2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-23 13:54:26 +08:00
linux-next/include/linux/pci_hotplug.h

210 lines
6.4 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0+ */
/*
* PCI HotPlug Core Functions
*
* Copyright (C) 1995,2001 Compaq Computer Corporation
* Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
* Copyright (C) 2001 IBM Corp.
*
* All rights reserved.
*
* Send feedback to <kristen.c.accardi@intel.com>
*
*/
#ifndef _PCI_HOTPLUG_H
#define _PCI_HOTPLUG_H
/**
* struct hotplug_slot_ops -the callbacks that the hotplug pci core can use
* @enable_slot: Called when the user wants to enable a specific pci slot
* @disable_slot: Called when the user wants to disable a specific pci slot
* @set_attention_status: Called to set the specific slot's attention LED to
* the specified value
* @hardware_test: Called to run a specified hardware test on the specified
* slot.
* @get_power_status: Called to get the current power status of a slot.
* @get_attention_status: Called to get the current attention status of a slot.
* @get_latch_status: Called to get the current latch status of a slot.
* @get_adapter_status: Called to get see if an adapter is present in the slot or not.
* @reset_slot: Optional interface to allow override of a bus reset for the
* slot for cases where a secondary bus reset can result in spurious
* hotplug events or where a slot can be reset independent of the bus.
*
* The table of function pointers that is passed to the hotplug pci core by a
* hotplug pci driver. These functions are called by the hotplug pci core when
* the user wants to do something to a specific slot (query it for information,
* set an LED, enable / disable power, etc.)
*/
struct hotplug_slot_ops {
int (*enable_slot) (struct hotplug_slot *slot);
int (*disable_slot) (struct hotplug_slot *slot);
int (*set_attention_status) (struct hotplug_slot *slot, u8 value);
int (*hardware_test) (struct hotplug_slot *slot, u32 value);
int (*get_power_status) (struct hotplug_slot *slot, u8 *value);
int (*get_attention_status) (struct hotplug_slot *slot, u8 *value);
int (*get_latch_status) (struct hotplug_slot *slot, u8 *value);
int (*get_adapter_status) (struct hotplug_slot *slot, u8 *value);
int (*reset_slot) (struct hotplug_slot *slot, int probe);
};
/**
* struct hotplug_slot - used to register a physical slot with the hotplug pci core
* @ops: pointer to the &struct hotplug_slot_ops to be used for this slot
* @owner: The module owner of this structure
* @mod_name: The module name (KBUILD_MODNAME) of this structure
*/
struct hotplug_slot {
const struct hotplug_slot_ops *ops;
/* Variables below this are for use only by the hotplug pci core. */
struct list_head slot_list;
PCI: introduce pci_slot Currently, /sys/bus/pci/slots/ only exposes hotplug attributes when a hotplug driver is loaded, but PCI slots have attributes such as address, speed, width, etc. that are not related to hotplug at all. Introduce pci_slot as the primary data structure and kobject model. Hotplug attributes described in hotplug_slot become a secondary structure associated with the pci_slot. This patch only creates the infrastructure that allows the separation of PCI slot attributes and hotplug attributes. In this patch, the PCI hotplug core remains the only user of this infrastructure, and thus, /sys/bus/pci/slots/ will still only become populated when a hotplug driver is loaded. A later patch in this series will add a second user of this new infrastructure and demonstrate splitting the task of exposing pci_slot attributes from hotplug_slot attributes. - Make pci_slot the primary sysfs entity. hotplug_slot becomes a subsidiary structure. o pci_create_slot() creates and registers a slot with the PCI core o pci_slot_add_hotplug() gives it hotplug capability - Change the prototype of pci_hp_register() to take the bus and slot number (on parent bus) as parameters. - Remove all the ->get_address methods since this functionality is now handled by pci_slot directly. [achiang@hp.com: rpaphp-correctly-pci_hp_register-for-empty-pci-slots] Tested-by: Badari Pulavarty <pbadari@us.ibm.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: make headers_check happy] [akpm@linux-foundation.org: nuther build fix] [akpm@linux-foundation.org: fix typo in #include] Signed-off-by: Alex Chiang <achiang@hp.com> Signed-off-by: Matthew Wilcox <matthew@wil.cx> Cc: Greg KH <greg@kroah.com> Cc: Kristen Carlson Accardi <kristen.c.accardi@intel.com> Cc: Len Brown <lenb@kernel.org> Acked-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2008-06-11 05:28:50 +08:00
struct pci_slot *pci_slot;
struct module *owner;
const char *mod_name;
};
static inline const char *hotplug_slot_name(const struct hotplug_slot *slot)
{
return pci_slot_name(slot->pci_slot);
}
int __pci_hp_register(struct hotplug_slot *slot, struct pci_bus *pbus, int nr,
const char *name, struct module *owner,
const char *mod_name);
PCI: hotplug: Demidlayer registration with the core When a hotplug driver calls pci_hp_register(), all steps necessary for registration are carried out in one go, including creation of a kobject and addition to sysfs. That's a problem for pciehp once it's converted to enable/disable the slot exclusively from the IRQ thread: The thread needs to be spawned after creation of the kobject (because it uses the kobject's name), but before addition to sysfs (because it will handle enable/disable requests submitted via sysfs). pci_hp_deregister() does offer a ->release callback that's invoked after deletion from sysfs and before destruction of the kobject. But because pci_hp_register() doesn't offer a counterpart, hotplug drivers' ->probe and ->remove code becomes asymmetric, which is error prone as recently discovered use-after-free bugs in pciehp's ->remove hook have shown. In a sense, this appears to be a case of the midlayer antipattern: "The core thesis of the "midlayer mistake" is that midlayers are bad and should not exist. That common functionality which it is so tempting to put in a midlayer should instead be provided as library routines which can [be] used, augmented, or ignored by each bottom level driver independently. Thus every subsystem that supports multiple implementations (or drivers) should provide a very thin top layer which calls directly into the bottom layer drivers, and a rich library of support code that eases the implementation of those drivers. This library is available to, but not forced upon, those drivers." -- Neil Brown (2009), https://lwn.net/Articles/336262/ The presence of midlayer traits in the PCI hotplug core might be ascribed to its age: When it was introduced in February 2002, the blessings of a library approach might not have been well known: https://git.kernel.org/tglx/history/c/a8a2069f432c For comparison, the driver core does offer split functions for creating a kobject (device_initialize()) and addition to sysfs (device_add()) as an alternative to carrying out everything at once (device_register()). This was introduced in October 2002: https://git.kernel.org/tglx/history/c/8b290eb19962 The odd ->release callback in the PCI hotplug core was added in 2003: https://git.kernel.org/tglx/history/c/69f8d663b595 Clearly, a library approach would not force every hotplug driver to implement a ->release callback, but rather allow the driver to remove the sysfs files, release its data structures and finally destroy the kobject. Alternatively, a driver may choose to remove everything with pci_hp_deregister(), then release its data structures. To this end, offer drivers pci_hp_initialize() and pci_hp_add() as a split-up version of pci_hp_register(). Likewise, offer pci_hp_del() and pci_hp_destroy() as a split-up version of pci_hp_deregister(). Eliminate the ->release callback and move its code into each driver's teardown routine. Declare pci_hp_deregister() void, in keeping with the usual kernel pattern that enablement can fail, but disablement cannot. It only returned an error if the caller passed in a NULL pointer or a slot which has never or is no longer registered or is sharing its name with another slot. Those would be bugs, so WARN about them. Few hotplug drivers actually checked the return value and those that did only printed a useless error message to dmesg. Remove that. For most drivers the conversion was straightforward since it doesn't matter whether the code in the ->release callback is executed before or after destruction of the kobject. But in the case of ibmphp, it was unclear to me whether setting slot_cur->ctrl and slot_cur->bus_on to NULL needs to happen before the kobject is destroyed, so I erred on the side of caution and ensured that the order stays the same. Another nontrivial case is pnv_php, I've found the list and kref logic difficult to understand, however my impression was that it is safe to delete the list element and drop the references until after the kobject is destroyed. Signed-off-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Acked-by: Andy Shevchenko <andy.shevchenko@gmail.com> # drivers/platform/x86 Cc: Rafael J. Wysocki <rjw@rjwysocki.net> Cc: Len Brown <lenb@kernel.org> Cc: Scott Murray <scott@spiteful.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Gavin Shan <gwshan@linux.vnet.ibm.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: Corentin Chary <corentin.chary@gmail.com> Cc: Darren Hart <dvhart@infradead.org> Cc: Andy Shevchenko <andy@infradead.org>
2018-07-20 06:27:43 +08:00
int __pci_hp_initialize(struct hotplug_slot *slot, struct pci_bus *bus, int nr,
const char *name, struct module *owner,
const char *mod_name);
int pci_hp_add(struct hotplug_slot *slot);
void pci_hp_del(struct hotplug_slot *slot);
void pci_hp_destroy(struct hotplug_slot *slot);
void pci_hp_deregister(struct hotplug_slot *slot);
/* use a define to avoid include chaining to get THIS_MODULE & friends */
#define pci_hp_register(slot, pbus, devnr, name) \
__pci_hp_register(slot, pbus, devnr, name, THIS_MODULE, KBUILD_MODNAME)
PCI: hotplug: Demidlayer registration with the core When a hotplug driver calls pci_hp_register(), all steps necessary for registration are carried out in one go, including creation of a kobject and addition to sysfs. That's a problem for pciehp once it's converted to enable/disable the slot exclusively from the IRQ thread: The thread needs to be spawned after creation of the kobject (because it uses the kobject's name), but before addition to sysfs (because it will handle enable/disable requests submitted via sysfs). pci_hp_deregister() does offer a ->release callback that's invoked after deletion from sysfs and before destruction of the kobject. But because pci_hp_register() doesn't offer a counterpart, hotplug drivers' ->probe and ->remove code becomes asymmetric, which is error prone as recently discovered use-after-free bugs in pciehp's ->remove hook have shown. In a sense, this appears to be a case of the midlayer antipattern: "The core thesis of the "midlayer mistake" is that midlayers are bad and should not exist. That common functionality which it is so tempting to put in a midlayer should instead be provided as library routines which can [be] used, augmented, or ignored by each bottom level driver independently. Thus every subsystem that supports multiple implementations (or drivers) should provide a very thin top layer which calls directly into the bottom layer drivers, and a rich library of support code that eases the implementation of those drivers. This library is available to, but not forced upon, those drivers." -- Neil Brown (2009), https://lwn.net/Articles/336262/ The presence of midlayer traits in the PCI hotplug core might be ascribed to its age: When it was introduced in February 2002, the blessings of a library approach might not have been well known: https://git.kernel.org/tglx/history/c/a8a2069f432c For comparison, the driver core does offer split functions for creating a kobject (device_initialize()) and addition to sysfs (device_add()) as an alternative to carrying out everything at once (device_register()). This was introduced in October 2002: https://git.kernel.org/tglx/history/c/8b290eb19962 The odd ->release callback in the PCI hotplug core was added in 2003: https://git.kernel.org/tglx/history/c/69f8d663b595 Clearly, a library approach would not force every hotplug driver to implement a ->release callback, but rather allow the driver to remove the sysfs files, release its data structures and finally destroy the kobject. Alternatively, a driver may choose to remove everything with pci_hp_deregister(), then release its data structures. To this end, offer drivers pci_hp_initialize() and pci_hp_add() as a split-up version of pci_hp_register(). Likewise, offer pci_hp_del() and pci_hp_destroy() as a split-up version of pci_hp_deregister(). Eliminate the ->release callback and move its code into each driver's teardown routine. Declare pci_hp_deregister() void, in keeping with the usual kernel pattern that enablement can fail, but disablement cannot. It only returned an error if the caller passed in a NULL pointer or a slot which has never or is no longer registered or is sharing its name with another slot. Those would be bugs, so WARN about them. Few hotplug drivers actually checked the return value and those that did only printed a useless error message to dmesg. Remove that. For most drivers the conversion was straightforward since it doesn't matter whether the code in the ->release callback is executed before or after destruction of the kobject. But in the case of ibmphp, it was unclear to me whether setting slot_cur->ctrl and slot_cur->bus_on to NULL needs to happen before the kobject is destroyed, so I erred on the side of caution and ensured that the order stays the same. Another nontrivial case is pnv_php, I've found the list and kref logic difficult to understand, however my impression was that it is safe to delete the list element and drop the references until after the kobject is destroyed. Signed-off-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Acked-by: Andy Shevchenko <andy.shevchenko@gmail.com> # drivers/platform/x86 Cc: Rafael J. Wysocki <rjw@rjwysocki.net> Cc: Len Brown <lenb@kernel.org> Cc: Scott Murray <scott@spiteful.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Gavin Shan <gwshan@linux.vnet.ibm.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: Corentin Chary <corentin.chary@gmail.com> Cc: Darren Hart <dvhart@infradead.org> Cc: Andy Shevchenko <andy@infradead.org>
2018-07-20 06:27:43 +08:00
#define pci_hp_initialize(slot, bus, nr, name) \
__pci_hp_initialize(slot, bus, nr, name, THIS_MODULE, KBUILD_MODNAME)
/* PCI Setting Record (Type 0) */
struct hpp_type0 {
u32 revision;
u8 cache_line_size;
u8 latency_timer;
u8 enable_serr;
u8 enable_perr;
};
/* PCI-X Setting Record (Type 1) */
struct hpp_type1 {
u32 revision;
u8 max_mem_read;
u8 avg_max_split;
u16 tot_max_split;
};
/* PCI Express Setting Record (Type 2) */
struct hpp_type2 {
u32 revision;
u32 unc_err_mask_and;
u32 unc_err_mask_or;
u32 unc_err_sever_and;
u32 unc_err_sever_or;
u32 cor_err_mask_and;
u32 cor_err_mask_or;
u32 adv_err_cap_and;
u32 adv_err_cap_or;
u16 pci_exp_devctl_and;
u16 pci_exp_devctl_or;
u16 pci_exp_lnkctl_and;
u16 pci_exp_lnkctl_or;
u32 sec_unc_err_sever_and;
u32 sec_unc_err_sever_or;
u32 sec_unc_err_mask_and;
u32 sec_unc_err_mask_or;
};
/*
* _HPX PCI Express Setting Record (Type 3)
*/
struct hpx_type3 {
u16 device_type;
u16 function_type;
u16 config_space_location;
u16 pci_exp_cap_id;
u16 pci_exp_cap_ver;
u16 pci_exp_vendor_id;
u16 dvsec_id;
u16 dvsec_rev;
u16 match_offset;
u32 match_mask_and;
u32 match_value;
u16 reg_offset;
u32 reg_mask_and;
u32 reg_mask_or;
};
struct hotplug_program_ops {
void (*program_type0)(struct pci_dev *dev, struct hpp_type0 *hpp);
void (*program_type1)(struct pci_dev *dev, struct hpp_type1 *hpp);
void (*program_type2)(struct pci_dev *dev, struct hpp_type2 *hpp);
void (*program_type3)(struct pci_dev *dev, struct hpx_type3 *hpp);
};
enum hpx_type3_dev_type {
HPX_TYPE_ENDPOINT = BIT(0),
HPX_TYPE_LEG_END = BIT(1),
HPX_TYPE_RC_END = BIT(2),
HPX_TYPE_RC_EC = BIT(3),
HPX_TYPE_ROOT_PORT = BIT(4),
HPX_TYPE_UPSTREAM = BIT(5),
HPX_TYPE_DOWNSTREAM = BIT(6),
HPX_TYPE_PCI_BRIDGE = BIT(7),
HPX_TYPE_PCIE_BRIDGE = BIT(8),
};
enum hpx_type3_fn_type {
HPX_FN_NORMAL = BIT(0),
HPX_FN_SRIOV_PHYS = BIT(1),
HPX_FN_SRIOV_VIRT = BIT(2),
};
enum hpx_type3_cfg_loc {
HPX_CFG_PCICFG = 0,
HPX_CFG_PCIE_CAP = 1,
HPX_CFG_PCIE_CAP_EXT = 2,
HPX_CFG_VEND_CAP = 3,
HPX_CFG_DVSEC = 4,
HPX_CFG_MAX,
};
#ifdef CONFIG_ACPI
ACPI: Clean up inclusions of ACPI header files Replace direct inclusions of <acpi/acpi.h>, <acpi/acpi_bus.h> and <acpi/acpi_drivers.h>, which are incorrect, with <linux/acpi.h> inclusions and remove some inclusions of those files that aren't necessary. First of all, <acpi/acpi.h>, <acpi/acpi_bus.h> and <acpi/acpi_drivers.h> should not be included directly from any files that are built for CONFIG_ACPI unset, because that generally leads to build warnings about undefined symbols in !CONFIG_ACPI builds. For CONFIG_ACPI set, <linux/acpi.h> includes those files and for CONFIG_ACPI unset it provides stub ACPI symbols to be used in that case. Second, there are ordering dependencies between those files that always have to be met. Namely, it is required that <acpi/acpi_bus.h> be included prior to <acpi/acpi_drivers.h> so that the acpi_pci_root declarations the latter depends on are always there. And <acpi/acpi.h> which provides basic ACPICA type declarations should always be included prior to any other ACPI headers in CONFIG_ACPI builds. That also is taken care of including <linux/acpi.h> as appropriate. Signed-off-by: Lv Zheng <lv.zheng@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Matthew Garrett <mjg59@srcf.ucam.org> Cc: Tony Luck <tony.luck@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Acked-by: Bjorn Helgaas <bhelgaas@google.com> (drivers/pci stuff) Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> (Xen stuff) Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-12-03 08:49:16 +08:00
#include <linux/acpi.h>
int pci_acpi_program_hp_params(struct pci_dev *dev,
const struct hotplug_program_ops *hp_ops);
bool pciehp_is_native(struct pci_dev *bridge);
int acpi_get_hp_hw_control_from_firmware(struct pci_dev *bridge);
bool shpchp_is_native(struct pci_dev *bridge);
int acpi_pci_check_ejectable(struct pci_bus *pbus, acpi_handle handle);
int acpi_pci_detect_ejectable(acpi_handle handle);
#else
static inline int pci_acpi_program_hp_params(struct pci_dev *dev,
const struct hotplug_program_ops *hp_ops)
{
return -ENODEV;
}
static inline int acpi_get_hp_hw_control_from_firmware(struct pci_dev *bridge)
{
return 0;
}
static inline bool pciehp_is_native(struct pci_dev *bridge) { return true; }
static inline bool shpchp_is_native(struct pci_dev *bridge) { return true; }
#endif
static inline bool hotplug_is_native(struct pci_dev *bridge)
{
return pciehp_is_native(bridge) || shpchp_is_native(bridge);
}
#endif