2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-13 08:04:45 +08:00
linux-next/arch/powerpc/kernel/rtas_flash.c

808 lines
22 KiB
C
Raw Normal View History

/*
* c 2001 PPC 64 Team, IBM Corp
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* /proc/powerpc/rtas/firmware_flash interface
*
* This file implements a firmware_flash interface to pump a firmware
* image into the kernel. At reboot time rtas_restart() will see the
* firmware image and flash it as it reboots (see rtas.c).
*/
#include <linux/module.h>
#include <linux/init.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/proc_fs.h>
#include <linux/reboot.h>
#include <asm/delay.h>
#include <asm/uaccess.h>
#include <asm/rtas.h>
#include <asm/abs_addr.h>
#define MODULE_VERS "1.0"
#define MODULE_NAME "rtas_flash"
#define FIRMWARE_FLASH_NAME "firmware_flash"
#define FIRMWARE_UPDATE_NAME "firmware_update"
#define MANAGE_FLASH_NAME "manage_flash"
#define VALIDATE_FLASH_NAME "validate_flash"
/* General RTAS Status Codes */
#define RTAS_RC_SUCCESS 0
#define RTAS_RC_HW_ERR -1
#define RTAS_RC_BUSY -2
/* Flash image status values */
#define FLASH_AUTH -9002 /* RTAS Not Service Authority Partition */
#define FLASH_NO_OP -1099 /* No operation initiated by user */
#define FLASH_IMG_SHORT -1005 /* Flash image shorter than expected */
#define FLASH_IMG_BAD_LEN -1004 /* Bad length value in flash list block */
#define FLASH_IMG_NULL_DATA -1003 /* Bad data value in flash list block */
#define FLASH_IMG_READY 0 /* Firmware img ready for flash on reboot */
/* Manage image status values */
#define MANAGE_AUTH -9002 /* RTAS Not Service Authority Partition */
#define MANAGE_ACTIVE_ERR -9001 /* RTAS Cannot Overwrite Active Img */
#define MANAGE_NO_OP -1099 /* No operation initiated by user */
#define MANAGE_PARAM_ERR -3 /* RTAS Parameter Error */
#define MANAGE_HW_ERR -1 /* RTAS Hardware Error */
/* Validate image status values */
#define VALIDATE_AUTH -9002 /* RTAS Not Service Authority Partition */
#define VALIDATE_NO_OP -1099 /* No operation initiated by the user */
#define VALIDATE_INCOMPLETE -1002 /* User copied < VALIDATE_BUF_SIZE */
#define VALIDATE_READY -1001 /* Firmware image ready for validation */
#define VALIDATE_PARAM_ERR -3 /* RTAS Parameter Error */
#define VALIDATE_HW_ERR -1 /* RTAS Hardware Error */
#define VALIDATE_TMP_UPDATE 0 /* Validate Return Status */
#define VALIDATE_FLASH_AUTH 1 /* Validate Return Status */
#define VALIDATE_INVALID_IMG 2 /* Validate Return Status */
#define VALIDATE_CUR_UNKNOWN 3 /* Validate Return Status */
#define VALIDATE_TMP_COMMIT_DL 4 /* Validate Return Status */
#define VALIDATE_TMP_COMMIT 5 /* Validate Return Status */
#define VALIDATE_TMP_UPDATE_DL 6 /* Validate Return Status */
/* ibm,manage-flash-image operation tokens */
#define RTAS_REJECT_TMP_IMG 0
#define RTAS_COMMIT_TMP_IMG 1
/* Array sizes */
#define VALIDATE_BUF_SIZE 4096
#define RTAS_MSG_MAXLEN 64
/* Quirk - RTAS requires 4k list length and block size */
#define RTAS_BLKLIST_LENGTH 4096
#define RTAS_BLK_SIZE 4096
struct flash_block {
char *data;
unsigned long length;
};
/* This struct is very similar but not identical to
* that needed by the rtas flash update.
* All we need to do for rtas is rewrite num_blocks
* into a version/length and translate the pointers
* to absolute.
*/
#define FLASH_BLOCKS_PER_NODE ((RTAS_BLKLIST_LENGTH - 16) / sizeof(struct flash_block))
struct flash_block_list {
unsigned long num_blocks;
struct flash_block_list *next;
struct flash_block blocks[FLASH_BLOCKS_PER_NODE];
};
static struct flash_block_list *rtas_firmware_flash_list;
/* Use slab cache to guarantee 4k alignment */
static struct kmem_cache *flash_block_cache = NULL;
#define FLASH_BLOCK_LIST_VERSION (1UL)
/* Local copy of the flash block list.
* We only allow one open of the flash proc file and create this
* list as we go. The rtas_firmware_flash_list varable will be
* set once the data is fully read.
*
* For convenience as we build the list we use virtual addrs,
* we do not fill in the version number, and the length field
* is treated as the number of entries currently in the block
* (i.e. not a byte count). This is all fixed when calling
* the flash routine.
*/
/* Status int must be first member of struct */
struct rtas_update_flash_t
{
int status; /* Flash update status */
struct flash_block_list *flist; /* Local copy of flash block list */
};
/* Status int must be first member of struct */
struct rtas_manage_flash_t
{
int status; /* Returned status */
unsigned int op; /* Reject or commit image */
};
/* Status int must be first member of struct */
struct rtas_validate_flash_t
{
int status; /* Returned status */
char buf[VALIDATE_BUF_SIZE]; /* Candidate image buffer */
unsigned int buf_size; /* Size of image buf */
unsigned int update_results; /* Update results token */
};
static DEFINE_SPINLOCK(flash_file_open_lock);
static struct proc_dir_entry *firmware_flash_pde;
static struct proc_dir_entry *firmware_update_pde;
static struct proc_dir_entry *validate_pde;
static struct proc_dir_entry *manage_pde;
/* Do simple sanity checks on the flash image. */
static int flash_list_valid(struct flash_block_list *flist)
{
struct flash_block_list *f;
int i;
unsigned long block_size, image_size;
/* Paranoid self test here. We also collect the image size. */
image_size = 0;
for (f = flist; f; f = f->next) {
for (i = 0; i < f->num_blocks; i++) {
if (f->blocks[i].data == NULL) {
return FLASH_IMG_NULL_DATA;
}
block_size = f->blocks[i].length;
if (block_size <= 0 || block_size > RTAS_BLK_SIZE) {
return FLASH_IMG_BAD_LEN;
}
image_size += block_size;
}
}
if (image_size < (256 << 10)) {
if (image_size < 2)
return FLASH_NO_OP;
}
printk(KERN_INFO "FLASH: flash image with %ld bytes stored for hardware flash on reboot\n", image_size);
return FLASH_IMG_READY;
}
static void free_flash_list(struct flash_block_list *f)
{
struct flash_block_list *next;
int i;
while (f) {
for (i = 0; i < f->num_blocks; i++)
kmem_cache_free(flash_block_cache, f->blocks[i].data);
next = f->next;
kmem_cache_free(flash_block_cache, f);
f = next;
}
}
static int rtas_flash_release(struct inode *inode, struct file *file)
{
struct proc_dir_entry *dp = PDE(file->f_path.dentry->d_inode);
struct rtas_update_flash_t *uf;
uf = (struct rtas_update_flash_t *) dp->data;
if (uf->flist) {
/* File was opened in write mode for a new flash attempt */
/* Clear saved list */
if (rtas_firmware_flash_list) {
free_flash_list(rtas_firmware_flash_list);
rtas_firmware_flash_list = NULL;
}
if (uf->status != FLASH_AUTH)
uf->status = flash_list_valid(uf->flist);
if (uf->status == FLASH_IMG_READY)
rtas_firmware_flash_list = uf->flist;
else
free_flash_list(uf->flist);
uf->flist = NULL;
}
atomic_dec(&dp->count);
return 0;
}
static void get_flash_status_msg(int status, char *buf)
{
char *msg;
switch (status) {
case FLASH_AUTH:
msg = "error: this partition does not have service authority\n";
break;
case FLASH_NO_OP:
msg = "info: no firmware image for flash\n";
break;
case FLASH_IMG_SHORT:
msg = "error: flash image short\n";
break;
case FLASH_IMG_BAD_LEN:
msg = "error: internal error bad length\n";
break;
case FLASH_IMG_NULL_DATA:
msg = "error: internal error null data\n";
break;
case FLASH_IMG_READY:
msg = "ready: firmware image ready for flash on reboot\n";
break;
default:
sprintf(buf, "error: unexpected status value %d\n", status);
return;
}
strcpy(buf, msg);
}
/* Reading the proc file will show status (not the firmware contents) */
static ssize_t rtas_flash_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct proc_dir_entry *dp = PDE(file->f_path.dentry->d_inode);
struct rtas_update_flash_t *uf;
char msg[RTAS_MSG_MAXLEN];
uf = dp->data;
if (!strcmp(dp->name, FIRMWARE_FLASH_NAME)) {
get_flash_status_msg(uf->status, msg);
} else { /* FIRMWARE_UPDATE_NAME */
sprintf(msg, "%d\n", uf->status);
}
return simple_read_from_buffer(buf, count, ppos, msg, strlen(msg));
}
/* constructor for flash_block_cache */
void rtas_block_ctor(void *ptr)
{
memset(ptr, 0, RTAS_BLK_SIZE);
}
/* We could be much more efficient here. But to keep this function
* simple we allocate a page to the block list no matter how small the
* count is. If the system is low on memory it will be just as well
* that we fail....
*/
static ssize_t rtas_flash_write(struct file *file, const char __user *buffer,
size_t count, loff_t *off)
{
struct proc_dir_entry *dp = PDE(file->f_path.dentry->d_inode);
struct rtas_update_flash_t *uf;
char *p;
int next_free;
struct flash_block_list *fl;
uf = (struct rtas_update_flash_t *) dp->data;
if (uf->status == FLASH_AUTH || count == 0)
return count; /* discard data */
/* In the case that the image is not ready for flashing, the memory
* allocated for the block list will be freed upon the release of the
* proc file
*/
if (uf->flist == NULL) {
uf->flist = kmem_cache_alloc(flash_block_cache, GFP_KERNEL);
if (!uf->flist)
return -ENOMEM;
}
fl = uf->flist;
while (fl->next)
fl = fl->next; /* seek to last block_list for append */
next_free = fl->num_blocks;
if (next_free == FLASH_BLOCKS_PER_NODE) {
/* Need to allocate another block_list */
fl->next = kmem_cache_alloc(flash_block_cache, GFP_KERNEL);
if (!fl->next)
return -ENOMEM;
fl = fl->next;
next_free = 0;
}
if (count > RTAS_BLK_SIZE)
count = RTAS_BLK_SIZE;
p = kmem_cache_alloc(flash_block_cache, GFP_KERNEL);
if (!p)
return -ENOMEM;
if(copy_from_user(p, buffer, count)) {
kmem_cache_free(flash_block_cache, p);
return -EFAULT;
}
fl->blocks[next_free].data = p;
fl->blocks[next_free].length = count;
fl->num_blocks++;
return count;
}
static int rtas_excl_open(struct inode *inode, struct file *file)
{
struct proc_dir_entry *dp = PDE(inode);
/* Enforce exclusive open with use count of PDE */
spin_lock(&flash_file_open_lock);
if (atomic_read(&dp->count) > 2) {
spin_unlock(&flash_file_open_lock);
return -EBUSY;
}
atomic_inc(&dp->count);
spin_unlock(&flash_file_open_lock);
return 0;
}
static int rtas_excl_release(struct inode *inode, struct file *file)
{
struct proc_dir_entry *dp = PDE(inode);
atomic_dec(&dp->count);
return 0;
}
static void manage_flash(struct rtas_manage_flash_t *args_buf)
{
s32 rc;
do {
rc = rtas_call(rtas_token("ibm,manage-flash-image"), 1,
1, NULL, args_buf->op);
} while (rtas_busy_delay(rc));
args_buf->status = rc;
}
static ssize_t manage_flash_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct proc_dir_entry *dp = PDE(file->f_path.dentry->d_inode);
struct rtas_manage_flash_t *args_buf;
char msg[RTAS_MSG_MAXLEN];
int msglen;
args_buf = dp->data;
if (args_buf == NULL)
return 0;
msglen = sprintf(msg, "%d\n", args_buf->status);
return simple_read_from_buffer(buf, count, ppos, msg, msglen);
}
static ssize_t manage_flash_write(struct file *file, const char __user *buf,
size_t count, loff_t *off)
{
struct proc_dir_entry *dp = PDE(file->f_path.dentry->d_inode);
struct rtas_manage_flash_t *args_buf;
const char reject_str[] = "0";
const char commit_str[] = "1";
char stkbuf[10];
int op;
args_buf = (struct rtas_manage_flash_t *) dp->data;
if ((args_buf->status == MANAGE_AUTH) || (count == 0))
return count;
op = -1;
if (buf) {
if (count > 9) count = 9;
if (copy_from_user (stkbuf, buf, count)) {
return -EFAULT;
}
if (strncmp(stkbuf, reject_str, strlen(reject_str)) == 0)
op = RTAS_REJECT_TMP_IMG;
else if (strncmp(stkbuf, commit_str, strlen(commit_str)) == 0)
op = RTAS_COMMIT_TMP_IMG;
}
if (op == -1) /* buf is empty, or contains invalid string */
return -EINVAL;
args_buf->op = op;
manage_flash(args_buf);
return count;
}
static void validate_flash(struct rtas_validate_flash_t *args_buf)
{
int token = rtas_token("ibm,validate-flash-image");
int update_results;
s32 rc;
rc = 0;
do {
spin_lock(&rtas_data_buf_lock);
memcpy(rtas_data_buf, args_buf->buf, VALIDATE_BUF_SIZE);
rc = rtas_call(token, 2, 2, &update_results,
(u32) __pa(rtas_data_buf), args_buf->buf_size);
memcpy(args_buf->buf, rtas_data_buf, VALIDATE_BUF_SIZE);
spin_unlock(&rtas_data_buf_lock);
} while (rtas_busy_delay(rc));
args_buf->status = rc;
args_buf->update_results = update_results;
}
static int get_validate_flash_msg(struct rtas_validate_flash_t *args_buf,
char *msg)
{
int n;
if (args_buf->status >= VALIDATE_TMP_UPDATE) {
n = sprintf(msg, "%d\n", args_buf->update_results);
if ((args_buf->update_results >= VALIDATE_CUR_UNKNOWN) ||
(args_buf->update_results == VALIDATE_TMP_UPDATE))
n += sprintf(msg + n, "%s\n", args_buf->buf);
} else {
n = sprintf(msg, "%d\n", args_buf->status);
}
return n;
}
static ssize_t validate_flash_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct proc_dir_entry *dp = PDE(file->f_path.dentry->d_inode);
struct rtas_validate_flash_t *args_buf;
char msg[RTAS_MSG_MAXLEN];
int msglen;
args_buf = dp->data;
msglen = get_validate_flash_msg(args_buf, msg);
return simple_read_from_buffer(buf, count, ppos, msg, msglen);
}
static ssize_t validate_flash_write(struct file *file, const char __user *buf,
size_t count, loff_t *off)
{
struct proc_dir_entry *dp = PDE(file->f_path.dentry->d_inode);
struct rtas_validate_flash_t *args_buf;
int rc;
args_buf = (struct rtas_validate_flash_t *) dp->data;
if (dp->data == NULL) {
dp->data = kmalloc(sizeof(struct rtas_validate_flash_t),
GFP_KERNEL);
if (dp->data == NULL)
return -ENOMEM;
}
/* We are only interested in the first 4K of the
* candidate image */
if ((*off >= VALIDATE_BUF_SIZE) ||
(args_buf->status == VALIDATE_AUTH)) {
*off += count;
return count;
}
if (*off + count >= VALIDATE_BUF_SIZE) {
count = VALIDATE_BUF_SIZE - *off;
args_buf->status = VALIDATE_READY;
} else {
args_buf->status = VALIDATE_INCOMPLETE;
}
if (!access_ok(VERIFY_READ, buf, count)) {
rc = -EFAULT;
goto done;
}
if (copy_from_user(args_buf->buf + *off, buf, count)) {
rc = -EFAULT;
goto done;
}
*off += count;
rc = count;
done:
if (rc < 0) {
kfree(dp->data);
dp->data = NULL;
}
return rc;
}
static int validate_flash_release(struct inode *inode, struct file *file)
{
struct proc_dir_entry *dp = PDE(file->f_path.dentry->d_inode);
struct rtas_validate_flash_t *args_buf;
args_buf = (struct rtas_validate_flash_t *) dp->data;
if (args_buf->status == VALIDATE_READY) {
args_buf->buf_size = VALIDATE_BUF_SIZE;
validate_flash(args_buf);
}
/* The matching atomic_inc was in rtas_excl_open() */
atomic_dec(&dp->count);
return 0;
}
static void rtas_flash_firmware(int reboot_type)
{
unsigned long image_size;
struct flash_block_list *f, *next, *flist;
unsigned long rtas_block_list;
int i, status, update_token;
if (rtas_firmware_flash_list == NULL)
return; /* nothing to do */
if (reboot_type != SYS_RESTART) {
printk(KERN_ALERT "FLASH: firmware flash requires a reboot\n");
printk(KERN_ALERT "FLASH: the firmware image will NOT be flashed\n");
return;
}
update_token = rtas_token("ibm,update-flash-64-and-reboot");
if (update_token == RTAS_UNKNOWN_SERVICE) {
printk(KERN_ALERT "FLASH: ibm,update-flash-64-and-reboot "
"is not available -- not a service partition?\n");
printk(KERN_ALERT "FLASH: firmware will not be flashed\n");
return;
}
/*
* Just before starting the firmware flash, cancel the event scan work
* to avoid any soft lockup issues.
*/
rtas_cancel_event_scan();
/*
* NOTE: the "first" block must be under 4GB, so we create
* an entry with no data blocks in the reserved buffer in
* the kernel data segment.
*/
spin_lock(&rtas_data_buf_lock);
flist = (struct flash_block_list *)&rtas_data_buf[0];
flist->num_blocks = 0;
flist->next = rtas_firmware_flash_list;
rtas_block_list = virt_to_abs(flist);
if (rtas_block_list >= 4UL*1024*1024*1024) {
printk(KERN_ALERT "FLASH: kernel bug...flash list header addr above 4GB\n");
spin_unlock(&rtas_data_buf_lock);
return;
}
printk(KERN_ALERT "FLASH: preparing saved firmware image for flash\n");
/* Update the block_list in place. */
rtas_firmware_flash_list = NULL; /* too hard to backout on error */
image_size = 0;
for (f = flist; f; f = next) {
/* Translate data addrs to absolute */
for (i = 0; i < f->num_blocks; i++) {
f->blocks[i].data = (char *)virt_to_abs(f->blocks[i].data);
image_size += f->blocks[i].length;
}
next = f->next;
/* Don't translate NULL pointer for last entry */
if (f->next)
f->next = (struct flash_block_list *)virt_to_abs(f->next);
else
f->next = NULL;
/* make num_blocks into the version/length field */
f->num_blocks = (FLASH_BLOCK_LIST_VERSION << 56) | ((f->num_blocks+1)*16);
}
printk(KERN_ALERT "FLASH: flash image is %ld bytes\n", image_size);
printk(KERN_ALERT "FLASH: performing flash and reboot\n");
rtas_progress("Flashing \n", 0x0);
rtas_progress("Please Wait... ", 0x0);
printk(KERN_ALERT "FLASH: this will take several minutes. Do not power off!\n");
status = rtas_call(update_token, 1, 1, NULL, rtas_block_list);
switch (status) { /* should only get "bad" status */
case 0:
printk(KERN_ALERT "FLASH: success\n");
break;
case -1:
printk(KERN_ALERT "FLASH: hardware error. Firmware may not be not flashed\n");
break;
case -3:
printk(KERN_ALERT "FLASH: image is corrupt or not correct for this platform. Firmware not flashed\n");
break;
case -4:
printk(KERN_ALERT "FLASH: flash failed when partially complete. System may not reboot\n");
break;
default:
printk(KERN_ALERT "FLASH: unknown flash return code %d\n", status);
break;
}
spin_unlock(&rtas_data_buf_lock);
}
static void remove_flash_pde(struct proc_dir_entry *dp)
{
if (dp) {
kfree(dp->data);
remove_proc_entry(dp->name, dp->parent);
}
}
static int initialize_flash_pde_data(const char *rtas_call_name,
size_t buf_size,
struct proc_dir_entry *dp)
{
int *status;
int token;
dp->data = kzalloc(buf_size, GFP_KERNEL);
if (dp->data == NULL) {
remove_flash_pde(dp);
return -ENOMEM;
}
/*
* This code assumes that the status int is the first member of the
* struct
*/
status = (int *) dp->data;
token = rtas_token(rtas_call_name);
if (token == RTAS_UNKNOWN_SERVICE)
*status = FLASH_AUTH;
else
*status = FLASH_NO_OP;
return 0;
}
static struct proc_dir_entry *create_flash_pde(const char *filename,
const struct file_operations *fops)
{
return proc_create(filename, S_IRUSR | S_IWUSR, NULL, fops);
}
static const struct file_operations rtas_flash_operations = {
.owner = THIS_MODULE,
.read = rtas_flash_read,
.write = rtas_flash_write,
.open = rtas_excl_open,
.release = rtas_flash_release,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-16 00:52:59 +08:00
.llseek = default_llseek,
};
static const struct file_operations manage_flash_operations = {
.owner = THIS_MODULE,
.read = manage_flash_read,
.write = manage_flash_write,
.open = rtas_excl_open,
.release = rtas_excl_release,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-16 00:52:59 +08:00
.llseek = default_llseek,
};
static const struct file_operations validate_flash_operations = {
.owner = THIS_MODULE,
.read = validate_flash_read,
.write = validate_flash_write,
.open = rtas_excl_open,
.release = validate_flash_release,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-16 00:52:59 +08:00
.llseek = default_llseek,
};
static int __init rtas_flash_init(void)
{
int rc;
if (rtas_token("ibm,update-flash-64-and-reboot") ==
RTAS_UNKNOWN_SERVICE) {
pr_info("rtas_flash: no firmware flash support\n");
return 1;
}
firmware_flash_pde = create_flash_pde("powerpc/rtas/"
FIRMWARE_FLASH_NAME,
&rtas_flash_operations);
if (firmware_flash_pde == NULL) {
rc = -ENOMEM;
goto cleanup;
}
rc = initialize_flash_pde_data("ibm,update-flash-64-and-reboot",
sizeof(struct rtas_update_flash_t),
firmware_flash_pde);
if (rc != 0)
goto cleanup;
firmware_update_pde = create_flash_pde("powerpc/rtas/"
FIRMWARE_UPDATE_NAME,
&rtas_flash_operations);
if (firmware_update_pde == NULL) {
rc = -ENOMEM;
goto cleanup;
}
rc = initialize_flash_pde_data("ibm,update-flash-64-and-reboot",
sizeof(struct rtas_update_flash_t),
firmware_update_pde);
if (rc != 0)
goto cleanup;
validate_pde = create_flash_pde("powerpc/rtas/" VALIDATE_FLASH_NAME,
&validate_flash_operations);
if (validate_pde == NULL) {
rc = -ENOMEM;
goto cleanup;
}
rc = initialize_flash_pde_data("ibm,validate-flash-image",
sizeof(struct rtas_validate_flash_t),
validate_pde);
if (rc != 0)
goto cleanup;
manage_pde = create_flash_pde("powerpc/rtas/" MANAGE_FLASH_NAME,
&manage_flash_operations);
if (manage_pde == NULL) {
rc = -ENOMEM;
goto cleanup;
}
rc = initialize_flash_pde_data("ibm,manage-flash-image",
sizeof(struct rtas_manage_flash_t),
manage_pde);
if (rc != 0)
goto cleanup;
rtas_flash_term_hook = rtas_flash_firmware;
flash_block_cache = kmem_cache_create("rtas_flash_cache",
RTAS_BLK_SIZE, RTAS_BLK_SIZE, 0,
rtas_block_ctor);
if (!flash_block_cache) {
printk(KERN_ERR "%s: failed to create block cache\n",
__func__);
rc = -ENOMEM;
goto cleanup;
}
return 0;
cleanup:
remove_flash_pde(firmware_flash_pde);
remove_flash_pde(firmware_update_pde);
remove_flash_pde(validate_pde);
remove_flash_pde(manage_pde);
return rc;
}
static void __exit rtas_flash_cleanup(void)
{
rtas_flash_term_hook = NULL;
if (flash_block_cache)
kmem_cache_destroy(flash_block_cache);
remove_flash_pde(firmware_flash_pde);
remove_flash_pde(firmware_update_pde);
remove_flash_pde(validate_pde);
remove_flash_pde(manage_pde);
}
module_init(rtas_flash_init);
module_exit(rtas_flash_cleanup);
MODULE_LICENSE("GPL");