
xpc_activate_IRQ_rcvd++;
part_uv->act_state_req = XPC_P_ASR_DEACTIVATE_UV;
part_uv->reason = msg->reason;
spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
(*wakeup_hb_checker)++;
return;
}
case XPC_ACTIVATE_MQ_MSG_CHCTL_CLOSEREQUEST_UV: {
struct xpc_activate_mq_msg_chctl_closerequest_uv *msg;
if (!part_setup)
break;
msg = container_of(msg_hdr, struct
xpc_activate_mq_msg_chctl_closerequest_uv,
hdr);
args = &part->remote_openclose_args[msg->ch_number];
args->reason = msg->reason;
spin_lock_irqsave(&part->chctl_lock, irq_flags);
part->chctl.flags[msg->ch_number] |= XPC_CHCTL_CLOSEREQUEST;
spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
xpc_wakeup_channel_mgr(part);
break;
}
case XPC_ACTIVATE_MQ_MSG_CHCTL_CLOSEREPLY_UV: {
struct xpc_activate_mq_msg_chctl_closereply_uv *msg;
if (!part_setup)
break;
msg = container_of(msg_hdr, struct
xpc_activate_mq_msg_chctl_closereply_uv,
hdr);
spin_lock_irqsave(&part->chctl_lock, irq_flags);
part->chctl.flags[msg->ch_number] |= XPC_CHCTL_CLOSEREPLY;
spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
xpc_wakeup_channel_mgr(part);
break;
}
case XPC_ACTIVATE_MQ_MSG_CHCTL_OPENREQUEST_UV: {
struct xpc_activate_mq_msg_chctl_openrequest_uv *msg;
if (!part_setup)
break;
msg = container_of(msg_hdr, struct
xpc_activate_mq_msg_chctl_openrequest_uv,
hdr);
args = &part->remote_openclose_args[msg->ch_number];
args->entry_size = msg->entry_size;
args->local_nentries = msg->local_nentries;
spin_lock_irqsave(&part->chctl_lock, irq_flags);
part->chctl.flags[msg->ch_number] |= XPC_CHCTL_OPENREQUEST;
spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
xpc_wakeup_channel_mgr(part);
break;
}
case XPC_ACTIVATE_MQ_MSG_CHCTL_OPENREPLY_UV: {
struct xpc_activate_mq_msg_chctl_openreply_uv *msg;
if (!part_setup)
break;
msg = container_of(msg_hdr, struct
xpc_activate_mq_msg_chctl_openreply_uv, hdr);
args = &part->remote_openclose_args[msg->ch_number];
args->remote_nentries = msg->remote_nentries;
args->local_nentries = msg->local_nentries;
args->local_msgqueue_pa = msg->notify_gru_mq_desc_gpa;
spin_lock_irqsave(&part->chctl_lock, irq_flags);
part->chctl.flags[msg->ch_number] |= XPC_CHCTL_OPENREPLY;
spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
xpc_wakeup_channel_mgr(part);
break;
}
case XPC_ACTIVATE_MQ_MSG_CHCTL_OPENCOMPLETE_UV: {
struct xpc_activate_mq_msg_chctl_opencomplete_uv *msg;
if (!part_setup)
break;
msg = container_of(msg_hdr, struct
xpc_activate_mq_msg_chctl_opencomplete_uv, hdr);
spin_lock_irqsave(&part->chctl_lock, irq_flags);
part->chctl.flags[msg->ch_number] |= XPC_CHCTL_OPENCOMPLETE;
spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
xpc_wakeup_channel_mgr(part);
}
case XPC_ACTIVATE_MQ_MSG_MARK_ENGAGED_UV:
spin_lock_irqsave(&part_uv->flags_lock, irq_flags);
part_uv->flags |= XPC_P_ENGAGED_UV;
spin_unlock_irqrestore(&part_uv->flags_lock, irq_flags);
break;
case XPC_ACTIVATE_MQ_MSG_MARK_DISENGAGED_UV:
spin_lock_irqsave(&part_uv->flags_lock, irq_flags);
part_uv->flags &= ~XPC_P_ENGAGED_UV;
spin_unlock_irqrestore(&part_uv->flags_lock, irq_flags);
break;
default:
dev_err(xpc_part, "received unknown activate_mq msg type=%d "
"from partition=%d\n", msg_hdr->type, XPC_PARTID(part));
/* get hb checker to deactivate from the remote partition */
spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
if (part_uv->act_state_req == 0)
xpc_activate_IRQ_rcvd++;
part_uv->act_state_req = XPC_P_ASR_DEACTIVATE_UV;
part_uv->reason = xpBadMsgType;
spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
(*wakeup_hb_checker)++;
return;
}
if (msg_hdr->rp_ts_jiffies != part->remote_rp_ts_jiffies &&
part->remote_rp_ts_jiffies != 0) {
/*
* ??? Does what we do here need to be sensitive to
* ??? act_state or remote_act_state?
*/
spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
if (part_uv->act_state_req == 0)
xpc_activate_IRQ_rcvd++;
part_uv->act_state_req = XPC_P_ASR_REACTIVATE_UV;
spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
(*wakeup_hb_checker)++;
}
}
static irqreturn_t
xpc_handle_activate_IRQ_uv(int irq, void *dev_id)
{
struct xpc_activate_mq_msghdr_uv *msg_hdr;
short partid;
struct xpc_partition *part;
int wakeup_hb_checker = 0;
int part_referenced;
while (1) {
msg_hdr = gru_get_next_message(xpc_activate_mq_uv->gru_mq_desc);
if (msg_hdr == NULL)
break;
partid = msg_hdr->partid;
if (partid < 0 || partid >= XP_MAX_NPARTITIONS_UV) {
dev_err(xpc_part, "xpc_handle_activate_IRQ_uv() "
"received invalid partid=0x%x in message\n",
partid);
} else {
part = &xpc_partitions[partid];
part_referenced = xpc_part_ref(part);
xpc_handle_activate_mq_msg_uv(part, msg_hdr,
part_referenced,
&wakeup_hb_checker);
if (part_referenced)
xpc_part_deref(part);
}
gru_free_message(xpc_activate_mq_uv->gru_mq_desc, msg_hdr);
}
if (wakeup_hb_checker)
wake_up_interruptible(&xpc_activate_IRQ_wq);
return IRQ_HANDLED;
}
static enum xp_retval
xpc_cache_remote_gru_mq_desc_uv(struct gru_message_queue_desc *gru_mq_desc,
unsigned long gru_mq_desc_gpa)
{
enum xp_retval ret;
ret = xp_remote_memcpy(uv_gpa(gru_mq_desc), gru_mq_desc_gpa,
sizeof(struct gru_message_queue_desc));
if (ret == xpSuccess)
gru_mq_desc->mq = NULL;
return ret;
}
static enum xp_retval
xpc_send_activate_IRQ_uv(struct xpc_partition *part, void *msg, size_t msg_size,
int msg_type)
{
struct xpc_activate_mq_msghdr_uv *msg_hdr = msg;
struct xpc_partition_uv *part_uv = &part->sn.uv;
struct gru_message_queue_desc *gru_mq_desc;
unsigned long irq_flags;
enum xp_retval ret;
DBUG_ON(msg_size > XPC_ACTIVATE_MSG_SIZE_UV);
msg_hdr->type = msg_type;
msg_hdr->partid = xp_partition_id;
msg_hdr->act_state = part->act_state;
msg_hdr->rp_ts_jiffies = xpc_rsvd_page->ts_jiffies;
mutex_lock(&part_uv->cached_activate_gru_mq_desc_mutex);
again:
if (!(part_uv->flags & XPC_P_CACHED_ACTIVATE_GRU_MQ_DESC_UV)) {
gru_mq_desc = part_uv->cached_activate_gru_mq_desc;
if (gru_mq_desc == NULL) {
gru_mq_desc = kmalloc(sizeof(struct
gru_message_queue_desc),
GFP_KERNEL);
if (gru_mq_desc == NULL) {
ret = xpNoMemory;
goto done;
}
part_uv->cached_activate_gru_mq_desc = gru_mq_desc;
}
ret = xpc_cache_remote_gru_mq_desc_uv(gru_mq_desc,
part_uv->
activate_gru_mq_desc_gpa);
if (ret != xpSuccess)
goto done;
spin_lock_irqsave(&part_uv->flags_lock, irq_flags);
part_uv->flags |= XPC_P_CACHED_ACTIVATE_GRU_MQ_DESC_UV;
spin_unlock_irqrestore(&part_uv->flags_lock, irq_flags);
}
/* ??? Is holding a spin_lock (ch->lock) during this call a bad idea? */
ret = xpc_send_gru_msg(part_uv->cached_activate_gru_mq_desc, msg,
msg_size);
if (ret != xpSuccess) {
smp_rmb(); /* ensure a fresh copy of part_uv->flags */
if (!(part_uv->flags & XPC_P_CACHED_ACTIVATE_GRU_MQ_DESC_UV))
goto again;
}
done:
mutex_unlock(&part_uv->cached_activate_gru_mq_desc_mutex);
return ret;
}
static void
xpc_send_activate_IRQ_part_uv(struct xpc_partition *part, void *msg,
size_t msg_size, int msg_type)
{
enum xp_retval ret;
ret = xpc_send_activate_IRQ_uv(part, msg, msg_size, msg_type);
if (unlikely(ret != xpSuccess))
XPC_DEACTIVATE_PARTITION(part, ret);
}
static void
xpc_send_activate_IRQ_ch_uv(struct xpc_channel *ch, unsigned long *irq_flags,
void *msg, size_t msg_size, int msg_type)
{
struct xpc_partition *part = &xpc_partitions[ch->partid];
enum xp_retval ret;
ret = xpc_send_activate_IRQ_uv(part, msg, msg_size, msg_type);
if (unlikely(ret != xpSuccess)) {
if (irq_flags != NULL)
spin_unlock_irqrestore(&ch->lock, *irq_flags);
XPC_DEACTIVATE_PARTITION(part, ret);
if (irq_flags != NULL)
spin_lock_irqsave(&ch->lock, *irq_flags);
}
}
static void
xpc_send_local_activate_IRQ_uv(struct xpc_partition *part, int act_state_req)
{
unsigned long irq_flags;
struct xpc_partition_uv *part_uv = &part->sn.uv;
/*
* !!! Make our side think that the remote partition sent an activate
* !!! mq message our way by doing what the activate IRQ handler would
* !!! do had one really been sent.
*/
spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
if (part_uv->act_state_req == 0)
xpc_activate_IRQ_rcvd++;
part_uv->act_state_req = act_state_req;
spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
wake_up_interruptible(&xpc_activate_IRQ_wq);
}
static enum xp_retval
xpc_get_partition_rsvd_page_pa_uv(void *buf, u64 *cookie, unsigned long *rp_pa,
size_t *len)
{
s64 status;
enum xp_retval ret;
#if defined CONFIG_X86_64
status = uv_bios_reserved_page_pa((u64)buf, cookie, (u64 *)rp_pa,
(u64 *)len);
if (status == BIOS_STATUS_SUCCESS)
ret = xpSuccess;
else if (status == BIOS_STATUS_MORE_PASSES)
ret = xpNeedMoreInfo;
else
ret = xpBiosError;
#elif defined CONFIG_IA64_GENERIC || defined CONFIG_IA64_SGI_UV
status = sn_partition_reserved_page_pa((u64)buf, cookie, rp_pa, len);
if (status == SALRET_OK)
ret = xpSuccess;
else if (status == SALRET_MORE_PASSES)
ret = xpNeedMoreInfo;
else
ret = xpSalError;
#else
#error not a supported configuration
#endif
return ret;
}
static int
xpc_setup_rsvd_page_uv(struct xpc_rsvd_page *rp)
{
xpc_heartbeat_uv =
&xpc_partitions[sn_partition_id].sn.uv.cached_heartbeat;
rp->sn.uv.heartbeat_gpa = uv_gpa(xpc_heartbeat_uv);
rp->sn.uv.activate_gru_mq_desc_gpa =
uv_gpa(xpc_activate_mq_uv->gru_mq_desc);
return 0;
}
static void
xpc_allow_hb_uv(short partid)
{
}
static void
xpc_disallow_hb_uv(short partid)
{
}
static void
xpc_disallow_all_hbs_uv(void)
{
}
static void
xpc_increment_heartbeat_uv(void)
{
xpc_heartbeat_uv->value++;
}
static void
xpc_offline_heartbeat_uv(void)
{
xpc_increment_heartbeat_uv();
xpc_heartbeat_uv->offline = 1;
}
static void
xpc_online_heartbeat_uv(void)
{
xpc_increment_heartbeat_uv();
xpc_heartbeat_uv->offline = 0;
}
static void
xpc_heartbeat_init_uv(void)
{
xpc_heartbeat_uv->value = 1;
xpc_heartbeat_uv->offline = 0;
}
static void
xpc_heartbeat_exit_uv(void)
{
xpc_offline_heartbeat_uv();
}
static enum xp_retval
xpc_get_remote_heartbeat_uv(struct xpc_partition *part)
{
struct xpc_partition_uv *part_uv = &part->sn.uv;
enum xp_retval ret;
ret = xp_remote_memcpy(uv_gpa(&part_uv->cached_heartbeat),
part_uv->heartbeat_gpa,
sizeof(struct xpc_heartbeat_uv));
if (ret != xpSuccess)
return ret;
if (part_uv->cached_heartbeat.value == part->last_heartbeat &&
!part_uv->cached_heartbeat.offline) {
ret = xpNoHeartbeat;
} else {
part->last_heartbeat = part_uv->cached_heartbeat.value;
}
return ret;
}
static void
xpc_request_partition_activation_uv(struct xpc_rsvd_page *remote_rp,
unsigned long remote_rp_gpa, int nasid)
{
short partid = remote_rp->SAL_partid;
struct xpc_partition *part = &xpc_partitions[partid];
struct xpc_activate_mq_msg_activate_req_uv msg;
part->remote_rp_pa = remote_rp_gpa; /* !!! _pa here is really _gpa */
part->remote_rp_ts_jiffies = remote_rp->ts_jiffies;
part->sn.uv.heartbeat_gpa = remote_rp->sn.uv.heartbeat_gpa;
part->sn.uv.activate_gru_mq_desc_gpa =
remote_rp->sn.uv.activate_gru_mq_desc_gpa;
/*
* ??? Is it a good idea to make this conditional on what is
* ??? potentially stale state information?
*/
if (part->sn.uv.remote_act_state == XPC_P_AS_INACTIVE) {
msg.rp_gpa = uv_gpa(xpc_rsvd_page);
msg.heartbeat_gpa = xpc_rsvd_page->sn.uv.heartbeat_gpa;
msg.activate_gru_mq_desc_gpa =
xpc_rsvd_page->sn.uv.activate_gru_mq_desc_gpa;
xpc_send_activate_IRQ_part_uv(part, &msg, sizeof(msg),
XPC_ACTIVATE_MQ_MSG_ACTIVATE_REQ_UV);
}
if (part->act_state == XPC_P_AS_INACTIVE)
xpc_send_local_activate_IRQ_uv(part, XPC_P_ASR_ACTIVATE_UV);
}
static void
xpc_request_partition_reactivation_uv(struct xpc_partition *part)
{
xpc_send_local_activate_IRQ_uv(part, XPC_P_ASR_ACTIVATE_UV);
}
static void
xpc_request_partition_deactivation_uv(struct xpc_partition *part)
{
struct xpc_activate_mq_msg_deactivate_req_uv msg;
/*
* ??? Is it a good idea to make this conditional on what is
* ??? potentially stale state information?
*/
if (part->sn.uv.remote_act_state != XPC_P_AS_DEACTIVATING &&
part->sn.uv.remote_act_state != XPC_P_AS_INACTIVE) {
msg.reason = part->reason;
xpc_send_activate_IRQ_part_uv(part, &msg, sizeof(msg),
XPC_ACTIVATE_MQ_MSG_DEACTIVATE_REQ_UV);
}
}
static void
xpc_cancel_partition_deactivation_request_uv(struct xpc_partition *part)
{
/* nothing needs to be done */
return;
}
static void
xpc_init_fifo_uv(struct xpc_fifo_head_uv *head)
{
head->first = NULL;
head->last = NULL;
spin_lock_init(&head->lock);
head->n_entries = 0;
}
static void *
xpc_get_fifo_entry_uv(struct xpc_fifo_head_uv *head)
{
unsigned long irq_flags;
struct xpc_fifo_entry_uv *first;
spin_lock_irqsave(&head->lock, irq_flags);
first = head->first;
if (head->first != NULL) {
head->first = first->next;
if (head->first == NULL)
head->last = NULL;
head->n_entries--;
BUG_ON(head->n_entries < 0);
first->next = NULL;
}
spin_unlock_irqrestore(&head->lock, irq_flags);
return first;
}
static void
xpc_put_fifo_entry_uv(struct xpc_fifo_head_uv *head,
struct xpc_fifo_entry_uv *last)
{
unsigned long irq_flags;
last->next = NULL;
spin_lock_irqsave(&head->lock, irq_flags);
if (head->last != NULL)
head->last->next = last;
else
head->first = last;
head->last = last;
head->n_entries++;
spin_unlock_irqrestore(&head->lock, irq_flags);
}
static int
xpc_n_of_fifo_entries_uv(struct xpc_fifo_head_uv *head)
{
return head->n_entries;
}
/*
* Setup the channel structures that are uv specific.
*/
static enum xp_retval
xpc_setup_ch_structures_uv(struct xpc_partition *part)
{
struct xpc_channel_uv *ch_uv;
int ch_number;
for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
ch_uv = &part->channels[ch_number].sn.uv;
xpc_init_fifo_uv(&ch_uv->msg_slot_free_list);
xpc_init_fifo_uv(&ch_uv->recv_msg_list);
}
return xpSuccess;
}
/*
* Teardown the channel structures that are uv specific.
*/
static void
xpc_teardown_ch_structures_uv(struct xpc_partition *part)
{
/* nothing needs to be done */
return;
}
static enum xp_retval
xpc_make_first_contact_uv(struct xpc_partition *part)
{
struct xpc_activate_mq_msg_uv msg;
/*
* We send a sync msg to get the remote partition's remote_act_state
* updated to our current act_state which at this point should
* be XPC_P_AS_ACTIVATING.
*/
xpc_send_activate_IRQ_part_uv(part, &msg, sizeof(msg),
XPC_ACTIVATE_MQ_MSG_SYNC_ACT_STATE_UV);
while (!((part->sn.uv.remote_act_state == XPC_P_AS_ACTIVATING) ||
(part->sn.uv.remote_act_state == XPC_P_AS_ACTIVE))) {
dev_dbg(xpc_part, "waiting to make first contact with "
"partition %d\n", XPC_PARTID(part));
/* wait a 1/4 of a second or so */
(void)msleep_interruptible(250);
if (part->act_state == XPC_P_AS_DEACTIVATING)
return part->reason;
}
return xpSuccess;
}
static u64
xpc_get_chctl_all_flags_uv(struct xpc_partition *part)
{
unsigned long irq_flags;
union xpc_channel_ctl_flags chctl;
spin_lock_irqsave(&part->chctl_lock, irq_flags);
chctl = part->chctl;
if (chctl.all_flags != 0)
part->chctl.all_flags = 0;
spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
return chctl.all_flags;
}
static enum xp_retval
xpc_allocate_send_msg_slot_uv(struct xpc_channel *ch)
{
struct xpc_channel_uv *ch_uv = &ch->sn.uv;
struct xpc_send_msg_slot_uv *msg_slot;
unsigned long irq_flags;
int nentries;
int entry;
size_t nbytes;
for (nentries = ch->local_nentries; nentries > 0; nentries--) {
nbytes = nentries * sizeof(struct xpc_send_msg_slot_uv);
ch_uv->send_msg_slots = kzalloc(nbytes, GFP_KERNEL);
if (ch_uv->send_msg_slots == NULL)
continue;
for (entry = 0; entry < nentries; entry++) {
msg_slot = &ch_uv->send_msg_slots[entry];
msg_slot->msg_slot_number = entry;
xpc_put_fifo_entry_uv(&ch_uv->msg_slot_free_list,
&msg_slot->next);
}
spin_lock_irqsave(&ch->lock, irq_flags);
if (nentries < ch->local_nentries)
ch->local_nentries = nentries;
spin_unlock_irqrestore(&ch->lock, irq_flags);
return xpSuccess;
}
return xpNoMemory;
}
static enum xp_retval
xpc_allocate_recv_msg_slot_uv(struct xpc_channel *ch)
{
struct xpc_channel_uv *ch_uv = &ch->sn.uv;
struct xpc_notify_mq_msg_uv *msg_slot;
unsigned long irq_flags;
int nentries;
int entry;
size_t nbytes;
for (nentries = ch->remote_nentries; nentries > 0; nentries--) {
nbytes = nentries * ch->entry_size;
ch_uv->recv_msg_slots = kzalloc(nbytes, GFP_KERNEL);
if (ch_uv->recv_msg_slots == NULL)
continue;
for (entry = 0; entry < nentries; entry++) {
msg_slot = ch_uv->recv_msg_slots +
entry * ch->entry_size;
msg_slot->hdr.msg_slot_number = entry;
}
spin_lock_irqsave(&ch->lock, irq_flags);
if (nentries < ch->remote_nentries)
ch->remote_nentries = nentries;
spin_unlock_irqrestore(&ch->lock, irq_flags);
return xpSuccess;
}
return xpNoMemory;
}
/*
* Allocate msg_slots associated with the channel.
*/
static enum xp_retval
xpc_setup_msg_structures_uv(struct xpc_channel *ch)
{
static enum xp_retval ret;
struct xpc_channel_uv *ch_uv = &ch->sn.uv;
DBUG_ON(ch->flags & XPC_C_SETUP);
ch_uv->cached_notify_gru_mq_desc = kmalloc(sizeof(struct
gru_message_queue_desc),
GFP_KERNEL);
if (ch_uv->cached_notify_gru_mq_desc == NULL)
return xpNoMemory;
ret = xpc_allocate_send_msg_slot_uv(ch);
if (ret == xpSuccess) {
ret = xpc_allocate_recv_msg_slot_uv(ch);
if (ret != xpSuccess) {
kfree(ch_uv->send_msg_slots);
xpc_init_fifo_uv(&ch_uv->msg_slot_free_list);
}
}
return ret;
}
/*
* Free up msg_slots and clear other stuff that were setup for the specified
* channel.
*/
static void
xpc_teardown_msg_structures_uv(struct xpc_channel *ch)
{
struct xpc_channel_uv *ch_uv = &ch->sn.uv;
DBUG_ON(!spin_is_locked(&ch->lock));
kfree(ch_uv->cached_notify_gru_mq_desc);
ch_uv->cached_notify_gru_mq_desc = NULL;
if (ch->flags & XPC_C_SETUP) {
xpc_init_fifo_uv(&ch_uv->msg_slot_free_list);
kfree(ch_uv->send_msg_slots);
xpc_init_fifo_uv(&ch_uv->recv_msg_list);
kfree(ch_uv->recv_msg_slots);
}
}
static void
xpc_send_chctl_closerequest_uv(struct xpc_channel *ch, unsigned long *irq_flags)
{
struct xpc_activate_mq_msg_chctl_closerequest_uv msg;
msg.ch_number = ch->number;
msg.reason = ch->reason;
xpc_send_activate_IRQ_ch_uv(ch, irq_flags, &msg, sizeof(msg),
XPC_ACTIVATE_MQ_MSG_CHCTL_CLOSEREQUEST_UV);
}
static void
xpc_send_chctl_closereply_uv(struct xpc_channel *ch, unsigned long *irq_flags)
{
struct xpc_activate_mq_msg_chctl_closereply_uv msg;
msg.ch_number = ch->number;
xpc_send_activate_IRQ_ch_uv(ch, irq_flags, &msg, sizeof(msg),
XPC_ACTIVATE_MQ_MSG_CHCTL_CLOSEREPLY_UV);
}
static void
xpc_send_chctl_openrequest_uv(struct xpc_channel *ch, unsigned long *irq_flags)
{
struct xpc_activate_mq_msg_chctl_openrequest_uv msg;
msg.ch_number = ch->number;
msg.entry_size = ch->entry_size;
msg.local_nentries = ch->local_nentries;
xpc_send_activate_IRQ_ch_uv(ch, irq_flags, &msg, sizeof(msg),
XPC_ACTIVATE_MQ_MSG_CHCTL_OPENREQUEST_UV);
}
static void
xpc_send_chctl_openreply_uv(struct xpc_channel *ch, unsigned long *irq_flags)
{
struct xpc_activate_mq_msg_chctl_openreply_uv msg;
msg.ch_number = ch->number;
msg.local_nentries = ch->local_nentries;
msg.remote_nentries = ch->remote_nentries;
msg.notify_gru_mq_desc_gpa = uv_gpa(xpc_notify_mq_uv->gru_mq_desc);
xpc_send_activate_IRQ_ch_uv(ch, irq_flags, &msg, sizeof(msg),
XPC_ACTIVATE_MQ_MSG_CHCTL_OPENREPLY_UV);
}
static void
xpc_send_chctl_opencomplete_uv(struct xpc_channel *ch, unsigned long *irq_flags)
{
struct xpc_activate_mq_msg_chctl_opencomplete_uv msg;
msg.ch_number = ch->number;
xpc_send_activate_IRQ_ch_uv(ch, irq_flags, &msg, sizeof(msg),
XPC_ACTIVATE_MQ_MSG_CHCTL_OPENCOMPLETE_UV);
}
static void
xpc_send_chctl_local_msgrequest_uv(struct xpc_partition *part, int ch_number)
{
unsigned long irq_flags;
spin_lock_irqsave(&part->chctl_lock, irq_flags);
part->chctl.flags[ch_number] |= XPC_CHCTL_MSGREQUEST;
spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
xpc_wakeup_channel_mgr(part);
}
static enum xp_retval
xpc_save_remote_msgqueue_pa_uv(struct xpc_channel *ch,
unsigned long gru_mq_desc_gpa)
{
struct xpc_channel_uv *ch_uv = &ch->sn.uv;
DBUG_ON(ch_uv->cached_notify_gru_mq_desc == NULL);
return xpc_cache_remote_gru_mq_desc_uv(ch_uv->cached_notify_gru_mq_desc,
gru_mq_desc_gpa);
}
static void
xpc_indicate_partition_engaged_uv(struct xpc_partition *part)
{
struct xpc_activate_mq_msg_uv msg;
xpc_send_activate_IRQ_part_uv(part, &msg, sizeof(msg),
XPC_ACTIVATE_MQ_MSG_MARK_ENGAGED_UV);
}
static void
xpc_indicate_partition_disengaged_uv(struct xpc_partition *part)
{
struct xpc_activate_mq_msg_uv msg;
xpc_send_activate_IRQ_part_uv(part, &msg, sizeof(msg),
XPC_ACTIVATE_MQ_MSG_MARK_DISENGAGED_UV);
}
static void
xpc_assume_partition_disengaged_uv(short partid)
{
struct xpc_partition_uv *part_uv = &xpc_partitions[partid].sn.uv;
unsigned long irq_flags;
spin_lock_irqsave(&part_uv->flags_lock, irq_flags);
part_uv->flags &= ~XPC_P_ENGAGED_UV;
spin_unlock_irqrestore(&part_uv->flags_lock, irq_flags);
}
static int
xpc_partition_engaged_uv(short partid)
{
return (xpc_partitions[partid].sn.uv.flags & XPC_P_ENGAGED_UV) != 0;
}
static int
xpc_any_partition_engaged_uv(void)
{
struct xpc_partition_uv *part_uv;
short partid;
for (partid = 0; partid < XP_MAX_NPARTITIONS_UV; partid++) {
part_uv = &xpc_partitions[partid].sn.uv;
if ((part_uv->flags & XPC_P_ENGAGED_UV) != 0)
return 1;
}
return 0;
}
static enum xp_retval
xpc_allocate_msg_slot_uv(struct xpc_channel *ch, u32 flags,
struct xpc_send_msg_slot_uv **address_of_msg_slot)
{
enum xp_retval ret;
struct xpc_send_msg_slot_uv *msg_slot;
struct xpc_fifo_entry_uv *entry;
while (1) {
entry = xpc_get_fifo_entry_uv(&ch->sn.uv.msg_slot_free_list);
if (entry != NULL)
break;
if (flags & XPC_NOWAIT)
return xpNoWait;
ret = xpc_allocate_msg_wait(ch);
if (ret != xpInterrupted && ret != xpTimeout)
return ret;
}
msg_slot = container_of(entry, struct xpc_send_msg_slot_uv, next);
*address_of_msg_slot = msg_slot;
return xpSuccess;
}
static void
xpc_free_msg_slot_uv(struct xpc_channel *ch,
struct xpc_send_msg_slot_uv *msg_slot)
{
xpc_put_fifo_entry_uv(&ch->sn.uv.msg_slot_free_list, &msg_slot->next);
/* wakeup anyone waiting for a free msg slot */
if (atomic_read(&ch->n_on_msg_allocate_wq) > 0)
wake_up(&ch->msg_allocate_wq);
}
static void
xpc_notify_sender_uv(struct xpc_channel *ch,
struct xpc_send_msg_slot_uv *msg_slot,
enum xp_retval reason)
{
xpc_notify_func func = msg_slot->func;
if (func != NULL && cmpxchg(&msg_slot->func, func, NULL) == func) {
atomic_dec(&ch->n_to_notify);
dev_dbg(xpc_chan, "msg_slot->func() called, msg_slot=0x%p "
"msg_slot_number=%d partid=%d channel=%d\n", msg_slot,
msg_slot->msg_slot_number, ch->partid, ch->number);
func(reason, ch->partid, ch->number, msg_slot->key);
dev_dbg(xpc_chan, "msg_slot->func() returned, msg_slot=0x%p "
"msg_slot_number=%d partid=%d channel=%d\n", msg_slot,
msg_slot->msg_slot_number, ch->partid, ch->number);
}
}
static void
xpc_handle_notify_mq_ack_uv(struct xpc_channel *ch,
struct xpc_notify_mq_msg_uv *msg)
{
struct xpc_send_msg_slot_uv *msg_slot;
int entry = msg->hdr.msg_slot_number % ch->local_nentries;
msg_slot = &ch->sn.uv.send_msg_slots[entry];
BUG_ON(msg_slot->msg_slot_number != msg->hdr.msg_slot_number);
msg_slot->msg_slot_number += ch->local_nentries;
if (msg_slot->func != NULL)
xpc_notify_sender_uv(ch, msg_slot, xpMsgDelivered);
xpc_free_msg_slot_uv(ch, msg_slot);
}
static void
xpc_handle_notify_mq_msg_uv(struct xpc_partition *part,
struct xpc_notify_mq_msg_uv *msg)
{
struct xpc_partition_uv *part_uv = &part->sn.uv;
struct xpc_channel *ch;
struct xpc_channel_uv *ch_uv;
struct xpc_notify_mq_msg_uv *msg_slot;
unsigned long irq_flags;
int ch_number = msg->hdr.ch_number;
if (unlikely(ch_number >= part->nchannels)) {
dev_err(xpc_part, "xpc_handle_notify_IRQ_uv() received invalid "
"channel number=0x%x in message from partid=%d\n",
ch_number, XPC_PARTID(part));
/* get hb checker to deactivate from the remote partition */
spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
if (part_uv->act_state_req == 0)
xpc_activate_IRQ_rcvd++;
part_uv->act_state_req = XPC_P_ASR_DEACTIVATE_UV;
part_uv->reason = xpBadChannelNumber;
spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
wake_up_interruptible(&xpc_activate_IRQ_wq);
return;
}
ch = &part->channels[ch_number];
xpc_msgqueue_ref(ch);
if (!(ch->flags & XPC_C_CONNECTED)) {
xpc_msgqueue_deref(ch);
return;
}
/* see if we're really dealing with an ACK for a previously sent msg */
if (msg->hdr.size == 0) {
xpc_handle_notify_mq_ack_uv(ch, msg);
xpc_msgqueue_deref(ch);
return;
}
/* we're dealing with a normal message sent via the notify_mq */
ch_uv = &ch->sn.uv;
msg_slot = ch_uv->recv_msg_slots +
(msg->hdr.msg_slot_number % ch->remote_nentries) * ch->entry_size;
BUG_ON(msg_slot->hdr.size != 0);
memcpy(msg_slot, msg, msg->hdr.size);
xpc_put_fifo_entry_uv(&ch_uv->recv_msg_list, &msg_slot->hdr.u.next);
if (ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) {
/*
* If there is an existing idle kthread get it to deliver
* the payload, otherwise we'll have to get the channel mgr
* for this partition to create a kthread to do the delivery.
*/
if (atomic_read(&ch->kthreads_idle) > 0)
wake_up_nr(&ch->idle_wq, 1);
else
xpc_send_chctl_local_msgrequest_uv(part, ch->number);
}
xpc_msgqueue_deref(ch);
}
static irqreturn_t
xpc_handle_notify_IRQ_uv(int irq, void *dev_id)
{
struct xpc_notify_mq_msg_uv *msg;
short partid;
struct xpc_partition *part;
while ((msg = gru_get_next_message(xpc_notify_mq_uv->gru_mq_desc)) !=
NULL) {
partid = msg->hdr.partid;
if (partid < 0 || partid >= XP_MAX_NPARTITIONS_UV) {
dev_err(xpc_part, "xpc_handle_notify_IRQ_uv() received "
"invalid partid=0x%x in message\n", partid);
} else {
part = &xpc_partitions[partid];
if (xpc_part_ref(part)) {
xpc_handle_notify_mq_msg_uv(part, msg);
xpc_part_deref(part);
}
}
gru_free_message(xpc_notify_mq_uv->gru_mq_desc, msg);
}
return IRQ_HANDLED;
}
static int
xpc_n_of_deliverable_payloads_uv(struct xpc_channel *ch)
{
return xpc_n_of_fifo_entries_uv(&ch->sn.uv.recv_msg_list);
}
static void
xpc_process_msg_chctl_flags_uv(struct xpc_partition *part, int ch_number)
{
struct xpc_channel *ch = &part->channels[ch_number];
int ndeliverable_payloads;
xpc_msgqueue_ref(ch);
ndeliverable_payloads = xpc_n_of_deliverable_payloads_uv(ch);
if (ndeliverable_payloads > 0 &&
(ch->flags & XPC_C_CONNECTED) &&
(ch->flags & XPC_C_CONNECTEDCALLOUT_MADE)) {
xpc_activate_kthreads(ch, ndeliverable_payloads);
}
xpc_msgqueue_deref(ch);
}
static enum xp_retval
xpc_send_payload_uv(struct xpc_channel *ch, u32 flags, void *payload,
u16 payload_size, u8 notify_type, xpc_notify_func func,
void *key)
{
enum xp_retval ret = xpSuccess;
struct xpc_send_msg_slot_uv *msg_slot = NULL;
struct xpc_notify_mq_msg_uv *msg;
u8 msg_buffer[XPC_NOTIFY_MSG_SIZE_UV];
size_t msg_size;
DBUG_ON(notify_type != XPC_N_CALL);
msg_size = sizeof(struct xpc_notify_mq_msghdr_uv) + payload_size;
if (msg_size > ch->entry_size)
return xpPayloadTooBig;
xpc_msgqueue_ref(ch);
if (ch->flags & XPC_C_DISCONNECTING) {
ret = ch->reason;
goto out_1;
}
if (!(ch->flags & XPC_C_CONNECTED)) {
ret = xpNotConnected;
goto out_1;
}
ret = xpc_allocate_msg_slot_uv(ch, flags, &msg_slot);
if (ret != xpSuccess)
goto out_1;
if (func != NULL) {
atomic_inc(&ch->n_to_notify);
msg_slot->key = key;
smp_wmb(); /* a non-NULL func must hit memory after the key */
msg_slot->func = func;
if (ch->flags & XPC_C_DISCONNECTING) {
ret = ch->reason;
goto out_2;
}
}
msg = (struct xpc_notify_mq_msg_uv *)&msg_buffer;
msg->hdr.partid = xp_partition_id;
msg->hdr.ch_number = ch->number;
msg->hdr.size = msg_size;
msg->hdr.msg_slot_number = msg_slot->msg_slot_number;
memcpy(&msg->payload, payload, payload_size);
ret = xpc_send_gru_msg(ch->sn.uv.cached_notify_gru_mq_desc, msg,
msg_size);
if (ret == xpSuccess)
goto out_1;
XPC_DEACTIVATE_PARTITION(&xpc_partitions[ch->partid], ret);
out_2:
if (func != NULL) {
/*
* Try to NULL the msg_slot's func field. If we fail, then
* xpc_notify_senders_of_disconnect_uv() beat us to it, in which
* case we need to pretend we succeeded to send the message
* since the user will get a callout for the disconnect error
* by xpc_notify_senders_of_disconnect_uv(), and to also get an
* error returned here will confuse them. Additionally, since
* in this case the channel is being disconnected we don't need
* to put the the msg_slot back on the free list.
*/
if (cmpxchg(&msg_slot->func, func, NULL) != func) {
ret = xpSuccess;
goto out_1;
}
msg_slot->key = NULL;
atomic_dec(&ch->n_to_notify);
}
xpc_free_msg_slot_uv(ch, msg_slot);
out_1:
xpc_msgqueue_deref(ch);
return ret;
}
/*
* Tell the callers of xpc_send_notify() that the status of their payloads
* is unknown because the channel is now disconnecting.
*
* We don't worry about putting these msg_slots on the free list since the
* msg_slots themselves are about to be kfree'd.
*/
static void
xpc_notify_senders_of_disconnect_uv(struct xpc_channel *ch)
{
struct xpc_send_msg_slot_uv *msg_slot;
int entry;
DBUG_ON(!(ch->flags & XPC_C_DISCONNECTING));
for (entry = 0; entry < ch->local_nentries; entry++) {
if (atomic_read(&ch->n_to_notify) == 0)
break;
msg_slot = &ch->sn.uv.send_msg_slots[entry];
if (msg_slot->func != NULL)
xpc_notify_sender_uv(ch, msg_slot, ch->reason);
}
}
/*
* Get the next deliverable message's payload.
*/
static void *
xpc_get_deliverable_payload_uv(struct xpc_channel *ch)
{
struct xpc_fifo_entry_uv *entry;
struct xpc_notify_mq_msg_uv *msg;
void *payload = NULL;
if (!(ch->flags & XPC_C_DISCONNECTING)) {
entry = xpc_get_fifo_entry_uv(&ch->sn.uv.recv_msg_list);
if (entry != NULL) {
msg = container_of(entry, struct xpc_notify_mq_msg_uv,
hdr.u.next);
payload = &msg->payload;
}
}
return payload;
}
static void
xpc_received_payload_uv(struct xpc_channel *ch, void *payload)
{
struct xpc_notify_mq_msg_uv *msg;
enum xp_retval ret;
msg = container_of(payload, struct xpc_notify_mq_msg_uv, payload);
/* return an ACK to the sender of this message */
msg->hdr.partid = xp_partition_id;
msg->hdr.size = 0; /* size of zero indicates this is an ACK */
ret = xpc_send_gru_msg(ch->sn.uv.cached_notify_gru_mq_desc, msg,
sizeof(struct xpc_notify_mq_msghdr_uv));
if (ret != xpSuccess)
XPC_DEACTIVATE_PARTITION(&xpc_partitions[ch->partid], ret);
}
static struct xpc_arch_operations xpc_arch_ops_uv = {
.setup_partitions = xpc_setup_partitions_uv,
.teardown_partitions = xpc_teardown_partitions_uv,
.process_activate_IRQ_rcvd = xpc_process_activate_IRQ_rcvd_uv,
.get_partition_rsvd_page_pa = xpc_get_partition_rsvd_page_pa_uv,
.setup_rsvd_page = xpc_setup_rsvd_page_uv,
.allow_hb = xpc_allow_hb_uv,
.disallow_hb = xpc_disallow_hb_uv,
.disallow_all_hbs = xpc_disallow_all_hbs_uv,
.increment_heartbeat = xpc_increment_heartbeat_uv,
.offline_heartbeat = xpc_offline_heartbeat_uv,
.online_heartbeat = xpc_online_heartbeat_uv,
.heartbeat_init = xpc_heartbeat_init_uv,
.heartbeat_exit = xpc_heartbeat_exit_uv,
.get_remote_heartbeat = xpc_get_remote_heartbeat_uv,
.request_partition_activation =
xpc_request_partition_activation_uv,
.request_partition_reactivation =
xpc_request_partition_reactivation_uv,
.request_partition_deactivation =
xpc_request_partition_deactivation_uv,
.cancel_partition_deactivation_request =
xpc_cancel_partition_deactivation_request_uv,
.setup_ch_structures = xpc_setup_ch_structures_uv,
.teardown_ch_structures = xpc_teardown_ch_structures_uv,
.make_first_contact = xpc_make_first_contact_uv,
.get_chctl_all_flags = xpc_get_chctl_all_flags_uv,
.send_chctl_closerequest = xpc_send_chctl_closerequest_uv,
.send_chctl_closereply = xpc_send_chctl_closereply_uv,
.send_chctl_openrequest = xpc_send_chctl_openrequest_uv,
.send_chctl_openreply = xpc_send_chctl_openreply_uv,
.send_chctl_opencomplete = xpc_send_chctl_opencomplete_uv,
.process_msg_chctl_flags = xpc_process_msg_chctl_flags_uv,
.save_remote_msgqueue_pa = xpc_save_remote_msgqueue_pa_uv,
.setup_msg_structures = xpc_setup_msg_structures_uv,
.teardown_msg_structures = xpc_teardown_msg_structures_uv,
.indicate_partition_engaged = xpc_indicate_partition_engaged_uv,
.indicate_partition_disengaged = xpc_indicate_partition_disengaged_uv,
.assume_partition_disengaged = xpc_assume_partition_disengaged_uv,
.partition_engaged = xpc_partition_engaged_uv,
.any_partition_engaged = xpc_any_partition_engaged_uv,
.n_of_deliverable_payloads = xpc_n_of_deliverable_payloads_uv,
.send_payload = xpc_send_payload_uv,
.get_deliverable_payload = xpc_get_deliverable_payload_uv,
.received_payload = xpc_received_payload_uv,
.notify_senders_of_disconnect = xpc_notify_senders_of_disconnect_uv,
};
static int
xpc_init_mq_node(int nid)
{
int cpu;
get_online_cpus();
for_each_cpu(cpu, cpumask_of_node(nid)) {
xpc_activate_mq_uv =
xpc_create_gru_mq_uv(XPC_ACTIVATE_MQ_SIZE_UV, nid,
XPC_ACTIVATE_IRQ_NAME,
xpc_handle_activate_IRQ_uv);
if (!IS_ERR(xpc_activate_mq_uv))
break;
}
if (IS_ERR(xpc_activate_mq_uv)) {
put_online_cpus();
return PTR_ERR(xpc_activate_mq_uv);
}
for_each_cpu(cpu, cpumask_of_node(nid)) {
xpc_notify_mq_uv =
xpc_create_gru_mq_uv(XPC_NOTIFY_MQ_SIZE_UV, nid,
XPC_NOTIFY_IRQ_NAME,
xpc_handle_notify_IRQ_uv);
if (!IS_ERR(xpc_notify_mq_uv))
break;
}
if (IS_ERR(xpc_notify_mq_uv)) {
xpc_destroy_gru_mq_uv(xpc_activate_mq_uv);
put_online_cpus();
return PTR_ERR(xpc_notify_mq_uv);
}
put_online_cpus();
return 0;
}
int
xpc_init_uv(void)
{
int nid;
int ret = 0;
xpc_arch_ops = xpc_arch_ops_uv;
if (sizeof(struct xpc_notify_mq_msghdr_uv) > XPC_MSG_HDR_MAX_SIZE) {
dev_err(xpc_part, "xpc_notify_mq_msghdr_uv is larger than %d\n",
XPC_MSG_HDR_MAX_SIZE);
return -E2BIG;
}
if (xpc_mq_node < 0)
for_each_online_node(nid) {
ret = xpc_init_mq_node(nid);
if (!ret)
break;
}
else
ret = xpc_init_mq_node(xpc_mq_node);
if (ret < 0)
dev_err(xpc_part, "xpc_init_mq_node() returned error=%d\n",
-ret);
return ret;
}
void
xpc_exit_uv(void)
{
xpc_destroy_gru_mq_uv(xpc_notify_mq_uv);
xpc_destroy_gru_mq_uv(xpc_activate_mq_uv);
}
module_param(xpc_mq_node, int, 0);
MODULE_PARM_DESC(xpc_mq_node, "Node number on which to allocate message queues.");