staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
/*
|
|
|
|
*
|
|
|
|
* Intel Management Engine Interface (Intel MEI) Linux driver
|
2012-02-10 01:25:53 +08:00
|
|
|
* Copyright (c) 2003-2012, Intel Corporation.
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms and conditions of the GNU General Public License,
|
|
|
|
* version 2, as published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
|
|
* more details.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef _MEI_DEV_H_
|
|
|
|
#define _MEI_DEV_H_
|
|
|
|
|
|
|
|
#include <linux/types.h>
|
2011-09-07 14:03:09 +08:00
|
|
|
#include <linux/watchdog.h>
|
2012-11-11 23:38:02 +08:00
|
|
|
#include <linux/poll.h>
|
2012-05-09 21:38:59 +08:00
|
|
|
#include <linux/mei.h>
|
2013-03-27 23:29:53 +08:00
|
|
|
#include <linux/mei_cl_bus.h>
|
2012-12-26 01:06:02 +08:00
|
|
|
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
#include "hw.h"
|
2013-04-19 04:03:48 +08:00
|
|
|
#include "hbm.h"
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* watch dog definition
|
|
|
|
*/
|
2012-08-17 00:39:42 +08:00
|
|
|
#define MEI_WD_HDR_SIZE 4
|
|
|
|
#define MEI_WD_STOP_MSG_SIZE MEI_WD_HDR_SIZE
|
|
|
|
#define MEI_WD_START_MSG_SIZE (MEI_WD_HDR_SIZE + 16)
|
|
|
|
|
|
|
|
#define MEI_WD_DEFAULT_TIMEOUT 120 /* seconds */
|
|
|
|
#define MEI_WD_MIN_TIMEOUT 120 /* seconds */
|
|
|
|
#define MEI_WD_MAX_TIMEOUT 65535 /* seconds */
|
|
|
|
|
2012-08-17 00:39:43 +08:00
|
|
|
#define MEI_WD_STOP_TIMEOUT 10 /* msecs */
|
|
|
|
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
#define MEI_WD_STATE_INDEPENDENCE_MSG_SENT (1 << 0)
|
|
|
|
|
2012-02-10 01:25:54 +08:00
|
|
|
#define MEI_RD_MSG_BUF_SIZE (128 * sizeof(u32))
|
|
|
|
|
2011-09-07 14:03:09 +08:00
|
|
|
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
/*
|
|
|
|
* AMTHI Client UUID
|
|
|
|
*/
|
2013-01-09 05:07:21 +08:00
|
|
|
extern const uuid_le mei_amthif_guid;
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Watchdog Client UUID
|
|
|
|
*/
|
|
|
|
extern const uuid_le mei_wd_guid;
|
|
|
|
|
2012-08-24 05:35:58 +08:00
|
|
|
/*
|
|
|
|
* Number of Maximum MEI Clients
|
|
|
|
*/
|
|
|
|
#define MEI_CLIENTS_MAX 256
|
|
|
|
|
2014-01-12 06:36:10 +08:00
|
|
|
/*
|
|
|
|
* maximum number of consecutive resets
|
|
|
|
*/
|
|
|
|
#define MEI_MAX_CONSEC_RESET 3
|
|
|
|
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
/*
|
|
|
|
* Number of File descriptors/handles
|
|
|
|
* that can be opened to the driver.
|
|
|
|
*
|
2013-01-09 05:07:22 +08:00
|
|
|
* Limit to 255: 256 Total Clients
|
2014-01-09 04:31:46 +08:00
|
|
|
* minus internal client for MEI Bus Messages
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
*/
|
2013-01-09 05:07:22 +08:00
|
|
|
#define MEI_MAX_OPEN_HANDLE_COUNT (MEI_CLIENTS_MAX - 1)
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
|
2012-12-26 01:06:01 +08:00
|
|
|
/*
|
|
|
|
* Internal Clients Number
|
|
|
|
*/
|
2013-01-09 05:07:22 +08:00
|
|
|
#define MEI_HOST_CLIENT_ID_ANY (-1)
|
|
|
|
#define MEI_HBM_HOST_CLIENT_ID 0 /* not used, just for documentation */
|
2012-12-26 01:06:01 +08:00
|
|
|
#define MEI_WD_HOST_CLIENT_ID 1
|
|
|
|
#define MEI_IAMTHIF_HOST_CLIENT_ID 2
|
|
|
|
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
|
|
|
|
/* File state */
|
|
|
|
enum file_state {
|
|
|
|
MEI_FILE_INITIALIZING = 0,
|
|
|
|
MEI_FILE_CONNECTING,
|
|
|
|
MEI_FILE_CONNECTED,
|
|
|
|
MEI_FILE_DISCONNECTING,
|
2015-05-04 14:43:52 +08:00
|
|
|
MEI_FILE_DISCONNECT_REPLY,
|
|
|
|
MEI_FILE_DISCONNECTED,
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
/* MEI device states */
|
2012-08-07 05:03:56 +08:00
|
|
|
enum mei_dev_state {
|
|
|
|
MEI_DEV_INITIALIZING = 0,
|
|
|
|
MEI_DEV_INIT_CLIENTS,
|
|
|
|
MEI_DEV_ENABLED,
|
2013-04-20 03:01:36 +08:00
|
|
|
MEI_DEV_RESETTING,
|
2012-08-07 05:03:56 +08:00
|
|
|
MEI_DEV_DISABLED,
|
|
|
|
MEI_DEV_POWER_DOWN,
|
|
|
|
MEI_DEV_POWER_UP
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
};
|
|
|
|
|
2012-08-07 05:03:56 +08:00
|
|
|
const char *mei_dev_state_str(int state);
|
|
|
|
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
enum iamthif_states {
|
|
|
|
MEI_IAMTHIF_IDLE,
|
|
|
|
MEI_IAMTHIF_WRITING,
|
|
|
|
MEI_IAMTHIF_FLOW_CONTROL,
|
|
|
|
MEI_IAMTHIF_READING,
|
|
|
|
MEI_IAMTHIF_READ_COMPLETE
|
|
|
|
};
|
|
|
|
|
|
|
|
enum mei_file_transaction_states {
|
|
|
|
MEI_IDLE,
|
|
|
|
MEI_WRITING,
|
|
|
|
MEI_WRITE_COMPLETE,
|
|
|
|
MEI_FLOW_CONTROL,
|
|
|
|
MEI_READING,
|
|
|
|
MEI_READ_COMPLETE
|
|
|
|
};
|
|
|
|
|
2012-08-17 00:39:43 +08:00
|
|
|
enum mei_wd_states {
|
|
|
|
MEI_WD_IDLE,
|
|
|
|
MEI_WD_RUNNING,
|
|
|
|
MEI_WD_STOPPING,
|
|
|
|
};
|
|
|
|
|
2012-11-11 23:38:00 +08:00
|
|
|
/**
|
|
|
|
* enum mei_cb_file_ops - file operation associated with the callback
|
2014-09-29 21:31:50 +08:00
|
|
|
* @MEI_FOP_READ: read
|
|
|
|
* @MEI_FOP_WRITE: write
|
|
|
|
* @MEI_FOP_CONNECT: connect
|
|
|
|
* @MEI_FOP_DISCONNECT: disconnect
|
|
|
|
* @MEI_FOP_DISCONNECT_RSP: disconnect response
|
2012-11-11 23:38:00 +08:00
|
|
|
*/
|
|
|
|
enum mei_cb_file_ops {
|
|
|
|
MEI_FOP_READ = 0,
|
|
|
|
MEI_FOP_WRITE,
|
2014-02-13 03:41:51 +08:00
|
|
|
MEI_FOP_CONNECT,
|
2014-08-21 19:29:17 +08:00
|
|
|
MEI_FOP_DISCONNECT,
|
2014-02-13 03:41:52 +08:00
|
|
|
MEI_FOP_DISCONNECT_RSP,
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Intel MEI message data struct
|
|
|
|
*/
|
2013-04-09 02:56:37 +08:00
|
|
|
struct mei_msg_data {
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
u32 size;
|
2012-02-10 01:25:54 +08:00
|
|
|
unsigned char *data;
|
2012-09-11 05:43:21 +08:00
|
|
|
};
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
|
2014-03-31 22:59:23 +08:00
|
|
|
/* Maximum number of processed FW status registers */
|
2014-11-19 23:01:38 +08:00
|
|
|
#define MEI_FW_STATUS_MAX 6
|
|
|
|
/* Minimal buffer for FW status string (8 bytes in dw + space or '\0') */
|
|
|
|
#define MEI_FW_STATUS_STR_SZ (MEI_FW_STATUS_MAX * (8 + 1))
|
|
|
|
|
2014-03-31 22:59:23 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* struct mei_fw_status - storage of FW status data
|
|
|
|
*
|
2014-09-29 21:31:49 +08:00
|
|
|
* @count: number of actually available elements in array
|
|
|
|
* @status: FW status registers
|
2014-03-31 22:59:23 +08:00
|
|
|
*/
|
|
|
|
struct mei_fw_status {
|
|
|
|
int count;
|
|
|
|
u32 status[MEI_FW_STATUS_MAX];
|
|
|
|
};
|
|
|
|
|
2012-12-26 01:06:05 +08:00
|
|
|
/**
|
|
|
|
* struct mei_me_client - representation of me (fw) client
|
|
|
|
*
|
2014-09-29 21:31:49 +08:00
|
|
|
* @list: link in me client list
|
2015-01-11 06:07:16 +08:00
|
|
|
* @refcnt: struct reference count
|
2014-09-29 21:31:49 +08:00
|
|
|
* @props: client properties
|
|
|
|
* @client_id: me client id
|
|
|
|
* @mei_flow_ctrl_creds: flow control credits
|
2015-05-04 14:43:55 +08:00
|
|
|
* @connect_count: number connections to this client
|
2015-07-23 20:08:42 +08:00
|
|
|
* @bus_added: added to bus
|
2012-12-26 01:06:05 +08:00
|
|
|
*/
|
|
|
|
struct mei_me_client {
|
2014-08-21 19:29:13 +08:00
|
|
|
struct list_head list;
|
2015-01-11 06:07:16 +08:00
|
|
|
struct kref refcnt;
|
2012-12-26 01:06:05 +08:00
|
|
|
struct mei_client_properties props;
|
|
|
|
u8 client_id;
|
|
|
|
u8 mei_flow_ctrl_creds;
|
2015-05-04 14:43:55 +08:00
|
|
|
u8 connect_count;
|
2015-07-23 20:08:42 +08:00
|
|
|
u8 bus_added;
|
2012-12-26 01:06:05 +08:00
|
|
|
};
|
|
|
|
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
|
2012-11-11 23:37:59 +08:00
|
|
|
struct mei_cl;
|
|
|
|
|
2012-11-11 23:38:00 +08:00
|
|
|
/**
|
2012-11-11 23:37:59 +08:00
|
|
|
* struct mei_cl_cb - file operation callback structure
|
|
|
|
*
|
2014-09-29 21:31:49 +08:00
|
|
|
* @list: link in callback queue
|
|
|
|
* @cl: file client who is running this operation
|
|
|
|
* @fop_type: file operation type
|
2015-02-10 16:39:42 +08:00
|
|
|
* @buf: buffer for data associated with the callback
|
2014-09-29 21:31:50 +08:00
|
|
|
* @buf_idx: last read index
|
|
|
|
* @read_time: last read operation time stamp (iamthif)
|
|
|
|
* @file_object: pointer to file structure
|
2015-02-10 16:39:36 +08:00
|
|
|
* @status: io status of the cb
|
2014-09-29 21:31:50 +08:00
|
|
|
* @internal: communication between driver and FW flag
|
2015-02-10 16:39:40 +08:00
|
|
|
* @completed: the transfer or reception has completed
|
2012-11-11 23:37:59 +08:00
|
|
|
*/
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
struct mei_cl_cb {
|
2012-10-15 18:06:48 +08:00
|
|
|
struct list_head list;
|
2012-11-11 23:37:59 +08:00
|
|
|
struct mei_cl *cl;
|
2012-11-11 23:38:00 +08:00
|
|
|
enum mei_cb_file_ops fop_type;
|
2015-02-10 16:39:42 +08:00
|
|
|
struct mei_msg_data buf;
|
2012-10-09 22:50:16 +08:00
|
|
|
unsigned long buf_idx;
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
unsigned long read_time;
|
|
|
|
struct file *file_object;
|
2015-02-10 16:39:36 +08:00
|
|
|
int status;
|
2013-12-17 21:56:56 +08:00
|
|
|
u32 internal:1;
|
2015-02-10 16:39:40 +08:00
|
|
|
u32 completed:1;
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
};
|
|
|
|
|
2014-09-29 21:31:50 +08:00
|
|
|
/**
|
|
|
|
* struct mei_cl - me client host representation
|
|
|
|
* carried in file->private_data
|
|
|
|
*
|
|
|
|
* @link: link in the clients list
|
|
|
|
* @dev: mei parent device
|
|
|
|
* @state: file operation state
|
|
|
|
* @tx_wait: wait queue for tx completion
|
|
|
|
* @rx_wait: wait queue for rx completion
|
|
|
|
* @wait: wait queue for management operation
|
|
|
|
* @status: connection status
|
2015-05-04 14:43:54 +08:00
|
|
|
* @me_cl: fw client connected
|
2014-09-29 21:31:50 +08:00
|
|
|
* @host_client_id: host id
|
|
|
|
* @mei_flow_ctrl_creds: transmit flow credentials
|
|
|
|
* @timer_count: watchdog timer for operation completion
|
2015-05-04 14:43:54 +08:00
|
|
|
* @reserved: reserved for alignment
|
2014-09-29 21:31:50 +08:00
|
|
|
* @writing_state: state of the tx
|
2015-02-10 16:39:46 +08:00
|
|
|
* @rd_pending: pending read credits
|
|
|
|
* @rd_completed: completed read
|
2014-09-29 21:31:50 +08:00
|
|
|
*
|
2015-07-23 20:08:33 +08:00
|
|
|
* @cldev: device on the mei client bus
|
2014-09-29 21:31:50 +08:00
|
|
|
*/
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
struct mei_cl {
|
|
|
|
struct list_head link;
|
|
|
|
struct mei_device *dev;
|
|
|
|
enum file_state state;
|
|
|
|
wait_queue_head_t tx_wait;
|
|
|
|
wait_queue_head_t rx_wait;
|
|
|
|
wait_queue_head_t wait;
|
|
|
|
int status;
|
2015-05-04 14:43:54 +08:00
|
|
|
struct mei_me_client *me_cl;
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
u8 host_client_id;
|
|
|
|
u8 mei_flow_ctrl_creds;
|
|
|
|
u8 timer_count;
|
2015-05-04 14:43:54 +08:00
|
|
|
u8 reserved;
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
enum mei_file_transaction_states writing_state;
|
2015-02-10 16:39:46 +08:00
|
|
|
struct list_head rd_pending;
|
|
|
|
struct list_head rd_completed;
|
2013-03-27 23:29:56 +08:00
|
|
|
|
2015-07-23 20:08:33 +08:00
|
|
|
struct mei_cl_device *cldev;
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
};
|
|
|
|
|
2013-02-06 20:06:41 +08:00
|
|
|
/** struct mei_hw_ops
|
|
|
|
*
|
2014-09-29 21:31:49 +08:00
|
|
|
* @host_is_ready : query for host readiness
|
2013-02-06 20:06:41 +08:00
|
|
|
|
2014-09-29 21:31:49 +08:00
|
|
|
* @hw_is_ready : query if hw is ready
|
|
|
|
* @hw_reset : reset hw
|
|
|
|
* @hw_start : start hw after reset
|
|
|
|
* @hw_config : configure hw
|
2013-02-06 20:06:41 +08:00
|
|
|
|
2014-09-29 21:31:49 +08:00
|
|
|
* @fw_status : get fw status registers
|
|
|
|
* @pg_state : power gating state of the device
|
2015-06-13 13:51:17 +08:00
|
|
|
* @pg_in_transition : is device now in pg transition
|
2014-09-29 21:31:49 +08:00
|
|
|
* @pg_is_enabled : is power gating enabled
|
2014-03-19 04:51:58 +08:00
|
|
|
|
2014-09-29 21:31:49 +08:00
|
|
|
* @intr_clear : clear pending interrupts
|
|
|
|
* @intr_enable : enable interrupts
|
|
|
|
* @intr_disable : disable interrupts
|
2013-02-06 20:06:41 +08:00
|
|
|
|
2014-09-29 21:31:49 +08:00
|
|
|
* @hbuf_free_slots : query for write buffer empty slots
|
|
|
|
* @hbuf_is_ready : query if write buffer is empty
|
|
|
|
* @hbuf_max_len : query for write buffer max len
|
2013-02-06 20:06:41 +08:00
|
|
|
|
2014-09-29 21:31:49 +08:00
|
|
|
* @write : write a message to FW
|
2013-02-06 20:06:41 +08:00
|
|
|
|
2014-09-29 21:31:49 +08:00
|
|
|
* @rdbuf_full_slots : query how many slots are filled
|
2013-02-06 20:06:41 +08:00
|
|
|
|
2014-09-29 21:31:49 +08:00
|
|
|
* @read_hdr : get first 4 bytes (header)
|
|
|
|
* @read : read a buffer from the FW
|
2013-02-06 20:06:41 +08:00
|
|
|
*/
|
|
|
|
struct mei_hw_ops {
|
|
|
|
|
2014-03-16 20:35:54 +08:00
|
|
|
bool (*host_is_ready)(struct mei_device *dev);
|
2013-02-06 20:06:41 +08:00
|
|
|
|
2014-03-16 20:35:54 +08:00
|
|
|
bool (*hw_is_ready)(struct mei_device *dev);
|
|
|
|
int (*hw_reset)(struct mei_device *dev, bool enable);
|
|
|
|
int (*hw_start)(struct mei_device *dev);
|
|
|
|
void (*hw_config)(struct mei_device *dev);
|
2013-02-06 20:06:41 +08:00
|
|
|
|
2014-09-29 21:31:43 +08:00
|
|
|
|
|
|
|
int (*fw_status)(struct mei_device *dev, struct mei_fw_status *fw_sts);
|
2014-03-19 04:51:59 +08:00
|
|
|
enum mei_pg_state (*pg_state)(struct mei_device *dev);
|
2015-06-13 13:51:17 +08:00
|
|
|
bool (*pg_in_transition)(struct mei_device *dev);
|
2014-03-19 04:51:58 +08:00
|
|
|
bool (*pg_is_enabled)(struct mei_device *dev);
|
|
|
|
|
2014-03-16 20:35:54 +08:00
|
|
|
void (*intr_clear)(struct mei_device *dev);
|
|
|
|
void (*intr_enable)(struct mei_device *dev);
|
|
|
|
void (*intr_disable)(struct mei_device *dev);
|
2013-02-06 20:06:41 +08:00
|
|
|
|
2014-03-16 20:35:54 +08:00
|
|
|
int (*hbuf_free_slots)(struct mei_device *dev);
|
|
|
|
bool (*hbuf_is_ready)(struct mei_device *dev);
|
|
|
|
size_t (*hbuf_max_len)(const struct mei_device *dev);
|
2013-02-06 20:06:41 +08:00
|
|
|
|
|
|
|
int (*write)(struct mei_device *dev,
|
|
|
|
struct mei_msg_hdr *hdr,
|
|
|
|
unsigned char *buf);
|
|
|
|
|
|
|
|
int (*rdbuf_full_slots)(struct mei_device *dev);
|
|
|
|
|
|
|
|
u32 (*read_hdr)(const struct mei_device *dev);
|
2014-03-16 20:35:54 +08:00
|
|
|
int (*read)(struct mei_device *dev,
|
2013-02-06 20:06:41 +08:00
|
|
|
unsigned char *buf, unsigned long len);
|
|
|
|
};
|
|
|
|
|
2013-03-27 23:29:53 +08:00
|
|
|
/* MEI bus API*/
|
2015-07-23 20:08:47 +08:00
|
|
|
void mei_cl_bus_rescan(struct mei_device *bus);
|
2015-07-23 20:08:43 +08:00
|
|
|
void mei_cl_dev_fixup(struct mei_cl_device *dev);
|
2015-05-07 20:54:04 +08:00
|
|
|
ssize_t __mei_cl_send(struct mei_cl *cl, u8 *buf, size_t length,
|
|
|
|
bool blocking);
|
2014-11-27 20:07:28 +08:00
|
|
|
ssize_t __mei_cl_recv(struct mei_cl *cl, u8 *buf, size_t length);
|
2013-03-27 23:29:57 +08:00
|
|
|
void mei_cl_bus_rx_event(struct mei_cl *cl);
|
2015-07-23 20:08:33 +08:00
|
|
|
void mei_cl_bus_remove_devices(struct mei_device *bus);
|
2013-03-27 23:29:57 +08:00
|
|
|
int mei_cl_bus_init(void);
|
|
|
|
void mei_cl_bus_exit(void);
|
|
|
|
|
2014-09-29 21:31:50 +08:00
|
|
|
/**
|
2014-03-19 04:51:59 +08:00
|
|
|
* enum mei_pg_event - power gating transition events
|
|
|
|
*
|
|
|
|
* @MEI_PG_EVENT_IDLE: the driver is not in power gating transition
|
|
|
|
* @MEI_PG_EVENT_WAIT: the driver is waiting for a pg event to complete
|
|
|
|
* @MEI_PG_EVENT_RECEIVED: the driver received pg event
|
2015-06-13 13:51:17 +08:00
|
|
|
* @MEI_PG_EVENT_INTR_WAIT: the driver is waiting for a pg event interrupt
|
|
|
|
* @MEI_PG_EVENT_INTR_RECEIVED: the driver received pg event interrupt
|
2014-03-19 04:51:59 +08:00
|
|
|
*/
|
|
|
|
enum mei_pg_event {
|
|
|
|
MEI_PG_EVENT_IDLE,
|
|
|
|
MEI_PG_EVENT_WAIT,
|
|
|
|
MEI_PG_EVENT_RECEIVED,
|
2015-06-13 13:51:17 +08:00
|
|
|
MEI_PG_EVENT_INTR_WAIT,
|
|
|
|
MEI_PG_EVENT_INTR_RECEIVED,
|
2014-03-19 04:51:59 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* enum mei_pg_state - device internal power gating state
|
|
|
|
*
|
|
|
|
* @MEI_PG_OFF: device is not power gated - it is active
|
|
|
|
* @MEI_PG_ON: device is power gated - it is in lower power state
|
|
|
|
*/
|
|
|
|
enum mei_pg_state {
|
|
|
|
MEI_PG_OFF = 0,
|
|
|
|
MEI_PG_ON = 1,
|
|
|
|
};
|
|
|
|
|
2014-09-29 21:31:33 +08:00
|
|
|
const char *mei_pg_state_str(enum mei_pg_state state);
|
|
|
|
|
2012-06-26 04:46:27 +08:00
|
|
|
/**
|
2012-11-18 21:13:15 +08:00
|
|
|
* struct mei_device - MEI private device struct
|
2014-09-29 21:31:50 +08:00
|
|
|
*
|
2014-09-29 21:31:49 +08:00
|
|
|
* @dev : device on a bus
|
|
|
|
* @cdev : character device
|
|
|
|
* @minor : minor number allocated for device
|
2014-06-23 20:10:35 +08:00
|
|
|
*
|
2014-09-29 21:31:50 +08:00
|
|
|
* @write_list : write pending list
|
|
|
|
* @write_waiting_list : write completion list
|
|
|
|
* @ctrl_wr_list : pending control write list
|
|
|
|
* @ctrl_rd_list : pending control read list
|
2014-08-21 19:29:21 +08:00
|
|
|
*
|
2014-09-29 21:31:50 +08:00
|
|
|
* @file_list : list of opened handles
|
|
|
|
* @open_handle_count: number of opened handles
|
|
|
|
*
|
|
|
|
* @device_lock : big device lock
|
|
|
|
* @timer_work : MEI timer delayed work (timeouts)
|
|
|
|
*
|
|
|
|
* @recvd_hw_ready : hw ready message received flag
|
|
|
|
*
|
|
|
|
* @wait_hw_ready : wait queue for receive HW ready message form FW
|
|
|
|
* @wait_pg : wait queue for receive PG message from FW
|
|
|
|
* @wait_hbm_start : wait queue for receive HBM start message from FW
|
|
|
|
* @wait_stop_wd : wait queue for receive WD stop message from FW
|
|
|
|
*
|
|
|
|
* @reset_count : number of consecutive resets
|
|
|
|
* @dev_state : device state
|
|
|
|
* @hbm_state : state of host bus message protocol
|
|
|
|
* @init_clients_timer : HBM init handshake timeout
|
2014-08-21 19:29:21 +08:00
|
|
|
*
|
2014-09-29 21:31:49 +08:00
|
|
|
* @pg_event : power gating event
|
2014-09-29 21:31:50 +08:00
|
|
|
* @pg_domain : runtime PM domain
|
|
|
|
*
|
|
|
|
* @rd_msg_buf : control messages buffer
|
|
|
|
* @rd_msg_hdr : read message header storage
|
|
|
|
*
|
2014-09-29 21:31:49 +08:00
|
|
|
* @hbuf_depth : depth of hardware host/write buffer is slots
|
|
|
|
* @hbuf_is_ready : query if the host host/write buffer is ready
|
|
|
|
* @wr_msg : the buffer for hbm control messages
|
2014-09-29 21:31:50 +08:00
|
|
|
*
|
|
|
|
* @version : HBM protocol version in use
|
|
|
|
* @hbm_f_pg_supported : hbm feature pgi protocol
|
2015-07-24 02:37:12 +08:00
|
|
|
* @hbm_f_dc_supported : hbm feature dynamic clients
|
2014-09-29 21:31:50 +08:00
|
|
|
*
|
2015-02-10 16:39:31 +08:00
|
|
|
* @me_clients_rwsem: rw lock over me_clients list
|
2014-09-29 21:31:50 +08:00
|
|
|
* @me_clients : list of FW clients
|
|
|
|
* @me_clients_map : FW clients bit map
|
|
|
|
* @host_clients_map : host clients id pool
|
|
|
|
* @me_client_index : last FW client index in enumeration
|
|
|
|
*
|
2015-05-04 14:43:57 +08:00
|
|
|
* @allow_fixed_address: allow user space to connect a fixed client
|
|
|
|
*
|
2014-09-29 21:31:50 +08:00
|
|
|
* @wd_cl : watchdog client
|
|
|
|
* @wd_state : watchdog client state
|
|
|
|
* @wd_pending : watchdog command is pending
|
|
|
|
* @wd_timeout : watchdog expiration timeout
|
|
|
|
* @wd_data : watchdog message buffer
|
|
|
|
*
|
|
|
|
* @amthif_cmd_list : amthif list for cmd waiting
|
|
|
|
* @amthif_rd_complete_list : amthif list for reading completed cmd data
|
|
|
|
* @iamthif_file_object : file for current amthif operation
|
|
|
|
* @iamthif_cl : amthif host client
|
|
|
|
* @iamthif_current_cb : amthif current operation callback
|
|
|
|
* @iamthif_open_count : number of opened amthif connections
|
|
|
|
* @iamthif_timer : time stamp of current amthif command completion
|
|
|
|
* @iamthif_stall_timer : timer to detect amthif hang
|
|
|
|
* @iamthif_state : amthif processor state
|
|
|
|
* @iamthif_canceled : current amthif command is canceled
|
|
|
|
*
|
|
|
|
* @init_work : work item for the device init
|
|
|
|
* @reset_work : work item for the device reset
|
|
|
|
*
|
|
|
|
* @device_list : mei client bus list
|
2015-07-23 20:08:42 +08:00
|
|
|
* @cl_bus_lock : client bus list lock
|
2014-09-29 21:31:50 +08:00
|
|
|
*
|
|
|
|
* @dbgfs_dir : debugfs mei root directory
|
|
|
|
*
|
|
|
|
* @ops: : hw specific operations
|
|
|
|
* @hw : hw specific data
|
2012-06-26 04:46:27 +08:00
|
|
|
*/
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
struct mei_device {
|
2014-09-29 21:31:41 +08:00
|
|
|
struct device *dev;
|
2014-06-23 20:10:35 +08:00
|
|
|
struct cdev cdev;
|
|
|
|
int minor;
|
|
|
|
|
2014-09-29 21:31:50 +08:00
|
|
|
struct mei_cl_cb write_list;
|
|
|
|
struct mei_cl_cb write_waiting_list;
|
|
|
|
struct mei_cl_cb ctrl_wr_list;
|
|
|
|
struct mei_cl_cb ctrl_rd_list;
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
|
|
|
|
struct list_head file_list;
|
2011-05-25 22:28:22 +08:00
|
|
|
long open_handle_count;
|
2012-12-26 01:06:04 +08:00
|
|
|
|
2014-09-29 21:31:50 +08:00
|
|
|
struct mutex device_lock;
|
|
|
|
struct delayed_work timer_work;
|
2013-03-12 00:27:03 +08:00
|
|
|
|
|
|
|
bool recvd_hw_ready;
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
/*
|
|
|
|
* waiting queue for receive message from FW
|
|
|
|
*/
|
2013-03-12 00:27:03 +08:00
|
|
|
wait_queue_head_t wait_hw_ready;
|
2014-03-19 04:51:55 +08:00
|
|
|
wait_queue_head_t wait_pg;
|
2014-08-21 19:29:19 +08:00
|
|
|
wait_queue_head_t wait_hbm_start;
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
wait_queue_head_t wait_stop_wd;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* mei device states
|
|
|
|
*/
|
2014-01-12 06:36:10 +08:00
|
|
|
unsigned long reset_count;
|
2012-08-07 05:03:56 +08:00
|
|
|
enum mei_dev_state dev_state;
|
2013-04-19 04:03:48 +08:00
|
|
|
enum mei_hbm_state hbm_state;
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
u16 init_clients_timer;
|
|
|
|
|
2014-03-19 04:51:59 +08:00
|
|
|
/*
|
|
|
|
* Power Gating support
|
|
|
|
*/
|
|
|
|
enum mei_pg_event pg_event;
|
2014-12-05 05:43:07 +08:00
|
|
|
#ifdef CONFIG_PM
|
2014-03-19 04:52:05 +08:00
|
|
|
struct dev_pm_domain pg_domain;
|
2014-12-05 05:43:07 +08:00
|
|
|
#endif /* CONFIG_PM */
|
2014-03-19 04:51:59 +08:00
|
|
|
|
2014-09-29 21:31:50 +08:00
|
|
|
unsigned char rd_msg_buf[MEI_RD_MSG_BUF_SIZE];
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
u32 rd_msg_hdr;
|
2012-12-26 01:06:10 +08:00
|
|
|
|
2013-02-06 20:06:43 +08:00
|
|
|
/* write buffer */
|
|
|
|
u8 hbuf_depth;
|
|
|
|
bool hbuf_is_ready;
|
|
|
|
|
2012-12-26 01:06:10 +08:00
|
|
|
/* used for control messages */
|
|
|
|
struct {
|
|
|
|
struct mei_msg_hdr hdr;
|
|
|
|
unsigned char data[128];
|
|
|
|
} wr_msg;
|
|
|
|
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
struct hbm_version version;
|
2014-08-21 19:29:21 +08:00
|
|
|
unsigned int hbm_f_pg_supported:1;
|
2015-07-24 02:37:12 +08:00
|
|
|
unsigned int hbm_f_dc_supported:1;
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
|
2015-02-10 16:39:31 +08:00
|
|
|
struct rw_semaphore me_clients_rwsem;
|
2014-08-21 19:29:13 +08:00
|
|
|
struct list_head me_clients;
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
DECLARE_BITMAP(me_clients_map, MEI_CLIENTS_MAX);
|
|
|
|
DECLARE_BITMAP(host_clients_map, MEI_CLIENTS_MAX);
|
2013-09-02 18:29:45 +08:00
|
|
|
unsigned long me_client_index;
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
|
2015-05-04 14:43:57 +08:00
|
|
|
u32 allow_fixed_address;
|
|
|
|
|
2011-05-25 22:28:22 +08:00
|
|
|
struct mei_cl wd_cl;
|
2012-08-17 00:39:43 +08:00
|
|
|
enum mei_wd_states wd_state;
|
2011-05-25 22:28:22 +08:00
|
|
|
bool wd_pending;
|
2012-08-17 00:39:43 +08:00
|
|
|
u16 wd_timeout;
|
2012-08-17 00:39:42 +08:00
|
|
|
unsigned char wd_data[MEI_WD_START_MSG_SIZE];
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
|
|
|
|
|
2012-11-11 23:37:58 +08:00
|
|
|
/* amthif list for cmd waiting */
|
|
|
|
struct mei_cl_cb amthif_cmd_list;
|
|
|
|
/* driver managed amthif list for reading completed amthif cmd data */
|
|
|
|
struct mei_cl_cb amthif_rd_complete_list;
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
struct file *iamthif_file_object;
|
|
|
|
struct mei_cl iamthif_cl;
|
2011-05-25 22:28:22 +08:00
|
|
|
struct mei_cl_cb *iamthif_current_cb;
|
2013-09-17 04:44:47 +08:00
|
|
|
long iamthif_open_count;
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
unsigned long iamthif_timer;
|
|
|
|
u32 iamthif_stall_timer;
|
|
|
|
enum iamthif_states iamthif_state;
|
2011-05-25 22:28:22 +08:00
|
|
|
bool iamthif_canceled;
|
2012-11-18 21:13:20 +08:00
|
|
|
|
|
|
|
struct work_struct init_work;
|
2014-01-09 02:19:21 +08:00
|
|
|
struct work_struct reset_work;
|
2013-02-06 20:06:41 +08:00
|
|
|
|
2013-03-27 23:29:56 +08:00
|
|
|
/* List of bus devices */
|
|
|
|
struct list_head device_list;
|
2015-07-23 20:08:42 +08:00
|
|
|
struct mutex cl_bus_lock;
|
2013-03-27 23:29:56 +08:00
|
|
|
|
2013-04-06 03:10:34 +08:00
|
|
|
#if IS_ENABLED(CONFIG_DEBUG_FS)
|
|
|
|
struct dentry *dbgfs_dir;
|
|
|
|
#endif /* CONFIG_DEBUG_FS */
|
|
|
|
|
|
|
|
|
2013-02-06 20:06:41 +08:00
|
|
|
const struct mei_hw_ops *ops;
|
2013-02-06 20:06:40 +08:00
|
|
|
char hw[0] __aligned(sizeof(void *));
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
};
|
|
|
|
|
2012-11-02 03:17:14 +08:00
|
|
|
static inline unsigned long mei_secs_to_jiffies(unsigned long sec)
|
|
|
|
{
|
|
|
|
return msecs_to_jiffies(sec * MSEC_PER_SEC);
|
|
|
|
}
|
|
|
|
|
2013-03-12 00:27:02 +08:00
|
|
|
/**
|
|
|
|
* mei_data2slots - get slots - number of (dwords) from a message length
|
|
|
|
* + size of the mei header
|
2014-09-29 21:31:50 +08:00
|
|
|
*
|
2014-09-29 21:31:49 +08:00
|
|
|
* @length: size of the messages in bytes
|
|
|
|
*
|
|
|
|
* Return: number of slots
|
2013-03-12 00:27:02 +08:00
|
|
|
*/
|
|
|
|
static inline u32 mei_data2slots(size_t length)
|
|
|
|
{
|
|
|
|
return DIV_ROUND_UP(sizeof(struct mei_msg_hdr) + length, 4);
|
|
|
|
}
|
|
|
|
|
2013-11-11 19:26:08 +08:00
|
|
|
/**
|
2014-09-29 21:31:50 +08:00
|
|
|
* mei_slots2data - get data in slots - bytes from slots
|
|
|
|
*
|
2014-09-29 21:31:49 +08:00
|
|
|
* @slots: number of available slots
|
2014-09-29 21:31:50 +08:00
|
|
|
*
|
2014-09-29 21:31:49 +08:00
|
|
|
* Return: number of bytes in slots
|
2013-11-11 19:26:08 +08:00
|
|
|
*/
|
|
|
|
static inline u32 mei_slots2data(int slots)
|
|
|
|
{
|
|
|
|
return slots * 4;
|
|
|
|
}
|
|
|
|
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
/*
|
|
|
|
* mei init function prototypes
|
|
|
|
*/
|
2014-09-29 21:31:41 +08:00
|
|
|
void mei_device_init(struct mei_device *dev,
|
|
|
|
struct device *device,
|
|
|
|
const struct mei_hw_ops *hw_ops);
|
2014-01-12 06:36:09 +08:00
|
|
|
int mei_reset(struct mei_device *dev);
|
2013-03-27 22:58:28 +08:00
|
|
|
int mei_start(struct mei_device *dev);
|
2014-01-12 06:36:09 +08:00
|
|
|
int mei_restart(struct mei_device *dev);
|
2013-03-10 19:56:08 +08:00
|
|
|
void mei_stop(struct mei_device *dev);
|
2013-11-11 19:26:06 +08:00
|
|
|
void mei_cancel_work(struct mei_device *dev);
|
2011-05-25 22:28:21 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* MEI interrupt functions prototype
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
*/
|
2013-02-06 20:06:42 +08:00
|
|
|
|
2011-09-07 14:03:13 +08:00
|
|
|
void mei_timer(struct work_struct *work);
|
2013-02-06 20:06:42 +08:00
|
|
|
int mei_irq_read_handler(struct mei_device *dev,
|
|
|
|
struct mei_cl_cb *cmpl_list, s32 *slots);
|
|
|
|
|
|
|
|
int mei_irq_write_handler(struct mei_device *dev, struct mei_cl_cb *cmpl_list);
|
2013-03-17 17:41:20 +08:00
|
|
|
void mei_irq_compl_handler(struct mei_device *dev, struct mei_cl_cb *cmpl_list);
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
|
2012-11-02 03:17:15 +08:00
|
|
|
/*
|
|
|
|
* AMTHIF - AMT Host Interface Functions
|
|
|
|
*/
|
|
|
|
void mei_amthif_reset_params(struct mei_device *dev);
|
|
|
|
|
2015-05-04 14:43:54 +08:00
|
|
|
int mei_amthif_host_init(struct mei_device *dev, struct mei_me_client *me_cl);
|
2012-11-02 03:17:15 +08:00
|
|
|
|
|
|
|
int mei_amthif_read(struct mei_device *dev, struct file *file,
|
2012-11-11 23:38:02 +08:00
|
|
|
char __user *ubuf, size_t length, loff_t *offset);
|
|
|
|
|
|
|
|
unsigned int mei_amthif_poll(struct mei_device *dev,
|
|
|
|
struct file *file, poll_table *wait);
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
|
2012-11-11 23:38:01 +08:00
|
|
|
int mei_amthif_release(struct mei_device *dev, struct file *file);
|
|
|
|
|
2012-11-02 03:17:15 +08:00
|
|
|
struct mei_cl_cb *mei_amthif_find_read_list_entry(struct mei_device *dev,
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
struct file *file);
|
|
|
|
|
2015-02-10 16:39:40 +08:00
|
|
|
int mei_amthif_write(struct mei_cl *cl, struct mei_cl_cb *cb);
|
|
|
|
int mei_amthif_run_next_cmd(struct mei_device *dev);
|
2014-02-19 23:35:48 +08:00
|
|
|
int mei_amthif_irq_write(struct mei_cl *cl, struct mei_cl_cb *cb,
|
|
|
|
struct mei_cl_cb *cmpl_list);
|
2013-04-20 02:16:53 +08:00
|
|
|
|
|
|
|
void mei_amthif_complete(struct mei_device *dev, struct mei_cl_cb *cb);
|
2015-02-10 16:39:37 +08:00
|
|
|
int mei_amthif_irq_read_msg(struct mei_cl *cl,
|
2013-04-20 02:16:53 +08:00
|
|
|
struct mei_msg_hdr *mei_hdr,
|
|
|
|
struct mei_cl_cb *complete_list);
|
|
|
|
int mei_amthif_irq_read(struct mei_device *dev, s32 *slots);
|
|
|
|
|
2013-04-11 09:03:29 +08:00
|
|
|
/*
|
|
|
|
* NFC functions
|
|
|
|
*/
|
2015-05-04 14:43:54 +08:00
|
|
|
int mei_nfc_host_init(struct mei_device *dev, struct mei_me_client *me_cl);
|
2013-11-11 19:26:06 +08:00
|
|
|
void mei_nfc_host_exit(struct mei_device *dev);
|
2013-04-11 09:03:29 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* NFC Client UUID
|
|
|
|
*/
|
|
|
|
extern const uuid_le mei_nfc_guid;
|
2012-11-02 03:17:15 +08:00
|
|
|
|
2013-01-09 05:07:16 +08:00
|
|
|
int mei_wd_send(struct mei_device *dev);
|
|
|
|
int mei_wd_stop(struct mei_device *dev);
|
2015-05-04 14:43:54 +08:00
|
|
|
int mei_wd_host_init(struct mei_device *dev, struct mei_me_client *me_cl);
|
2013-01-09 05:07:16 +08:00
|
|
|
/*
|
|
|
|
* mei_watchdog_register - Registering watchdog interface
|
|
|
|
* once we got connection to the WD Client
|
2014-09-29 21:31:49 +08:00
|
|
|
* @dev: mei device
|
2013-01-09 05:07:16 +08:00
|
|
|
*/
|
2014-02-17 21:13:21 +08:00
|
|
|
int mei_watchdog_register(struct mei_device *dev);
|
2013-01-09 05:07:16 +08:00
|
|
|
/*
|
|
|
|
* mei_watchdog_unregister - Unregistering watchdog interface
|
2014-09-29 21:31:49 +08:00
|
|
|
* @dev: mei device
|
2013-01-09 05:07:16 +08:00
|
|
|
*/
|
|
|
|
void mei_watchdog_unregister(struct mei_device *dev);
|
|
|
|
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
/*
|
|
|
|
* Register Access Function
|
|
|
|
*/
|
|
|
|
|
2014-05-13 06:30:53 +08:00
|
|
|
|
2013-02-06 20:06:41 +08:00
|
|
|
static inline void mei_hw_config(struct mei_device *dev)
|
|
|
|
{
|
|
|
|
dev->ops->hw_config(dev);
|
|
|
|
}
|
2014-03-19 04:51:58 +08:00
|
|
|
|
2014-03-19 04:51:59 +08:00
|
|
|
static inline enum mei_pg_state mei_pg_state(struct mei_device *dev)
|
|
|
|
{
|
|
|
|
return dev->ops->pg_state(dev);
|
|
|
|
}
|
|
|
|
|
2015-06-13 13:51:17 +08:00
|
|
|
static inline bool mei_pg_in_transition(struct mei_device *dev)
|
|
|
|
{
|
|
|
|
return dev->ops->pg_in_transition(dev);
|
|
|
|
}
|
|
|
|
|
2014-03-19 04:51:58 +08:00
|
|
|
static inline bool mei_pg_is_enabled(struct mei_device *dev)
|
|
|
|
{
|
|
|
|
return dev->ops->pg_is_enabled(dev);
|
|
|
|
}
|
|
|
|
|
2013-06-23 15:42:49 +08:00
|
|
|
static inline int mei_hw_reset(struct mei_device *dev, bool enable)
|
2013-02-06 20:06:41 +08:00
|
|
|
{
|
2013-06-23 15:42:49 +08:00
|
|
|
return dev->ops->hw_reset(dev, enable);
|
2013-02-06 20:06:41 +08:00
|
|
|
}
|
|
|
|
|
2013-06-24 03:49:04 +08:00
|
|
|
static inline int mei_hw_start(struct mei_device *dev)
|
2013-03-12 00:27:03 +08:00
|
|
|
{
|
2013-06-24 03:49:04 +08:00
|
|
|
return dev->ops->hw_start(dev);
|
2013-03-12 00:27:03 +08:00
|
|
|
}
|
|
|
|
|
2013-02-06 20:06:41 +08:00
|
|
|
static inline void mei_clear_interrupts(struct mei_device *dev)
|
|
|
|
{
|
|
|
|
dev->ops->intr_clear(dev);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void mei_enable_interrupts(struct mei_device *dev)
|
|
|
|
{
|
|
|
|
dev->ops->intr_enable(dev);
|
|
|
|
}
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
|
2013-02-06 20:06:41 +08:00
|
|
|
static inline void mei_disable_interrupts(struct mei_device *dev)
|
|
|
|
{
|
|
|
|
dev->ops->intr_disable(dev);
|
|
|
|
}
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
|
2013-02-06 20:06:41 +08:00
|
|
|
static inline bool mei_host_is_ready(struct mei_device *dev)
|
|
|
|
{
|
|
|
|
return dev->ops->host_is_ready(dev);
|
|
|
|
}
|
|
|
|
static inline bool mei_hw_is_ready(struct mei_device *dev)
|
|
|
|
{
|
|
|
|
return dev->ops->hw_is_ready(dev);
|
|
|
|
}
|
2013-01-09 05:07:31 +08:00
|
|
|
|
2013-02-06 20:06:41 +08:00
|
|
|
static inline bool mei_hbuf_is_ready(struct mei_device *dev)
|
|
|
|
{
|
|
|
|
return dev->ops->hbuf_is_ready(dev);
|
|
|
|
}
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
|
2013-02-06 20:06:41 +08:00
|
|
|
static inline int mei_hbuf_empty_slots(struct mei_device *dev)
|
|
|
|
{
|
|
|
|
return dev->ops->hbuf_free_slots(dev);
|
|
|
|
}
|
2013-01-09 05:07:29 +08:00
|
|
|
|
2013-02-06 20:06:41 +08:00
|
|
|
static inline size_t mei_hbuf_max_len(const struct mei_device *dev)
|
|
|
|
{
|
|
|
|
return dev->ops->hbuf_max_len(dev);
|
|
|
|
}
|
2012-12-26 01:06:06 +08:00
|
|
|
|
2013-02-06 20:06:41 +08:00
|
|
|
static inline int mei_write_message(struct mei_device *dev,
|
|
|
|
struct mei_msg_hdr *hdr,
|
|
|
|
unsigned char *buf)
|
|
|
|
{
|
|
|
|
return dev->ops->write(dev, hdr, buf);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline u32 mei_read_hdr(const struct mei_device *dev)
|
|
|
|
{
|
|
|
|
return dev->ops->read_hdr(dev);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void mei_read_slots(struct mei_device *dev,
|
|
|
|
unsigned char *buf, unsigned long len)
|
|
|
|
{
|
|
|
|
dev->ops->read(dev, buf, len);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int mei_count_full_read_slots(struct mei_device *dev)
|
|
|
|
{
|
|
|
|
return dev->ops->rdbuf_full_slots(dev);
|
|
|
|
}
|
2012-11-18 21:13:14 +08:00
|
|
|
|
2014-09-29 21:31:43 +08:00
|
|
|
static inline int mei_fw_status(struct mei_device *dev,
|
|
|
|
struct mei_fw_status *fw_status)
|
|
|
|
{
|
|
|
|
return dev->ops->fw_status(dev, fw_status);
|
|
|
|
}
|
2014-03-31 22:59:23 +08:00
|
|
|
|
2014-02-19 23:35:47 +08:00
|
|
|
bool mei_hbuf_acquire(struct mei_device *dev);
|
|
|
|
|
2014-03-19 04:52:01 +08:00
|
|
|
bool mei_write_is_idle(struct mei_device *dev);
|
|
|
|
|
2013-04-06 03:10:34 +08:00
|
|
|
#if IS_ENABLED(CONFIG_DEBUG_FS)
|
|
|
|
int mei_dbgfs_register(struct mei_device *dev, const char *name);
|
|
|
|
void mei_dbgfs_deregister(struct mei_device *dev);
|
|
|
|
#else
|
|
|
|
static inline int mei_dbgfs_register(struct mei_device *dev, const char *name)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
static inline void mei_dbgfs_deregister(struct mei_device *dev) {}
|
|
|
|
#endif /* CONFIG_DEBUG_FS */
|
|
|
|
|
2014-06-23 20:10:35 +08:00
|
|
|
int mei_register(struct mei_device *dev, struct device *parent);
|
2013-04-06 03:10:34 +08:00
|
|
|
void mei_deregister(struct mei_device *dev);
|
2013-02-06 20:06:39 +08:00
|
|
|
|
2013-12-17 21:56:56 +08:00
|
|
|
#define MEI_HDR_FMT "hdr:host=%02d me=%02d len=%d internal=%1d comp=%1d"
|
2012-12-26 01:06:00 +08:00
|
|
|
#define MEI_HDR_PRM(hdr) \
|
|
|
|
(hdr)->host_addr, (hdr)->me_addr, \
|
2013-12-17 21:56:56 +08:00
|
|
|
(hdr)->length, (hdr)->internal, (hdr)->msg_complete
|
2012-12-26 01:06:00 +08:00
|
|
|
|
2014-11-19 23:01:38 +08:00
|
|
|
ssize_t mei_fw_status2str(struct mei_fw_status *fw_sts, char *buf, size_t len);
|
|
|
|
/**
|
|
|
|
* mei_fw_status_str - fetch and convert fw status registers to printable string
|
|
|
|
*
|
|
|
|
* @dev: the device structure
|
|
|
|
* @buf: string buffer at minimal size MEI_FW_STATUS_STR_SZ
|
|
|
|
* @len: buffer len must be >= MEI_FW_STATUS_STR_SZ
|
|
|
|
*
|
|
|
|
* Return: number of bytes written or < 0 on failure
|
|
|
|
*/
|
|
|
|
static inline ssize_t mei_fw_status_str(struct mei_device *dev,
|
|
|
|
char *buf, size_t len)
|
|
|
|
{
|
|
|
|
struct mei_fw_status fw_status;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
buf[0] = '\0';
|
|
|
|
|
|
|
|
ret = mei_fw_status(dev, &fw_status);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
ret = mei_fw_status2str(&fw_status, buf, MEI_FW_STATUS_STR_SZ);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
staging/mei: PCI device and char driver support.
contains module entries and PCI driver and char device
definitions (using file_operations, pci_driver struts).
The HW interface is exposed on PCI interface.
PCI:
The MEI HW resources are memory map 32 bit registers
(Host and ME Status Registers and Data Registers)
and interrupt (shared, with Intel GFX on some chipsets
and USB2 controller on others).
The device is part of the chipsets and cannot be hotplugged.
The MEI device present is determined by BIOS configuration.
Probe:
The driver starts the init MEI flow, that is explained
in the patch "MEI driver init flow" [06/10],
then schedules a timer that handles
timeouts and watchdog heartbeats.
Remove:
The driver closes all connections and stops the watchdog.
The driver expose char device that supports:
open, release, write, read, ioctl, poll.
Open:
Upon open the driver allocates HOST data structure
on behalf of application which will resides in the file's
private data and assign a host ID number which
will identify messages between driver client instance
and MEI client.
The driver also checks readiness of the device. The number
of simultaneously opened instances is limited to 253.
(255 - (amthi + watchdog))
Release:
In release the driver sends a Disconnect Command to
ME feature and clean all the data structs.
IOCTL:
MEI adds new IOCTL: (IOCTL_MEI_CONNECT_CLIENT)
The IOCTL links the current file descriptor to ME feature.
This is done by sending MEI Bus command: 'hbm_client_connect_request'
to the ME and waiting for an answer :'hbm_client_connect_response'.
Upon answer reception the driver updates its and HOST data
structures in file structure to indicate that the file
descriptor is associated to ME feature.
Each ME feature is represented by UUID which is given as
an input parameter to the IOCTL, upon success connect command the
IOCTL will return the ME feature properties.
ME can reject CONNECT commands due to several reasons,
most common are:
Invalid UUID ME or feature does not exists in ME.
No More Connection allowed to this is feature,
usually only one connection is allowed.
Write:
Upon write, the driver splits the user data into several MEI
messages up to 512 bytes each and sends it to the HW.
If the user wants to write data to AMTHI ME feature then the
drivers routes the messages through AMTHI queues.
Read:
In read the driver checks is a connection exists to
current file descriptor and then wait until a data is available.
Message might be received (by interrupt from ME) in multiple chunks.
Only complete message is released to the application.
Poll:
Nothing special here. Waiting for see if we have
data available for reading.
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Itzhak Tzeel-Krupp <itzhak.tzeel-krupp@intel.com>
Signed-off-by: Oren Weil <oren.jer.weil@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-05-15 18:43:41 +08:00
|
|
|
#endif
|