2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-07 21:24:00 +08:00
linux-next/drivers/infiniband/core/cma.c

3729 lines
94 KiB
C
Raw Normal View History

/*
* Copyright (c) 2005 Voltaire Inc. All rights reserved.
* Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
* Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
* Copyright (c) 2005-2006 Intel Corporation. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/completion.h>
#include <linux/in.h>
#include <linux/in6.h>
#include <linux/mutex.h>
#include <linux/random.h>
#include <linux/idr.h>
#include <linux/inetdevice.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/module.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/ipv6.h>
#include <rdma/rdma_cm.h>
#include <rdma/rdma_cm_ib.h>
#include <rdma/rdma_netlink.h>
#include <rdma/ib.h>
#include <rdma/ib_cache.h>
#include <rdma/ib_cm.h>
#include <rdma/ib_sa.h>
#include <rdma/iw_cm.h>
MODULE_AUTHOR("Sean Hefty");
MODULE_DESCRIPTION("Generic RDMA CM Agent");
MODULE_LICENSE("Dual BSD/GPL");
#define CMA_CM_RESPONSE_TIMEOUT 20
#define CMA_MAX_CM_RETRIES 15
#define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24)
#define CMA_IBOE_PACKET_LIFETIME 18
static void cma_add_one(struct ib_device *device);
static void cma_remove_one(struct ib_device *device);
static struct ib_client cma_client = {
.name = "cma",
.add = cma_add_one,
.remove = cma_remove_one
};
static struct ib_sa_client sa_client;
static struct rdma_addr_client addr_client;
static LIST_HEAD(dev_list);
static LIST_HEAD(listen_any_list);
static DEFINE_MUTEX(lock);
static struct workqueue_struct *cma_wq;
static DEFINE_IDR(tcp_ps);
static DEFINE_IDR(udp_ps);
static DEFINE_IDR(ipoib_ps);
static DEFINE_IDR(ib_ps);
struct cma_device {
struct list_head list;
struct ib_device *device;
struct completion comp;
atomic_t refcount;
struct list_head id_list;
};
struct rdma_bind_list {
struct idr *ps;
struct hlist_head owners;
unsigned short port;
};
enum {
CMA_OPTION_AFONLY,
};
/*
* Device removal can occur at anytime, so we need extra handling to
* serialize notifying the user of device removal with other callbacks.
* We do this by disabling removal notification while a callback is in process,
* and reporting it after the callback completes.
*/
struct rdma_id_private {
struct rdma_cm_id id;
struct rdma_bind_list *bind_list;
struct hlist_node node;
struct list_head list; /* listen_any_list or cma_device.list */
struct list_head listen_list; /* per device listens */
struct cma_device *cma_dev;
struct list_head mc_list;
int internal_id;
enum rdma_cm_state state;
spinlock_t lock;
struct mutex qp_mutex;
struct completion comp;
atomic_t refcount;
struct mutex handler_mutex;
int backlog;
int timeout_ms;
struct ib_sa_query *query;
int query_id;
union {
struct ib_cm_id *ib;
struct iw_cm_id *iw;
} cm_id;
u32 seq_num;
u32 qkey;
u32 qp_num;
pid_t owner;
u32 options;
u8 srq;
u8 tos;
u8 reuseaddr;
u8 afonly;
};
struct cma_multicast {
struct rdma_id_private *id_priv;
union {
struct ib_sa_multicast *ib;
} multicast;
struct list_head list;
void *context;
struct sockaddr_storage addr;
struct kref mcref;
};
struct cma_work {
struct work_struct work;
struct rdma_id_private *id;
enum rdma_cm_state old_state;
enum rdma_cm_state new_state;
struct rdma_cm_event event;
};
struct cma_ndev_work {
struct work_struct work;
struct rdma_id_private *id;
struct rdma_cm_event event;
};
struct iboe_mcast_work {
struct work_struct work;
struct rdma_id_private *id;
struct cma_multicast *mc;
};
union cma_ip_addr {
struct in6_addr ip6;
struct {
__be32 pad[3];
__be32 addr;
} ip4;
};
struct cma_hdr {
u8 cma_version;
u8 ip_version; /* IP version: 7:4 */
__be16 port;
union cma_ip_addr src_addr;
union cma_ip_addr dst_addr;
};
#define CMA_VERSION 0x00
static int cma_comp(struct rdma_id_private *id_priv, enum rdma_cm_state comp)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&id_priv->lock, flags);
ret = (id_priv->state == comp);
spin_unlock_irqrestore(&id_priv->lock, flags);
return ret;
}
static int cma_comp_exch(struct rdma_id_private *id_priv,
enum rdma_cm_state comp, enum rdma_cm_state exch)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&id_priv->lock, flags);
if ((ret = (id_priv->state == comp)))
id_priv->state = exch;
spin_unlock_irqrestore(&id_priv->lock, flags);
return ret;
}
static enum rdma_cm_state cma_exch(struct rdma_id_private *id_priv,
enum rdma_cm_state exch)
{
unsigned long flags;
enum rdma_cm_state old;
spin_lock_irqsave(&id_priv->lock, flags);
old = id_priv->state;
id_priv->state = exch;
spin_unlock_irqrestore(&id_priv->lock, flags);
return old;
}
static inline u8 cma_get_ip_ver(struct cma_hdr *hdr)
{
return hdr->ip_version >> 4;
}
static inline void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver)
{
hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF);
}
static void cma_attach_to_dev(struct rdma_id_private *id_priv,
struct cma_device *cma_dev)
{
atomic_inc(&cma_dev->refcount);
id_priv->cma_dev = cma_dev;
id_priv->id.device = cma_dev->device;
id_priv->id.route.addr.dev_addr.transport =
rdma_node_get_transport(cma_dev->device->node_type);
list_add_tail(&id_priv->list, &cma_dev->id_list);
}
static inline void cma_deref_dev(struct cma_device *cma_dev)
{
if (atomic_dec_and_test(&cma_dev->refcount))
complete(&cma_dev->comp);
}
static inline void release_mc(struct kref *kref)
{
struct cma_multicast *mc = container_of(kref, struct cma_multicast, mcref);
kfree(mc->multicast.ib);
kfree(mc);
}
static void cma_release_dev(struct rdma_id_private *id_priv)
{
mutex_lock(&lock);
list_del(&id_priv->list);
cma_deref_dev(id_priv->cma_dev);
id_priv->cma_dev = NULL;
mutex_unlock(&lock);
}
static inline struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv)
{
return (struct sockaddr *) &id_priv->id.route.addr.src_addr;
}
static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv)
{
return (struct sockaddr *) &id_priv->id.route.addr.dst_addr;
}
static inline unsigned short cma_family(struct rdma_id_private *id_priv)
{
return id_priv->id.route.addr.src_addr.ss_family;
}
static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey)
{
struct ib_sa_mcmember_rec rec;
int ret = 0;
if (id_priv->qkey) {
if (qkey && id_priv->qkey != qkey)
return -EINVAL;
return 0;
}
if (qkey) {
id_priv->qkey = qkey;
return 0;
}
switch (id_priv->id.ps) {
case RDMA_PS_UDP:
case RDMA_PS_IB:
id_priv->qkey = RDMA_UDP_QKEY;
break;
case RDMA_PS_IPOIB:
ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid);
ret = ib_sa_get_mcmember_rec(id_priv->id.device,
id_priv->id.port_num, &rec.mgid,
&rec);
if (!ret)
id_priv->qkey = be32_to_cpu(rec.qkey);
break;
default:
break;
}
return ret;
}
static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr)
{
dev_addr->dev_type = ARPHRD_INFINIBAND;
rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr);
ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey));
}
static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr)
{
int ret;
if (addr->sa_family != AF_IB) {
IB/core: Ethernet L2 attributes in verbs/cm structures This patch add the support for Ethernet L2 attributes in the verbs/cm/cma structures. When dealing with L2 Ethernet, we should use smac, dmac, vlan ID and priority in a similar manner that the IB L2 (and the L4 PKEY) attributes are used. Thus, those attributes were added to the following structures: * ib_ah_attr - added dmac * ib_qp_attr - added smac and vlan_id, (sl remains vlan priority) * ib_wc - added smac, vlan_id * ib_sa_path_rec - added smac, dmac, vlan_id * cm_av - added smac and vlan_id For the path record structure, extra care was taken to avoid the new fields when packing it into wire format, so we don't break the IB CM and SA wire protocol. On the active side, the CM fills. its internal structures from the path provided by the ULP. We add there taking the ETH L2 attributes and placing them into the CM Address Handle (struct cm_av). On the passive side, the CM fills its internal structures from the WC associated with the REQ message. We add there taking the ETH L2 attributes from the WC. When the HW driver provides the required ETH L2 attributes in the WC, they set the IB_WC_WITH_SMAC and IB_WC_WITH_VLAN flags. The IB core code checks for the presence of these flags, and in their absence does address resolution from the ib_init_ah_from_wc() helper function. ib_modify_qp_is_ok is also updated to consider the link layer. Some parameters are mandatory for Ethernet link layer, while they are irrelevant for IB. Vendor drivers are modified to support the new function signature. Signed-off-by: Matan Barak <matanb@mellanox.com> Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-12-13 00:03:11 +08:00
ret = rdma_translate_ip(addr, dev_addr, NULL);
} else {
cma_translate_ib((struct sockaddr_ib *) addr, dev_addr);
ret = 0;
}
return ret;
}
static int cma_acquire_dev(struct rdma_id_private *id_priv,
struct rdma_id_private *listen_id_priv)
{
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
struct cma_device *cma_dev;
union ib_gid gid, iboe_gid;
int ret = -ENODEV;
IB/cma: Use cached gids The cma_acquire_dev function was changed by commit 3c86aa70bf67 ("RDMA/cm: Add RDMA CM support for IBoE devices") to use find_gid_port() because multiport devices might have either IB or IBoE formatted gids. The old function assumed that all ports on the same device used the same GID format. However, when it was changed to use find_gid_port(), we inadvertently lost usage of the GID cache. This turned out to be a very costly change. In our testing, each iteration through each index of the GID table takes roughly 35us. When you have multiple devices in a system, and the GID you are looking for is on one of the later devices, the code loops through all of the GID indexes on all of the early devices before it finally succeeds on the target device. This pathological search behavior combined with 35us per GID table index retrieval results in results such as the following from the cmtime application that's part of the latest librdmacm git repo: ib1: step total ms max ms min us us / conn create id : 29.42 0.04 1.00 2.94 bind addr : 186705.66 19.00 18556.00 18670.57 resolve addr : 41.93 9.68 619.00 4.19 resolve route: 486.93 0.48 101.00 48.69 create qp : 4021.95 6.18 330.00 402.20 connect : 68350.39 68588.17 24632.00 6835.04 disconnect : 1460.43 252.65-1862269.00 146.04 destroy : 41.16 0.04 2.00 4.12 ib0: step total ms max ms min us us / conn create id : 28.61 0.68 1.00 2.86 bind addr : 2178.86 2.95 201.00 217.89 resolve addr : 51.26 16.85 845.00 5.13 resolve route: 620.08 0.43 92.00 62.01 create qp : 3344.40 6.36 273.00 334.44 connect : 6435.99 6368.53 7844.00 643.60 disconnect : 5095.38 321.90 757.00 509.54 destroy : 37.13 0.02 2.00 3.71 Clearly, both the bind address and connect operations suffer a huge penalty for being anything other than the default GID on the first port in the system. After applying this patch, the numbers now look like this: ib1: step total ms max ms min us us / conn create id : 30.15 0.03 1.00 3.01 bind addr : 80.27 0.04 7.00 8.03 resolve addr : 43.02 13.53 589.00 4.30 resolve route: 482.90 0.45 100.00 48.29 create qp : 3986.55 5.80 330.00 398.66 connect : 7141.53 7051.29 5005.00 714.15 disconnect : 5038.85 193.63 918.00 503.88 destroy : 37.02 0.04 2.00 3.70 ib0: step total ms max ms min us us / conn create id : 34.27 0.05 1.00 3.43 bind addr : 26.45 0.04 1.00 2.64 resolve addr : 38.25 10.54 760.00 3.82 resolve route: 604.79 0.43 97.00 60.48 create qp : 3314.95 6.34 273.00 331.49 connect : 12399.26 12351.10 8609.00 1239.93 disconnect : 5096.76 270.72 1015.00 509.68 destroy : 37.10 0.03 2.00 3.71 It's worth noting that we still suffer a bit of a penalty on connect to the wrong device, but the penalty is much less than it used to be. Follow on patches deal with this penalty. Many thanks to Neil Horman for helping to track the source of slow function that allowed us to track down the fact that the original patch I mentioned above backed out cache usage and identify just how much that impacted the system. Signed-off-by: Doug Ledford <dledford@redhat.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-09-25 05:16:27 +08:00
u8 port, found_port;
enum rdma_link_layer dev_ll = dev_addr->dev_type == ARPHRD_INFINIBAND ?
IB_LINK_LAYER_INFINIBAND : IB_LINK_LAYER_ETHERNET;
if (dev_ll != IB_LINK_LAYER_INFINIBAND &&
id_priv->id.ps == RDMA_PS_IPOIB)
return -EINVAL;
mutex_lock(&lock);
rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
&iboe_gid);
memcpy(&gid, dev_addr->src_dev_addr +
rdma_addr_gid_offset(dev_addr), sizeof gid);
if (listen_id_priv &&
rdma_port_get_link_layer(listen_id_priv->id.device,
listen_id_priv->id.port_num) == dev_ll) {
cma_dev = listen_id_priv->cma_dev;
port = listen_id_priv->id.port_num;
if (rdma_node_get_transport(cma_dev->device->node_type) == RDMA_TRANSPORT_IB &&
rdma_port_get_link_layer(cma_dev->device, port) == IB_LINK_LAYER_ETHERNET)
ret = ib_find_cached_gid(cma_dev->device, &iboe_gid,
&found_port, NULL);
else
ret = ib_find_cached_gid(cma_dev->device, &gid,
&found_port, NULL);
if (!ret && (port == found_port)) {
id_priv->id.port_num = found_port;
goto out;
}
}
list_for_each_entry(cma_dev, &dev_list, list) {
for (port = 1; port <= cma_dev->device->phys_port_cnt; ++port) {
if (listen_id_priv &&
listen_id_priv->cma_dev == cma_dev &&
listen_id_priv->id.port_num == port)
continue;
if (rdma_port_get_link_layer(cma_dev->device, port) == dev_ll) {
if (rdma_node_get_transport(cma_dev->device->node_type) == RDMA_TRANSPORT_IB &&
rdma_port_get_link_layer(cma_dev->device, port) == IB_LINK_LAYER_ETHERNET)
IB/cma: Use cached gids The cma_acquire_dev function was changed by commit 3c86aa70bf67 ("RDMA/cm: Add RDMA CM support for IBoE devices") to use find_gid_port() because multiport devices might have either IB or IBoE formatted gids. The old function assumed that all ports on the same device used the same GID format. However, when it was changed to use find_gid_port(), we inadvertently lost usage of the GID cache. This turned out to be a very costly change. In our testing, each iteration through each index of the GID table takes roughly 35us. When you have multiple devices in a system, and the GID you are looking for is on one of the later devices, the code loops through all of the GID indexes on all of the early devices before it finally succeeds on the target device. This pathological search behavior combined with 35us per GID table index retrieval results in results such as the following from the cmtime application that's part of the latest librdmacm git repo: ib1: step total ms max ms min us us / conn create id : 29.42 0.04 1.00 2.94 bind addr : 186705.66 19.00 18556.00 18670.57 resolve addr : 41.93 9.68 619.00 4.19 resolve route: 486.93 0.48 101.00 48.69 create qp : 4021.95 6.18 330.00 402.20 connect : 68350.39 68588.17 24632.00 6835.04 disconnect : 1460.43 252.65-1862269.00 146.04 destroy : 41.16 0.04 2.00 4.12 ib0: step total ms max ms min us us / conn create id : 28.61 0.68 1.00 2.86 bind addr : 2178.86 2.95 201.00 217.89 resolve addr : 51.26 16.85 845.00 5.13 resolve route: 620.08 0.43 92.00 62.01 create qp : 3344.40 6.36 273.00 334.44 connect : 6435.99 6368.53 7844.00 643.60 disconnect : 5095.38 321.90 757.00 509.54 destroy : 37.13 0.02 2.00 3.71 Clearly, both the bind address and connect operations suffer a huge penalty for being anything other than the default GID on the first port in the system. After applying this patch, the numbers now look like this: ib1: step total ms max ms min us us / conn create id : 30.15 0.03 1.00 3.01 bind addr : 80.27 0.04 7.00 8.03 resolve addr : 43.02 13.53 589.00 4.30 resolve route: 482.90 0.45 100.00 48.29 create qp : 3986.55 5.80 330.00 398.66 connect : 7141.53 7051.29 5005.00 714.15 disconnect : 5038.85 193.63 918.00 503.88 destroy : 37.02 0.04 2.00 3.70 ib0: step total ms max ms min us us / conn create id : 34.27 0.05 1.00 3.43 bind addr : 26.45 0.04 1.00 2.64 resolve addr : 38.25 10.54 760.00 3.82 resolve route: 604.79 0.43 97.00 60.48 create qp : 3314.95 6.34 273.00 331.49 connect : 12399.26 12351.10 8609.00 1239.93 disconnect : 5096.76 270.72 1015.00 509.68 destroy : 37.10 0.03 2.00 3.71 It's worth noting that we still suffer a bit of a penalty on connect to the wrong device, but the penalty is much less than it used to be. Follow on patches deal with this penalty. Many thanks to Neil Horman for helping to track the source of slow function that allowed us to track down the fact that the original patch I mentioned above backed out cache usage and identify just how much that impacted the system. Signed-off-by: Doug Ledford <dledford@redhat.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-09-25 05:16:27 +08:00
ret = ib_find_cached_gid(cma_dev->device, &iboe_gid, &found_port, NULL);
else
IB/cma: Use cached gids The cma_acquire_dev function was changed by commit 3c86aa70bf67 ("RDMA/cm: Add RDMA CM support for IBoE devices") to use find_gid_port() because multiport devices might have either IB or IBoE formatted gids. The old function assumed that all ports on the same device used the same GID format. However, when it was changed to use find_gid_port(), we inadvertently lost usage of the GID cache. This turned out to be a very costly change. In our testing, each iteration through each index of the GID table takes roughly 35us. When you have multiple devices in a system, and the GID you are looking for is on one of the later devices, the code loops through all of the GID indexes on all of the early devices before it finally succeeds on the target device. This pathological search behavior combined with 35us per GID table index retrieval results in results such as the following from the cmtime application that's part of the latest librdmacm git repo: ib1: step total ms max ms min us us / conn create id : 29.42 0.04 1.00 2.94 bind addr : 186705.66 19.00 18556.00 18670.57 resolve addr : 41.93 9.68 619.00 4.19 resolve route: 486.93 0.48 101.00 48.69 create qp : 4021.95 6.18 330.00 402.20 connect : 68350.39 68588.17 24632.00 6835.04 disconnect : 1460.43 252.65-1862269.00 146.04 destroy : 41.16 0.04 2.00 4.12 ib0: step total ms max ms min us us / conn create id : 28.61 0.68 1.00 2.86 bind addr : 2178.86 2.95 201.00 217.89 resolve addr : 51.26 16.85 845.00 5.13 resolve route: 620.08 0.43 92.00 62.01 create qp : 3344.40 6.36 273.00 334.44 connect : 6435.99 6368.53 7844.00 643.60 disconnect : 5095.38 321.90 757.00 509.54 destroy : 37.13 0.02 2.00 3.71 Clearly, both the bind address and connect operations suffer a huge penalty for being anything other than the default GID on the first port in the system. After applying this patch, the numbers now look like this: ib1: step total ms max ms min us us / conn create id : 30.15 0.03 1.00 3.01 bind addr : 80.27 0.04 7.00 8.03 resolve addr : 43.02 13.53 589.00 4.30 resolve route: 482.90 0.45 100.00 48.29 create qp : 3986.55 5.80 330.00 398.66 connect : 7141.53 7051.29 5005.00 714.15 disconnect : 5038.85 193.63 918.00 503.88 destroy : 37.02 0.04 2.00 3.70 ib0: step total ms max ms min us us / conn create id : 34.27 0.05 1.00 3.43 bind addr : 26.45 0.04 1.00 2.64 resolve addr : 38.25 10.54 760.00 3.82 resolve route: 604.79 0.43 97.00 60.48 create qp : 3314.95 6.34 273.00 331.49 connect : 12399.26 12351.10 8609.00 1239.93 disconnect : 5096.76 270.72 1015.00 509.68 destroy : 37.10 0.03 2.00 3.71 It's worth noting that we still suffer a bit of a penalty on connect to the wrong device, but the penalty is much less than it used to be. Follow on patches deal with this penalty. Many thanks to Neil Horman for helping to track the source of slow function that allowed us to track down the fact that the original patch I mentioned above backed out cache usage and identify just how much that impacted the system. Signed-off-by: Doug Ledford <dledford@redhat.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-09-25 05:16:27 +08:00
ret = ib_find_cached_gid(cma_dev->device, &gid, &found_port, NULL);
IB/cma: Use cached gids The cma_acquire_dev function was changed by commit 3c86aa70bf67 ("RDMA/cm: Add RDMA CM support for IBoE devices") to use find_gid_port() because multiport devices might have either IB or IBoE formatted gids. The old function assumed that all ports on the same device used the same GID format. However, when it was changed to use find_gid_port(), we inadvertently lost usage of the GID cache. This turned out to be a very costly change. In our testing, each iteration through each index of the GID table takes roughly 35us. When you have multiple devices in a system, and the GID you are looking for is on one of the later devices, the code loops through all of the GID indexes on all of the early devices before it finally succeeds on the target device. This pathological search behavior combined with 35us per GID table index retrieval results in results such as the following from the cmtime application that's part of the latest librdmacm git repo: ib1: step total ms max ms min us us / conn create id : 29.42 0.04 1.00 2.94 bind addr : 186705.66 19.00 18556.00 18670.57 resolve addr : 41.93 9.68 619.00 4.19 resolve route: 486.93 0.48 101.00 48.69 create qp : 4021.95 6.18 330.00 402.20 connect : 68350.39 68588.17 24632.00 6835.04 disconnect : 1460.43 252.65-1862269.00 146.04 destroy : 41.16 0.04 2.00 4.12 ib0: step total ms max ms min us us / conn create id : 28.61 0.68 1.00 2.86 bind addr : 2178.86 2.95 201.00 217.89 resolve addr : 51.26 16.85 845.00 5.13 resolve route: 620.08 0.43 92.00 62.01 create qp : 3344.40 6.36 273.00 334.44 connect : 6435.99 6368.53 7844.00 643.60 disconnect : 5095.38 321.90 757.00 509.54 destroy : 37.13 0.02 2.00 3.71 Clearly, both the bind address and connect operations suffer a huge penalty for being anything other than the default GID on the first port in the system. After applying this patch, the numbers now look like this: ib1: step total ms max ms min us us / conn create id : 30.15 0.03 1.00 3.01 bind addr : 80.27 0.04 7.00 8.03 resolve addr : 43.02 13.53 589.00 4.30 resolve route: 482.90 0.45 100.00 48.29 create qp : 3986.55 5.80 330.00 398.66 connect : 7141.53 7051.29 5005.00 714.15 disconnect : 5038.85 193.63 918.00 503.88 destroy : 37.02 0.04 2.00 3.70 ib0: step total ms max ms min us us / conn create id : 34.27 0.05 1.00 3.43 bind addr : 26.45 0.04 1.00 2.64 resolve addr : 38.25 10.54 760.00 3.82 resolve route: 604.79 0.43 97.00 60.48 create qp : 3314.95 6.34 273.00 331.49 connect : 12399.26 12351.10 8609.00 1239.93 disconnect : 5096.76 270.72 1015.00 509.68 destroy : 37.10 0.03 2.00 3.71 It's worth noting that we still suffer a bit of a penalty on connect to the wrong device, but the penalty is much less than it used to be. Follow on patches deal with this penalty. Many thanks to Neil Horman for helping to track the source of slow function that allowed us to track down the fact that the original patch I mentioned above backed out cache usage and identify just how much that impacted the system. Signed-off-by: Doug Ledford <dledford@redhat.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-09-25 05:16:27 +08:00
if (!ret && (port == found_port)) {
id_priv->id.port_num = found_port;
goto out;
}
}
}
}
out:
if (!ret)
cma_attach_to_dev(id_priv, cma_dev);
mutex_unlock(&lock);
return ret;
}
/*
* Select the source IB device and address to reach the destination IB address.
*/
static int cma_resolve_ib_dev(struct rdma_id_private *id_priv)
{
struct cma_device *cma_dev, *cur_dev;
struct sockaddr_ib *addr;
union ib_gid gid, sgid, *dgid;
u16 pkey, index;
u8 p;
int i;
cma_dev = NULL;
addr = (struct sockaddr_ib *) cma_dst_addr(id_priv);
dgid = (union ib_gid *) &addr->sib_addr;
pkey = ntohs(addr->sib_pkey);
list_for_each_entry(cur_dev, &dev_list, list) {
if (rdma_node_get_transport(cur_dev->device->node_type) != RDMA_TRANSPORT_IB)
continue;
for (p = 1; p <= cur_dev->device->phys_port_cnt; ++p) {
if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index))
continue;
for (i = 0; !ib_get_cached_gid(cur_dev->device, p, i, &gid); i++) {
if (!memcmp(&gid, dgid, sizeof(gid))) {
cma_dev = cur_dev;
sgid = gid;
id_priv->id.port_num = p;
goto found;
}
if (!cma_dev && (gid.global.subnet_prefix ==
dgid->global.subnet_prefix)) {
cma_dev = cur_dev;
sgid = gid;
id_priv->id.port_num = p;
}
}
}
}
if (!cma_dev)
return -ENODEV;
found:
cma_attach_to_dev(id_priv, cma_dev);
addr = (struct sockaddr_ib *) cma_src_addr(id_priv);
memcpy(&addr->sib_addr, &sgid, sizeof sgid);
cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr);
return 0;
}
static void cma_deref_id(struct rdma_id_private *id_priv)
{
if (atomic_dec_and_test(&id_priv->refcount))
complete(&id_priv->comp);
}
static int cma_disable_callback(struct rdma_id_private *id_priv,
enum rdma_cm_state state)
{
mutex_lock(&id_priv->handler_mutex);
if (id_priv->state != state) {
mutex_unlock(&id_priv->handler_mutex);
return -EINVAL;
}
return 0;
}
struct rdma_cm_id *rdma_create_id(rdma_cm_event_handler event_handler,
void *context, enum rdma_port_space ps,
enum ib_qp_type qp_type)
{
struct rdma_id_private *id_priv;
id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL);
if (!id_priv)
return ERR_PTR(-ENOMEM);
id_priv->owner = task_pid_nr(current);
id_priv->state = RDMA_CM_IDLE;
id_priv->id.context = context;
id_priv->id.event_handler = event_handler;
id_priv->id.ps = ps;
id_priv->id.qp_type = qp_type;
spin_lock_init(&id_priv->lock);
mutex_init(&id_priv->qp_mutex);
init_completion(&id_priv->comp);
atomic_set(&id_priv->refcount, 1);
mutex_init(&id_priv->handler_mutex);
INIT_LIST_HEAD(&id_priv->listen_list);
INIT_LIST_HEAD(&id_priv->mc_list);
get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num);
return &id_priv->id;
}
EXPORT_SYMBOL(rdma_create_id);
static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
{
struct ib_qp_attr qp_attr;
int qp_attr_mask, ret;
qp_attr.qp_state = IB_QPS_INIT;
ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
if (ret)
return ret;
ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask);
if (ret)
return ret;
qp_attr.qp_state = IB_QPS_RTR;
ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE);
if (ret)
return ret;
qp_attr.qp_state = IB_QPS_RTS;
qp_attr.sq_psn = 0;
ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN);
return ret;
}
static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
{
struct ib_qp_attr qp_attr;
int qp_attr_mask, ret;
qp_attr.qp_state = IB_QPS_INIT;
ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
if (ret)
return ret;
return ib_modify_qp(qp, &qp_attr, qp_attr_mask);
}
int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd,
struct ib_qp_init_attr *qp_init_attr)
{
struct rdma_id_private *id_priv;
struct ib_qp *qp;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (id->device != pd->device)
return -EINVAL;
qp = ib_create_qp(pd, qp_init_attr);
if (IS_ERR(qp))
return PTR_ERR(qp);
if (id->qp_type == IB_QPT_UD)
ret = cma_init_ud_qp(id_priv, qp);
else
ret = cma_init_conn_qp(id_priv, qp);
if (ret)
goto err;
id->qp = qp;
id_priv->qp_num = qp->qp_num;
id_priv->srq = (qp->srq != NULL);
return 0;
err:
ib_destroy_qp(qp);
return ret;
}
EXPORT_SYMBOL(rdma_create_qp);
void rdma_destroy_qp(struct rdma_cm_id *id)
{
struct rdma_id_private *id_priv;
id_priv = container_of(id, struct rdma_id_private, id);
mutex_lock(&id_priv->qp_mutex);
ib_destroy_qp(id_priv->id.qp);
id_priv->id.qp = NULL;
mutex_unlock(&id_priv->qp_mutex);
}
EXPORT_SYMBOL(rdma_destroy_qp);
static int cma_modify_qp_rtr(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct ib_qp_attr qp_attr;
int qp_attr_mask, ret;
IB/core: Ethernet L2 attributes in verbs/cm structures This patch add the support for Ethernet L2 attributes in the verbs/cm/cma structures. When dealing with L2 Ethernet, we should use smac, dmac, vlan ID and priority in a similar manner that the IB L2 (and the L4 PKEY) attributes are used. Thus, those attributes were added to the following structures: * ib_ah_attr - added dmac * ib_qp_attr - added smac and vlan_id, (sl remains vlan priority) * ib_wc - added smac, vlan_id * ib_sa_path_rec - added smac, dmac, vlan_id * cm_av - added smac and vlan_id For the path record structure, extra care was taken to avoid the new fields when packing it into wire format, so we don't break the IB CM and SA wire protocol. On the active side, the CM fills. its internal structures from the path provided by the ULP. We add there taking the ETH L2 attributes and placing them into the CM Address Handle (struct cm_av). On the passive side, the CM fills its internal structures from the WC associated with the REQ message. We add there taking the ETH L2 attributes from the WC. When the HW driver provides the required ETH L2 attributes in the WC, they set the IB_WC_WITH_SMAC and IB_WC_WITH_VLAN flags. The IB core code checks for the presence of these flags, and in their absence does address resolution from the ib_init_ah_from_wc() helper function. ib_modify_qp_is_ok is also updated to consider the link layer. Some parameters are mandatory for Ethernet link layer, while they are irrelevant for IB. Vendor drivers are modified to support the new function signature. Signed-off-by: Matan Barak <matanb@mellanox.com> Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-12-13 00:03:11 +08:00
union ib_gid sgid;
mutex_lock(&id_priv->qp_mutex);
if (!id_priv->id.qp) {
ret = 0;
goto out;
}
/* Need to update QP attributes from default values. */
qp_attr.qp_state = IB_QPS_INIT;
ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
if (ret)
goto out;
ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
if (ret)
goto out;
qp_attr.qp_state = IB_QPS_RTR;
ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
if (ret)
goto out;
IB/core: Ethernet L2 attributes in verbs/cm structures This patch add the support for Ethernet L2 attributes in the verbs/cm/cma structures. When dealing with L2 Ethernet, we should use smac, dmac, vlan ID and priority in a similar manner that the IB L2 (and the L4 PKEY) attributes are used. Thus, those attributes were added to the following structures: * ib_ah_attr - added dmac * ib_qp_attr - added smac and vlan_id, (sl remains vlan priority) * ib_wc - added smac, vlan_id * ib_sa_path_rec - added smac, dmac, vlan_id * cm_av - added smac and vlan_id For the path record structure, extra care was taken to avoid the new fields when packing it into wire format, so we don't break the IB CM and SA wire protocol. On the active side, the CM fills. its internal structures from the path provided by the ULP. We add there taking the ETH L2 attributes and placing them into the CM Address Handle (struct cm_av). On the passive side, the CM fills its internal structures from the WC associated with the REQ message. We add there taking the ETH L2 attributes from the WC. When the HW driver provides the required ETH L2 attributes in the WC, they set the IB_WC_WITH_SMAC and IB_WC_WITH_VLAN flags. The IB core code checks for the presence of these flags, and in their absence does address resolution from the ib_init_ah_from_wc() helper function. ib_modify_qp_is_ok is also updated to consider the link layer. Some parameters are mandatory for Ethernet link layer, while they are irrelevant for IB. Vendor drivers are modified to support the new function signature. Signed-off-by: Matan Barak <matanb@mellanox.com> Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-12-13 00:03:11 +08:00
ret = ib_query_gid(id_priv->id.device, id_priv->id.port_num,
qp_attr.ah_attr.grh.sgid_index, &sgid);
if (ret)
goto out;
if (rdma_node_get_transport(id_priv->cma_dev->device->node_type)
== RDMA_TRANSPORT_IB &&
rdma_port_get_link_layer(id_priv->id.device, id_priv->id.port_num)
== IB_LINK_LAYER_ETHERNET) {
ret = rdma_addr_find_smac_by_sgid(&sgid, qp_attr.smac, NULL);
if (ret)
goto out;
}
if (conn_param)
qp_attr.max_dest_rd_atomic = conn_param->responder_resources;
ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
out:
mutex_unlock(&id_priv->qp_mutex);
return ret;
}
static int cma_modify_qp_rts(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct ib_qp_attr qp_attr;
int qp_attr_mask, ret;
mutex_lock(&id_priv->qp_mutex);
if (!id_priv->id.qp) {
ret = 0;
goto out;
}
qp_attr.qp_state = IB_QPS_RTS;
ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
if (ret)
goto out;
if (conn_param)
qp_attr.max_rd_atomic = conn_param->initiator_depth;
ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
out:
mutex_unlock(&id_priv->qp_mutex);
return ret;
}
static int cma_modify_qp_err(struct rdma_id_private *id_priv)
{
struct ib_qp_attr qp_attr;
int ret;
mutex_lock(&id_priv->qp_mutex);
if (!id_priv->id.qp) {
ret = 0;
goto out;
}
qp_attr.qp_state = IB_QPS_ERR;
ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE);
out:
mutex_unlock(&id_priv->qp_mutex);
return ret;
}
static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv,
struct ib_qp_attr *qp_attr, int *qp_attr_mask)
{
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
int ret;
u16 pkey;
if (rdma_port_get_link_layer(id_priv->id.device, id_priv->id.port_num) ==
IB_LINK_LAYER_INFINIBAND)
pkey = ib_addr_get_pkey(dev_addr);
else
pkey = 0xffff;
ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num,
pkey, &qp_attr->pkey_index);
if (ret)
return ret;
qp_attr->port_num = id_priv->id.port_num;
*qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT;
if (id_priv->id.qp_type == IB_QPT_UD) {
ret = cma_set_qkey(id_priv, 0);
if (ret)
return ret;
qp_attr->qkey = id_priv->qkey;
*qp_attr_mask |= IB_QP_QKEY;
} else {
qp_attr->qp_access_flags = 0;
*qp_attr_mask |= IB_QP_ACCESS_FLAGS;
}
return 0;
}
int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr,
int *qp_attr_mask)
{
struct rdma_id_private *id_priv;
int ret = 0;
id_priv = container_of(id, struct rdma_id_private, id);
switch (rdma_node_get_transport(id_priv->id.device->node_type)) {
case RDMA_TRANSPORT_IB:
if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD))
ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask);
else
ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr,
qp_attr_mask);
IB/core: Ethernet L2 attributes in verbs/cm structures This patch add the support for Ethernet L2 attributes in the verbs/cm/cma structures. When dealing with L2 Ethernet, we should use smac, dmac, vlan ID and priority in a similar manner that the IB L2 (and the L4 PKEY) attributes are used. Thus, those attributes were added to the following structures: * ib_ah_attr - added dmac * ib_qp_attr - added smac and vlan_id, (sl remains vlan priority) * ib_wc - added smac, vlan_id * ib_sa_path_rec - added smac, dmac, vlan_id * cm_av - added smac and vlan_id For the path record structure, extra care was taken to avoid the new fields when packing it into wire format, so we don't break the IB CM and SA wire protocol. On the active side, the CM fills. its internal structures from the path provided by the ULP. We add there taking the ETH L2 attributes and placing them into the CM Address Handle (struct cm_av). On the passive side, the CM fills its internal structures from the WC associated with the REQ message. We add there taking the ETH L2 attributes from the WC. When the HW driver provides the required ETH L2 attributes in the WC, they set the IB_WC_WITH_SMAC and IB_WC_WITH_VLAN flags. The IB core code checks for the presence of these flags, and in their absence does address resolution from the ib_init_ah_from_wc() helper function. ib_modify_qp_is_ok is also updated to consider the link layer. Some parameters are mandatory for Ethernet link layer, while they are irrelevant for IB. Vendor drivers are modified to support the new function signature. Signed-off-by: Matan Barak <matanb@mellanox.com> Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-12-13 00:03:11 +08:00
if (qp_attr->qp_state == IB_QPS_RTR)
qp_attr->rq_psn = id_priv->seq_num;
break;
case RDMA_TRANSPORT_IWARP:
if (!id_priv->cm_id.iw) {
qp_attr->qp_access_flags = 0;
*qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS;
} else
ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr,
qp_attr_mask);
break;
default:
ret = -ENOSYS;
break;
}
return ret;
}
EXPORT_SYMBOL(rdma_init_qp_attr);
static inline int cma_zero_addr(struct sockaddr *addr)
{
switch (addr->sa_family) {
case AF_INET:
return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr);
case AF_INET6:
return ipv6_addr_any(&((struct sockaddr_in6 *) addr)->sin6_addr);
case AF_IB:
return ib_addr_any(&((struct sockaddr_ib *) addr)->sib_addr);
default:
return 0;
}
}
static inline int cma_loopback_addr(struct sockaddr *addr)
{
switch (addr->sa_family) {
case AF_INET:
return ipv4_is_loopback(((struct sockaddr_in *) addr)->sin_addr.s_addr);
case AF_INET6:
return ipv6_addr_loopback(&((struct sockaddr_in6 *) addr)->sin6_addr);
case AF_IB:
return ib_addr_loopback(&((struct sockaddr_ib *) addr)->sib_addr);
default:
return 0;
}
}
static inline int cma_any_addr(struct sockaddr *addr)
{
return cma_zero_addr(addr) || cma_loopback_addr(addr);
}
static int cma_addr_cmp(struct sockaddr *src, struct sockaddr *dst)
{
if (src->sa_family != dst->sa_family)
return -1;
switch (src->sa_family) {
case AF_INET:
return ((struct sockaddr_in *) src)->sin_addr.s_addr !=
((struct sockaddr_in *) dst)->sin_addr.s_addr;
case AF_INET6:
return ipv6_addr_cmp(&((struct sockaddr_in6 *) src)->sin6_addr,
&((struct sockaddr_in6 *) dst)->sin6_addr);
default:
return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr,
&((struct sockaddr_ib *) dst)->sib_addr);
}
}
static __be16 cma_port(struct sockaddr *addr)
{
struct sockaddr_ib *sib;
switch (addr->sa_family) {
case AF_INET:
return ((struct sockaddr_in *) addr)->sin_port;
case AF_INET6:
return ((struct sockaddr_in6 *) addr)->sin6_port;
case AF_IB:
sib = (struct sockaddr_ib *) addr;
return htons((u16) (be64_to_cpu(sib->sib_sid) &
be64_to_cpu(sib->sib_sid_mask)));
default:
return 0;
}
}
static inline int cma_any_port(struct sockaddr *addr)
{
return !cma_port(addr);
}
static void cma_save_ib_info(struct rdma_cm_id *id, struct rdma_cm_id *listen_id,
struct ib_sa_path_rec *path)
{
struct sockaddr_ib *listen_ib, *ib;
listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr;
ib = (struct sockaddr_ib *) &id->route.addr.src_addr;
ib->sib_family = listen_ib->sib_family;
ib->sib_pkey = path->pkey;
ib->sib_flowinfo = path->flow_label;
memcpy(&ib->sib_addr, &path->sgid, 16);
ib->sib_sid = listen_ib->sib_sid;
ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL);
ib->sib_scope_id = listen_ib->sib_scope_id;
ib = (struct sockaddr_ib *) &id->route.addr.dst_addr;
ib->sib_family = listen_ib->sib_family;
ib->sib_pkey = path->pkey;
ib->sib_flowinfo = path->flow_label;
memcpy(&ib->sib_addr, &path->dgid, 16);
}
static void cma_save_ip4_info(struct rdma_cm_id *id, struct rdma_cm_id *listen_id,
struct cma_hdr *hdr)
{
struct sockaddr_in *listen4, *ip4;
listen4 = (struct sockaddr_in *) &listen_id->route.addr.src_addr;
ip4 = (struct sockaddr_in *) &id->route.addr.src_addr;
ip4->sin_family = listen4->sin_family;
ip4->sin_addr.s_addr = hdr->dst_addr.ip4.addr;
ip4->sin_port = listen4->sin_port;
ip4 = (struct sockaddr_in *) &id->route.addr.dst_addr;
ip4->sin_family = listen4->sin_family;
ip4->sin_addr.s_addr = hdr->src_addr.ip4.addr;
ip4->sin_port = hdr->port;
}
static void cma_save_ip6_info(struct rdma_cm_id *id, struct rdma_cm_id *listen_id,
struct cma_hdr *hdr)
{
struct sockaddr_in6 *listen6, *ip6;
listen6 = (struct sockaddr_in6 *) &listen_id->route.addr.src_addr;
ip6 = (struct sockaddr_in6 *) &id->route.addr.src_addr;
ip6->sin6_family = listen6->sin6_family;
ip6->sin6_addr = hdr->dst_addr.ip6;
ip6->sin6_port = listen6->sin6_port;
ip6 = (struct sockaddr_in6 *) &id->route.addr.dst_addr;
ip6->sin6_family = listen6->sin6_family;
ip6->sin6_addr = hdr->src_addr.ip6;
ip6->sin6_port = hdr->port;
}
static int cma_save_net_info(struct rdma_cm_id *id, struct rdma_cm_id *listen_id,
struct ib_cm_event *ib_event)
{
struct cma_hdr *hdr;
if ((listen_id->route.addr.src_addr.ss_family == AF_IB) &&
(ib_event->event == IB_CM_REQ_RECEIVED)) {
cma_save_ib_info(id, listen_id, ib_event->param.req_rcvd.primary_path);
return 0;
}
hdr = ib_event->private_data;
if (hdr->cma_version != CMA_VERSION)
return -EINVAL;
switch (cma_get_ip_ver(hdr)) {
case 4:
cma_save_ip4_info(id, listen_id, hdr);
break;
case 6:
cma_save_ip6_info(id, listen_id, hdr);
break;
default:
return -EINVAL;
}
return 0;
}
static inline int cma_user_data_offset(struct rdma_id_private *id_priv)
{
return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr);
}
static void cma_cancel_route(struct rdma_id_private *id_priv)
{
switch (rdma_port_get_link_layer(id_priv->id.device, id_priv->id.port_num)) {
case IB_LINK_LAYER_INFINIBAND:
if (id_priv->query)
ib_sa_cancel_query(id_priv->query_id, id_priv->query);
break;
default:
break;
}
}
static void cma_cancel_listens(struct rdma_id_private *id_priv)
{
struct rdma_id_private *dev_id_priv;
/*
* Remove from listen_any_list to prevent added devices from spawning
* additional listen requests.
*/
mutex_lock(&lock);
list_del(&id_priv->list);
while (!list_empty(&id_priv->listen_list)) {
dev_id_priv = list_entry(id_priv->listen_list.next,
struct rdma_id_private, listen_list);
/* sync with device removal to avoid duplicate destruction */
list_del_init(&dev_id_priv->list);
list_del(&dev_id_priv->listen_list);
mutex_unlock(&lock);
rdma_destroy_id(&dev_id_priv->id);
mutex_lock(&lock);
}
mutex_unlock(&lock);
}
static void cma_cancel_operation(struct rdma_id_private *id_priv,
enum rdma_cm_state state)
{
switch (state) {
case RDMA_CM_ADDR_QUERY:
rdma_addr_cancel(&id_priv->id.route.addr.dev_addr);
break;
case RDMA_CM_ROUTE_QUERY:
cma_cancel_route(id_priv);
break;
case RDMA_CM_LISTEN:
if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev)
cma_cancel_listens(id_priv);
break;
default:
break;
}
}
static void cma_release_port(struct rdma_id_private *id_priv)
{
struct rdma_bind_list *bind_list = id_priv->bind_list;
if (!bind_list)
return;
mutex_lock(&lock);
hlist_del(&id_priv->node);
if (hlist_empty(&bind_list->owners)) {
idr_remove(bind_list->ps, bind_list->port);
kfree(bind_list);
}
mutex_unlock(&lock);
}
static void cma_leave_mc_groups(struct rdma_id_private *id_priv)
{
struct cma_multicast *mc;
while (!list_empty(&id_priv->mc_list)) {
mc = container_of(id_priv->mc_list.next,
struct cma_multicast, list);
list_del(&mc->list);
switch (rdma_port_get_link_layer(id_priv->cma_dev->device, id_priv->id.port_num)) {
case IB_LINK_LAYER_INFINIBAND:
ib_sa_free_multicast(mc->multicast.ib);
kfree(mc);
break;
case IB_LINK_LAYER_ETHERNET:
kref_put(&mc->mcref, release_mc);
break;
default:
break;
}
}
}
void rdma_destroy_id(struct rdma_cm_id *id)
{
struct rdma_id_private *id_priv;
enum rdma_cm_state state;
id_priv = container_of(id, struct rdma_id_private, id);
state = cma_exch(id_priv, RDMA_CM_DESTROYING);
cma_cancel_operation(id_priv, state);
/*
* Wait for any active callback to finish. New callbacks will find
* the id_priv state set to destroying and abort.
*/
mutex_lock(&id_priv->handler_mutex);
mutex_unlock(&id_priv->handler_mutex);
if (id_priv->cma_dev) {
switch (rdma_node_get_transport(id_priv->id.device->node_type)) {
case RDMA_TRANSPORT_IB:
if (id_priv->cm_id.ib)
ib_destroy_cm_id(id_priv->cm_id.ib);
break;
case RDMA_TRANSPORT_IWARP:
if (id_priv->cm_id.iw)
iw_destroy_cm_id(id_priv->cm_id.iw);
break;
default:
break;
}
cma_leave_mc_groups(id_priv);
cma_release_dev(id_priv);
}
cma_release_port(id_priv);
cma_deref_id(id_priv);
wait_for_completion(&id_priv->comp);
if (id_priv->internal_id)
cma_deref_id(id_priv->id.context);
kfree(id_priv->id.route.path_rec);
kfree(id_priv);
}
EXPORT_SYMBOL(rdma_destroy_id);
static int cma_rep_recv(struct rdma_id_private *id_priv)
{
int ret;
ret = cma_modify_qp_rtr(id_priv, NULL);
if (ret)
goto reject;
ret = cma_modify_qp_rts(id_priv, NULL);
if (ret)
goto reject;
ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0);
if (ret)
goto reject;
return 0;
reject:
cma_modify_qp_err(id_priv);
ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED,
NULL, 0, NULL, 0);
return ret;
}
static void cma_set_rep_event_data(struct rdma_cm_event *event,
struct ib_cm_rep_event_param *rep_data,
void *private_data)
{
event->param.conn.private_data = private_data;
event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE;
event->param.conn.responder_resources = rep_data->responder_resources;
event->param.conn.initiator_depth = rep_data->initiator_depth;
event->param.conn.flow_control = rep_data->flow_control;
event->param.conn.rnr_retry_count = rep_data->rnr_retry_count;
event->param.conn.srq = rep_data->srq;
event->param.conn.qp_num = rep_data->remote_qpn;
}
static int cma_ib_handler(struct ib_cm_id *cm_id, struct ib_cm_event *ib_event)
{
struct rdma_id_private *id_priv = cm_id->context;
struct rdma_cm_event event;
int ret = 0;
if ((ib_event->event != IB_CM_TIMEWAIT_EXIT &&
cma_disable_callback(id_priv, RDMA_CM_CONNECT)) ||
(ib_event->event == IB_CM_TIMEWAIT_EXIT &&
cma_disable_callback(id_priv, RDMA_CM_DISCONNECT)))
return 0;
memset(&event, 0, sizeof event);
switch (ib_event->event) {
case IB_CM_REQ_ERROR:
case IB_CM_REP_ERROR:
event.event = RDMA_CM_EVENT_UNREACHABLE;
event.status = -ETIMEDOUT;
break;
case IB_CM_REP_RECEIVED:
if (id_priv->id.qp) {
event.status = cma_rep_recv(id_priv);
event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR :
RDMA_CM_EVENT_ESTABLISHED;
} else {
event.event = RDMA_CM_EVENT_CONNECT_RESPONSE;
}
cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd,
ib_event->private_data);
break;
case IB_CM_RTU_RECEIVED:
case IB_CM_USER_ESTABLISHED:
event.event = RDMA_CM_EVENT_ESTABLISHED;
break;
case IB_CM_DREQ_ERROR:
event.status = -ETIMEDOUT; /* fall through */
case IB_CM_DREQ_RECEIVED:
case IB_CM_DREP_RECEIVED:
if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT,
RDMA_CM_DISCONNECT))
goto out;
event.event = RDMA_CM_EVENT_DISCONNECTED;
break;
case IB_CM_TIMEWAIT_EXIT:
event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT;
break;
case IB_CM_MRA_RECEIVED:
/* ignore event */
goto out;
case IB_CM_REJ_RECEIVED:
cma_modify_qp_err(id_priv);
event.status = ib_event->param.rej_rcvd.reason;
event.event = RDMA_CM_EVENT_REJECTED;
event.param.conn.private_data = ib_event->private_data;
event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE;
break;
default:
printk(KERN_ERR "RDMA CMA: unexpected IB CM event: %d\n",
ib_event->event);
goto out;
}
ret = id_priv->id.event_handler(&id_priv->id, &event);
if (ret) {
/* Destroy the CM ID by returning a non-zero value. */
id_priv->cm_id.ib = NULL;
cma_exch(id_priv, RDMA_CM_DESTROYING);
mutex_unlock(&id_priv->handler_mutex);
rdma_destroy_id(&id_priv->id);
return ret;
}
out:
mutex_unlock(&id_priv->handler_mutex);
return ret;
}
static struct rdma_id_private *cma_new_conn_id(struct rdma_cm_id *listen_id,
struct ib_cm_event *ib_event)
{
struct rdma_id_private *id_priv;
struct rdma_cm_id *id;
struct rdma_route *rt;
int ret;
id = rdma_create_id(listen_id->event_handler, listen_id->context,
listen_id->ps, ib_event->param.req_rcvd.qp_type);
if (IS_ERR(id))
return NULL;
id_priv = container_of(id, struct rdma_id_private, id);
if (cma_save_net_info(id, listen_id, ib_event))
goto err;
rt = &id->route;
rt->num_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1;
rt->path_rec = kmalloc(sizeof *rt->path_rec * rt->num_paths,
GFP_KERNEL);
if (!rt->path_rec)
goto err;
rt->path_rec[0] = *ib_event->param.req_rcvd.primary_path;
if (rt->num_paths == 2)
rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path;
if (cma_any_addr(cma_src_addr(id_priv))) {
RDMA/cm: fix loopback address support The RDMA CM is intended to support the use of a loopback address when establishing a connection; however, the behavior of the CM when loopback addresses are used is confusing and does not always work, depending on whether loopback was specified by the server, the client, or both. The defined behavior of rdma_bind_addr is to associate an RDMA device with an rdma_cm_id, as long as the user specified a non- zero address. (ie they weren't just trying to reserve a port) Currently, if the loopback address is passed to rdam_bind_addr, no device is associated with the rdma_cm_id. Fix this. If a loopback address is specified by the client as the destination address for a connection, it will fail to establish a connection. This is true even if the server is listing across all addresses or on the loopback address itself. The issue is that the server tries to translate the IP address carried in the REQ message to a local net_device address, which fails. The translation is not needed in this case, since the REQ carries the actual HW address that should be used. Finally, cleanup loopback support to be more transport neutral. Replace separate calls to get/set the sgid and dgid from the device address to a single call that behaves correctly depending on the format of the device address. And support both IPv4 and IPv6 address formats. Signed-off-by: Sean Hefty <sean.hefty@intel.com> [ Fixed RDS build by s/ib_addr_get/rdma_addr_get/ - Roland ] Signed-off-by: Roland Dreier <rolandd@cisco.com>
2009-11-20 05:26:06 +08:00
rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND;
rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid);
ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey));
RDMA/cm: fix loopback address support The RDMA CM is intended to support the use of a loopback address when establishing a connection; however, the behavior of the CM when loopback addresses are used is confusing and does not always work, depending on whether loopback was specified by the server, the client, or both. The defined behavior of rdma_bind_addr is to associate an RDMA device with an rdma_cm_id, as long as the user specified a non- zero address. (ie they weren't just trying to reserve a port) Currently, if the loopback address is passed to rdam_bind_addr, no device is associated with the rdma_cm_id. Fix this. If a loopback address is specified by the client as the destination address for a connection, it will fail to establish a connection. This is true even if the server is listing across all addresses or on the loopback address itself. The issue is that the server tries to translate the IP address carried in the REQ message to a local net_device address, which fails. The translation is not needed in this case, since the REQ carries the actual HW address that should be used. Finally, cleanup loopback support to be more transport neutral. Replace separate calls to get/set the sgid and dgid from the device address to a single call that behaves correctly depending on the format of the device address. And support both IPv4 and IPv6 address formats. Signed-off-by: Sean Hefty <sean.hefty@intel.com> [ Fixed RDS build by s/ib_addr_get/rdma_addr_get/ - Roland ] Signed-off-by: Roland Dreier <rolandd@cisco.com>
2009-11-20 05:26:06 +08:00
} else {
ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr);
RDMA/cm: fix loopback address support The RDMA CM is intended to support the use of a loopback address when establishing a connection; however, the behavior of the CM when loopback addresses are used is confusing and does not always work, depending on whether loopback was specified by the server, the client, or both. The defined behavior of rdma_bind_addr is to associate an RDMA device with an rdma_cm_id, as long as the user specified a non- zero address. (ie they weren't just trying to reserve a port) Currently, if the loopback address is passed to rdam_bind_addr, no device is associated with the rdma_cm_id. Fix this. If a loopback address is specified by the client as the destination address for a connection, it will fail to establish a connection. This is true even if the server is listing across all addresses or on the loopback address itself. The issue is that the server tries to translate the IP address carried in the REQ message to a local net_device address, which fails. The translation is not needed in this case, since the REQ carries the actual HW address that should be used. Finally, cleanup loopback support to be more transport neutral. Replace separate calls to get/set the sgid and dgid from the device address to a single call that behaves correctly depending on the format of the device address. And support both IPv4 and IPv6 address formats. Signed-off-by: Sean Hefty <sean.hefty@intel.com> [ Fixed RDS build by s/ib_addr_get/rdma_addr_get/ - Roland ] Signed-off-by: Roland Dreier <rolandd@cisco.com>
2009-11-20 05:26:06 +08:00
if (ret)
goto err;
RDMA/cm: fix loopback address support The RDMA CM is intended to support the use of a loopback address when establishing a connection; however, the behavior of the CM when loopback addresses are used is confusing and does not always work, depending on whether loopback was specified by the server, the client, or both. The defined behavior of rdma_bind_addr is to associate an RDMA device with an rdma_cm_id, as long as the user specified a non- zero address. (ie they weren't just trying to reserve a port) Currently, if the loopback address is passed to rdam_bind_addr, no device is associated with the rdma_cm_id. Fix this. If a loopback address is specified by the client as the destination address for a connection, it will fail to establish a connection. This is true even if the server is listing across all addresses or on the loopback address itself. The issue is that the server tries to translate the IP address carried in the REQ message to a local net_device address, which fails. The translation is not needed in this case, since the REQ carries the actual HW address that should be used. Finally, cleanup loopback support to be more transport neutral. Replace separate calls to get/set the sgid and dgid from the device address to a single call that behaves correctly depending on the format of the device address. And support both IPv4 and IPv6 address formats. Signed-off-by: Sean Hefty <sean.hefty@intel.com> [ Fixed RDS build by s/ib_addr_get/rdma_addr_get/ - Roland ] Signed-off-by: Roland Dreier <rolandd@cisco.com>
2009-11-20 05:26:06 +08:00
}
rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid);
id_priv->state = RDMA_CM_CONNECT;
return id_priv;
err:
rdma_destroy_id(id);
return NULL;
}
static struct rdma_id_private *cma_new_udp_id(struct rdma_cm_id *listen_id,
struct ib_cm_event *ib_event)
{
struct rdma_id_private *id_priv;
struct rdma_cm_id *id;
int ret;
id = rdma_create_id(listen_id->event_handler, listen_id->context,
listen_id->ps, IB_QPT_UD);
if (IS_ERR(id))
return NULL;
id_priv = container_of(id, struct rdma_id_private, id);
if (cma_save_net_info(id, listen_id, ib_event))
goto err;
RDMA/cm: fix loopback address support The RDMA CM is intended to support the use of a loopback address when establishing a connection; however, the behavior of the CM when loopback addresses are used is confusing and does not always work, depending on whether loopback was specified by the server, the client, or both. The defined behavior of rdma_bind_addr is to associate an RDMA device with an rdma_cm_id, as long as the user specified a non- zero address. (ie they weren't just trying to reserve a port) Currently, if the loopback address is passed to rdam_bind_addr, no device is associated with the rdma_cm_id. Fix this. If a loopback address is specified by the client as the destination address for a connection, it will fail to establish a connection. This is true even if the server is listing across all addresses or on the loopback address itself. The issue is that the server tries to translate the IP address carried in the REQ message to a local net_device address, which fails. The translation is not needed in this case, since the REQ carries the actual HW address that should be used. Finally, cleanup loopback support to be more transport neutral. Replace separate calls to get/set the sgid and dgid from the device address to a single call that behaves correctly depending on the format of the device address. And support both IPv4 and IPv6 address formats. Signed-off-by: Sean Hefty <sean.hefty@intel.com> [ Fixed RDS build by s/ib_addr_get/rdma_addr_get/ - Roland ] Signed-off-by: Roland Dreier <rolandd@cisco.com>
2009-11-20 05:26:06 +08:00
if (!cma_any_addr((struct sockaddr *) &id->route.addr.src_addr)) {
ret = cma_translate_addr(cma_src_addr(id_priv), &id->route.addr.dev_addr);
RDMA/cm: fix loopback address support The RDMA CM is intended to support the use of a loopback address when establishing a connection; however, the behavior of the CM when loopback addresses are used is confusing and does not always work, depending on whether loopback was specified by the server, the client, or both. The defined behavior of rdma_bind_addr is to associate an RDMA device with an rdma_cm_id, as long as the user specified a non- zero address. (ie they weren't just trying to reserve a port) Currently, if the loopback address is passed to rdam_bind_addr, no device is associated with the rdma_cm_id. Fix this. If a loopback address is specified by the client as the destination address for a connection, it will fail to establish a connection. This is true even if the server is listing across all addresses or on the loopback address itself. The issue is that the server tries to translate the IP address carried in the REQ message to a local net_device address, which fails. The translation is not needed in this case, since the REQ carries the actual HW address that should be used. Finally, cleanup loopback support to be more transport neutral. Replace separate calls to get/set the sgid and dgid from the device address to a single call that behaves correctly depending on the format of the device address. And support both IPv4 and IPv6 address formats. Signed-off-by: Sean Hefty <sean.hefty@intel.com> [ Fixed RDS build by s/ib_addr_get/rdma_addr_get/ - Roland ] Signed-off-by: Roland Dreier <rolandd@cisco.com>
2009-11-20 05:26:06 +08:00
if (ret)
goto err;
}
id_priv->state = RDMA_CM_CONNECT;
return id_priv;
err:
rdma_destroy_id(id);
return NULL;
}
static void cma_set_req_event_data(struct rdma_cm_event *event,
struct ib_cm_req_event_param *req_data,
void *private_data, int offset)
{
event->param.conn.private_data = private_data + offset;
event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset;
event->param.conn.responder_resources = req_data->responder_resources;
event->param.conn.initiator_depth = req_data->initiator_depth;
event->param.conn.flow_control = req_data->flow_control;
event->param.conn.retry_count = req_data->retry_count;
event->param.conn.rnr_retry_count = req_data->rnr_retry_count;
event->param.conn.srq = req_data->srq;
event->param.conn.qp_num = req_data->remote_qpn;
}
static int cma_check_req_qp_type(struct rdma_cm_id *id, struct ib_cm_event *ib_event)
{
return (((ib_event->event == IB_CM_REQ_RECEIVED) &&
(ib_event->param.req_rcvd.qp_type == id->qp_type)) ||
((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) &&
(id->qp_type == IB_QPT_UD)) ||
(!id->qp_type));
}
static int cma_req_handler(struct ib_cm_id *cm_id, struct ib_cm_event *ib_event)
{
struct rdma_id_private *listen_id, *conn_id;
struct rdma_cm_event event;
int offset, ret;
IB/core: Ethernet L2 attributes in verbs/cm structures This patch add the support for Ethernet L2 attributes in the verbs/cm/cma structures. When dealing with L2 Ethernet, we should use smac, dmac, vlan ID and priority in a similar manner that the IB L2 (and the L4 PKEY) attributes are used. Thus, those attributes were added to the following structures: * ib_ah_attr - added dmac * ib_qp_attr - added smac and vlan_id, (sl remains vlan priority) * ib_wc - added smac, vlan_id * ib_sa_path_rec - added smac, dmac, vlan_id * cm_av - added smac and vlan_id For the path record structure, extra care was taken to avoid the new fields when packing it into wire format, so we don't break the IB CM and SA wire protocol. On the active side, the CM fills. its internal structures from the path provided by the ULP. We add there taking the ETH L2 attributes and placing them into the CM Address Handle (struct cm_av). On the passive side, the CM fills its internal structures from the WC associated with the REQ message. We add there taking the ETH L2 attributes from the WC. When the HW driver provides the required ETH L2 attributes in the WC, they set the IB_WC_WITH_SMAC and IB_WC_WITH_VLAN flags. The IB core code checks for the presence of these flags, and in their absence does address resolution from the ib_init_ah_from_wc() helper function. ib_modify_qp_is_ok is also updated to consider the link layer. Some parameters are mandatory for Ethernet link layer, while they are irrelevant for IB. Vendor drivers are modified to support the new function signature. Signed-off-by: Matan Barak <matanb@mellanox.com> Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-12-13 00:03:11 +08:00
u8 smac[ETH_ALEN];
u8 alt_smac[ETH_ALEN];
u8 *psmac = smac;
u8 *palt_smac = alt_smac;
int is_iboe = ((rdma_node_get_transport(cm_id->device->node_type) ==
RDMA_TRANSPORT_IB) &&
(rdma_port_get_link_layer(cm_id->device,
ib_event->param.req_rcvd.port) ==
IB_LINK_LAYER_ETHERNET));
listen_id = cm_id->context;
if (!cma_check_req_qp_type(&listen_id->id, ib_event))
return -EINVAL;
if (cma_disable_callback(listen_id, RDMA_CM_LISTEN))
return -ECONNABORTED;
memset(&event, 0, sizeof event);
offset = cma_user_data_offset(listen_id);
event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) {
conn_id = cma_new_udp_id(&listen_id->id, ib_event);
event.param.ud.private_data = ib_event->private_data + offset;
event.param.ud.private_data_len =
IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset;
} else {
conn_id = cma_new_conn_id(&listen_id->id, ib_event);
cma_set_req_event_data(&event, &ib_event->param.req_rcvd,
ib_event->private_data, offset);
}
if (!conn_id) {
ret = -ENOMEM;
RDMA/cma: Fix lockdep false positive recursive locking The following lockdep problem was reported by Or Gerlitz <ogerlitz@mellanox.com>: [ INFO: possible recursive locking detected ] 3.3.0-32035-g1b2649e-dirty #4 Not tainted --------------------------------------------- kworker/5:1/418 is trying to acquire lock: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0138a41>] rdma_destroy_i d+0x33/0x1f0 [rdma_cm] but task is already holding lock: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0135130>] cma_disable_ca llback+0x24/0x45 [rdma_cm] other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&id_priv->handler_mutex); lock(&id_priv->handler_mutex); *** DEADLOCK *** May be due to missing lock nesting notation 3 locks held by kworker/5:1/418: #0: (ib_cm){.+.+.+}, at: [<ffffffff81042ac1>] process_one_work+0x210/0x4a 6 #1: ((&(&work->work)->work)){+.+.+.}, at: [<ffffffff81042ac1>] process_on e_work+0x210/0x4a6 #2: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0135130>] cma_disab le_callback+0x24/0x45 [rdma_cm] stack backtrace: Pid: 418, comm: kworker/5:1 Not tainted 3.3.0-32035-g1b2649e-dirty #4 Call Trace: [<ffffffff8102b0fb>] ? console_unlock+0x1f4/0x204 [<ffffffff81068771>] __lock_acquire+0x16b5/0x174e [<ffffffff8106461f>] ? save_trace+0x3f/0xb3 [<ffffffff810688fa>] lock_acquire+0xf0/0x116 [<ffffffffa0138a41>] ? rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffff81364351>] mutex_lock_nested+0x64/0x2ce [<ffffffffa0138a41>] ? rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffff81065a78>] ? trace_hardirqs_on_caller+0x11e/0x155 [<ffffffff81065abc>] ? trace_hardirqs_on+0xd/0xf [<ffffffffa0138a41>] rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffffa0139c02>] cma_req_handler+0x418/0x644 [rdma_cm] [<ffffffffa012ee88>] cm_process_work+0x32/0x119 [ib_cm] [<ffffffffa0130299>] cm_req_handler+0x928/0x982 [ib_cm] [<ffffffffa01302f3>] ? cm_req_handler+0x982/0x982 [ib_cm] [<ffffffffa0130326>] cm_work_handler+0x33/0xfe5 [ib_cm] [<ffffffff81065a78>] ? trace_hardirqs_on_caller+0x11e/0x155 [<ffffffffa01302f3>] ? cm_req_handler+0x982/0x982 [ib_cm] [<ffffffff81042b6e>] process_one_work+0x2bd/0x4a6 [<ffffffff81042ac1>] ? process_one_work+0x210/0x4a6 [<ffffffff813669f3>] ? _raw_spin_unlock_irq+0x2b/0x40 [<ffffffff8104316e>] worker_thread+0x1d6/0x350 [<ffffffff81042f98>] ? rescuer_thread+0x241/0x241 [<ffffffff81046a32>] kthread+0x84/0x8c [<ffffffff8136e854>] kernel_thread_helper+0x4/0x10 [<ffffffff81366d59>] ? retint_restore_args+0xe/0xe [<ffffffff810469ae>] ? __init_kthread_worker+0x56/0x56 [<ffffffff8136e850>] ? gs_change+0xb/0xb The actual locking is fine, since we're dealing with different locks, but from the same lock class. cma_disable_callback() acquires the listening id mutex, whereas rdma_destroy_id() acquires the mutex for the new connection id. To fix this, delay the call to rdma_destroy_id() until we've released the listening id mutex. Signed-off-by: Sean Hefty <sean.hefty@intel.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2012-04-26 01:42:35 +08:00
goto err1;
}
mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
ret = cma_acquire_dev(conn_id, listen_id);
if (ret)
RDMA/cma: Fix lockdep false positive recursive locking The following lockdep problem was reported by Or Gerlitz <ogerlitz@mellanox.com>: [ INFO: possible recursive locking detected ] 3.3.0-32035-g1b2649e-dirty #4 Not tainted --------------------------------------------- kworker/5:1/418 is trying to acquire lock: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0138a41>] rdma_destroy_i d+0x33/0x1f0 [rdma_cm] but task is already holding lock: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0135130>] cma_disable_ca llback+0x24/0x45 [rdma_cm] other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&id_priv->handler_mutex); lock(&id_priv->handler_mutex); *** DEADLOCK *** May be due to missing lock nesting notation 3 locks held by kworker/5:1/418: #0: (ib_cm){.+.+.+}, at: [<ffffffff81042ac1>] process_one_work+0x210/0x4a 6 #1: ((&(&work->work)->work)){+.+.+.}, at: [<ffffffff81042ac1>] process_on e_work+0x210/0x4a6 #2: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0135130>] cma_disab le_callback+0x24/0x45 [rdma_cm] stack backtrace: Pid: 418, comm: kworker/5:1 Not tainted 3.3.0-32035-g1b2649e-dirty #4 Call Trace: [<ffffffff8102b0fb>] ? console_unlock+0x1f4/0x204 [<ffffffff81068771>] __lock_acquire+0x16b5/0x174e [<ffffffff8106461f>] ? save_trace+0x3f/0xb3 [<ffffffff810688fa>] lock_acquire+0xf0/0x116 [<ffffffffa0138a41>] ? rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffff81364351>] mutex_lock_nested+0x64/0x2ce [<ffffffffa0138a41>] ? rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffff81065a78>] ? trace_hardirqs_on_caller+0x11e/0x155 [<ffffffff81065abc>] ? trace_hardirqs_on+0xd/0xf [<ffffffffa0138a41>] rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffffa0139c02>] cma_req_handler+0x418/0x644 [rdma_cm] [<ffffffffa012ee88>] cm_process_work+0x32/0x119 [ib_cm] [<ffffffffa0130299>] cm_req_handler+0x928/0x982 [ib_cm] [<ffffffffa01302f3>] ? cm_req_handler+0x982/0x982 [ib_cm] [<ffffffffa0130326>] cm_work_handler+0x33/0xfe5 [ib_cm] [<ffffffff81065a78>] ? trace_hardirqs_on_caller+0x11e/0x155 [<ffffffffa01302f3>] ? cm_req_handler+0x982/0x982 [ib_cm] [<ffffffff81042b6e>] process_one_work+0x2bd/0x4a6 [<ffffffff81042ac1>] ? process_one_work+0x210/0x4a6 [<ffffffff813669f3>] ? _raw_spin_unlock_irq+0x2b/0x40 [<ffffffff8104316e>] worker_thread+0x1d6/0x350 [<ffffffff81042f98>] ? rescuer_thread+0x241/0x241 [<ffffffff81046a32>] kthread+0x84/0x8c [<ffffffff8136e854>] kernel_thread_helper+0x4/0x10 [<ffffffff81366d59>] ? retint_restore_args+0xe/0xe [<ffffffff810469ae>] ? __init_kthread_worker+0x56/0x56 [<ffffffff8136e850>] ? gs_change+0xb/0xb The actual locking is fine, since we're dealing with different locks, but from the same lock class. cma_disable_callback() acquires the listening id mutex, whereas rdma_destroy_id() acquires the mutex for the new connection id. To fix this, delay the call to rdma_destroy_id() until we've released the listening id mutex. Signed-off-by: Sean Hefty <sean.hefty@intel.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2012-04-26 01:42:35 +08:00
goto err2;
conn_id->cm_id.ib = cm_id;
cm_id->context = conn_id;
cm_id->cm_handler = cma_ib_handler;
RDMA/cma: Fix crash in request handlers Doug Ledford and Red Hat reported a crash when running the rdma_cm on a real-time OS. The crash has the following call trace: cm_process_work cma_req_handler cma_disable_callback rdma_create_id kzalloc init_completion cma_get_net_info cma_save_net_info cma_any_addr cma_zero_addr rdma_translate_ip rdma_copy_addr cma_acquire_dev rdma_addr_get_sgid ib_find_cached_gid cma_attach_to_dev ucma_event_handler kzalloc ib_copy_ah_attr_to_user cma_comp [ preempted ] cma_write copy_from_user ucma_destroy_id copy_from_user _ucma_find_context ucma_put_ctx ucma_free_ctx rdma_destroy_id cma_exch cma_cancel_operation rdma_node_get_transport rt_mutex_slowunlock bad_area_nosemaphore oops_enter They were able to reproduce the crash multiple times with the following details: Crash seems to always happen on the: mutex_unlock(&conn_id->handler_mutex); as conn_id looks to have been freed during this code path. An examination of the code shows that a race exists in the request handlers. When a new connection request is received, the rdma_cm allocates a new connection identifier. This identifier has a single reference count on it. If a user calls rdma_destroy_id() from another thread after receiving a callback, rdma_destroy_id will proceed to destroy the id and free the associated memory. However, the request handlers may still be in the process of running. When control returns to the request handlers, they can attempt to access the newly created identifiers. Fix this by holding a reference on the newly created rdma_cm_id until the request handler is through accessing it. Signed-off-by: Sean Hefty <sean.hefty@intel.com> Acked-by: Doug Ledford <dledford@redhat.com> Cc: <stable@kernel.org> Signed-off-by: Roland Dreier <roland@purestorage.com>
2011-02-24 00:11:32 +08:00
/*
* Protect against the user destroying conn_id from another thread
* until we're done accessing it.
*/
atomic_inc(&conn_id->refcount);
ret = conn_id->id.event_handler(&conn_id->id, &event);
RDMA/cma: Fix lockdep false positive recursive locking The following lockdep problem was reported by Or Gerlitz <ogerlitz@mellanox.com>: [ INFO: possible recursive locking detected ] 3.3.0-32035-g1b2649e-dirty #4 Not tainted --------------------------------------------- kworker/5:1/418 is trying to acquire lock: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0138a41>] rdma_destroy_i d+0x33/0x1f0 [rdma_cm] but task is already holding lock: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0135130>] cma_disable_ca llback+0x24/0x45 [rdma_cm] other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&id_priv->handler_mutex); lock(&id_priv->handler_mutex); *** DEADLOCK *** May be due to missing lock nesting notation 3 locks held by kworker/5:1/418: #0: (ib_cm){.+.+.+}, at: [<ffffffff81042ac1>] process_one_work+0x210/0x4a 6 #1: ((&(&work->work)->work)){+.+.+.}, at: [<ffffffff81042ac1>] process_on e_work+0x210/0x4a6 #2: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0135130>] cma_disab le_callback+0x24/0x45 [rdma_cm] stack backtrace: Pid: 418, comm: kworker/5:1 Not tainted 3.3.0-32035-g1b2649e-dirty #4 Call Trace: [<ffffffff8102b0fb>] ? console_unlock+0x1f4/0x204 [<ffffffff81068771>] __lock_acquire+0x16b5/0x174e [<ffffffff8106461f>] ? save_trace+0x3f/0xb3 [<ffffffff810688fa>] lock_acquire+0xf0/0x116 [<ffffffffa0138a41>] ? rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffff81364351>] mutex_lock_nested+0x64/0x2ce [<ffffffffa0138a41>] ? rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffff81065a78>] ? trace_hardirqs_on_caller+0x11e/0x155 [<ffffffff81065abc>] ? trace_hardirqs_on+0xd/0xf [<ffffffffa0138a41>] rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffffa0139c02>] cma_req_handler+0x418/0x644 [rdma_cm] [<ffffffffa012ee88>] cm_process_work+0x32/0x119 [ib_cm] [<ffffffffa0130299>] cm_req_handler+0x928/0x982 [ib_cm] [<ffffffffa01302f3>] ? cm_req_handler+0x982/0x982 [ib_cm] [<ffffffffa0130326>] cm_work_handler+0x33/0xfe5 [ib_cm] [<ffffffff81065a78>] ? trace_hardirqs_on_caller+0x11e/0x155 [<ffffffffa01302f3>] ? cm_req_handler+0x982/0x982 [ib_cm] [<ffffffff81042b6e>] process_one_work+0x2bd/0x4a6 [<ffffffff81042ac1>] ? process_one_work+0x210/0x4a6 [<ffffffff813669f3>] ? _raw_spin_unlock_irq+0x2b/0x40 [<ffffffff8104316e>] worker_thread+0x1d6/0x350 [<ffffffff81042f98>] ? rescuer_thread+0x241/0x241 [<ffffffff81046a32>] kthread+0x84/0x8c [<ffffffff8136e854>] kernel_thread_helper+0x4/0x10 [<ffffffff81366d59>] ? retint_restore_args+0xe/0xe [<ffffffff810469ae>] ? __init_kthread_worker+0x56/0x56 [<ffffffff8136e850>] ? gs_change+0xb/0xb The actual locking is fine, since we're dealing with different locks, but from the same lock class. cma_disable_callback() acquires the listening id mutex, whereas rdma_destroy_id() acquires the mutex for the new connection id. To fix this, delay the call to rdma_destroy_id() until we've released the listening id mutex. Signed-off-by: Sean Hefty <sean.hefty@intel.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2012-04-26 01:42:35 +08:00
if (ret)
goto err3;
IB/core: Ethernet L2 attributes in verbs/cm structures This patch add the support for Ethernet L2 attributes in the verbs/cm/cma structures. When dealing with L2 Ethernet, we should use smac, dmac, vlan ID and priority in a similar manner that the IB L2 (and the L4 PKEY) attributes are used. Thus, those attributes were added to the following structures: * ib_ah_attr - added dmac * ib_qp_attr - added smac and vlan_id, (sl remains vlan priority) * ib_wc - added smac, vlan_id * ib_sa_path_rec - added smac, dmac, vlan_id * cm_av - added smac and vlan_id For the path record structure, extra care was taken to avoid the new fields when packing it into wire format, so we don't break the IB CM and SA wire protocol. On the active side, the CM fills. its internal structures from the path provided by the ULP. We add there taking the ETH L2 attributes and placing them into the CM Address Handle (struct cm_av). On the passive side, the CM fills its internal structures from the WC associated with the REQ message. We add there taking the ETH L2 attributes from the WC. When the HW driver provides the required ETH L2 attributes in the WC, they set the IB_WC_WITH_SMAC and IB_WC_WITH_VLAN flags. The IB core code checks for the presence of these flags, and in their absence does address resolution from the ib_init_ah_from_wc() helper function. ib_modify_qp_is_ok is also updated to consider the link layer. Some parameters are mandatory for Ethernet link layer, while they are irrelevant for IB. Vendor drivers are modified to support the new function signature. Signed-off-by: Matan Barak <matanb@mellanox.com> Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-12-13 00:03:11 +08:00
if (is_iboe) {
if (ib_event->param.req_rcvd.primary_path != NULL)
rdma_addr_find_smac_by_sgid(
&ib_event->param.req_rcvd.primary_path->sgid,
psmac, NULL);
else
psmac = NULL;
if (ib_event->param.req_rcvd.alternate_path != NULL)
rdma_addr_find_smac_by_sgid(
&ib_event->param.req_rcvd.alternate_path->sgid,
palt_smac, NULL);
else
palt_smac = NULL;
}
RDMA/cma: Fix lockdep false positive recursive locking The following lockdep problem was reported by Or Gerlitz <ogerlitz@mellanox.com>: [ INFO: possible recursive locking detected ] 3.3.0-32035-g1b2649e-dirty #4 Not tainted --------------------------------------------- kworker/5:1/418 is trying to acquire lock: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0138a41>] rdma_destroy_i d+0x33/0x1f0 [rdma_cm] but task is already holding lock: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0135130>] cma_disable_ca llback+0x24/0x45 [rdma_cm] other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&id_priv->handler_mutex); lock(&id_priv->handler_mutex); *** DEADLOCK *** May be due to missing lock nesting notation 3 locks held by kworker/5:1/418: #0: (ib_cm){.+.+.+}, at: [<ffffffff81042ac1>] process_one_work+0x210/0x4a 6 #1: ((&(&work->work)->work)){+.+.+.}, at: [<ffffffff81042ac1>] process_on e_work+0x210/0x4a6 #2: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0135130>] cma_disab le_callback+0x24/0x45 [rdma_cm] stack backtrace: Pid: 418, comm: kworker/5:1 Not tainted 3.3.0-32035-g1b2649e-dirty #4 Call Trace: [<ffffffff8102b0fb>] ? console_unlock+0x1f4/0x204 [<ffffffff81068771>] __lock_acquire+0x16b5/0x174e [<ffffffff8106461f>] ? save_trace+0x3f/0xb3 [<ffffffff810688fa>] lock_acquire+0xf0/0x116 [<ffffffffa0138a41>] ? rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffff81364351>] mutex_lock_nested+0x64/0x2ce [<ffffffffa0138a41>] ? rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffff81065a78>] ? trace_hardirqs_on_caller+0x11e/0x155 [<ffffffff81065abc>] ? trace_hardirqs_on+0xd/0xf [<ffffffffa0138a41>] rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffffa0139c02>] cma_req_handler+0x418/0x644 [rdma_cm] [<ffffffffa012ee88>] cm_process_work+0x32/0x119 [ib_cm] [<ffffffffa0130299>] cm_req_handler+0x928/0x982 [ib_cm] [<ffffffffa01302f3>] ? cm_req_handler+0x982/0x982 [ib_cm] [<ffffffffa0130326>] cm_work_handler+0x33/0xfe5 [ib_cm] [<ffffffff81065a78>] ? trace_hardirqs_on_caller+0x11e/0x155 [<ffffffffa01302f3>] ? cm_req_handler+0x982/0x982 [ib_cm] [<ffffffff81042b6e>] process_one_work+0x2bd/0x4a6 [<ffffffff81042ac1>] ? process_one_work+0x210/0x4a6 [<ffffffff813669f3>] ? _raw_spin_unlock_irq+0x2b/0x40 [<ffffffff8104316e>] worker_thread+0x1d6/0x350 [<ffffffff81042f98>] ? rescuer_thread+0x241/0x241 [<ffffffff81046a32>] kthread+0x84/0x8c [<ffffffff8136e854>] kernel_thread_helper+0x4/0x10 [<ffffffff81366d59>] ? retint_restore_args+0xe/0xe [<ffffffff810469ae>] ? __init_kthread_worker+0x56/0x56 [<ffffffff8136e850>] ? gs_change+0xb/0xb The actual locking is fine, since we're dealing with different locks, but from the same lock class. cma_disable_callback() acquires the listening id mutex, whereas rdma_destroy_id() acquires the mutex for the new connection id. To fix this, delay the call to rdma_destroy_id() until we've released the listening id mutex. Signed-off-by: Sean Hefty <sean.hefty@intel.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2012-04-26 01:42:35 +08:00
/*
* Acquire mutex to prevent user executing rdma_destroy_id()
* while we're accessing the cm_id.
*/
mutex_lock(&lock);
IB/core: Ethernet L2 attributes in verbs/cm structures This patch add the support for Ethernet L2 attributes in the verbs/cm/cma structures. When dealing with L2 Ethernet, we should use smac, dmac, vlan ID and priority in a similar manner that the IB L2 (and the L4 PKEY) attributes are used. Thus, those attributes were added to the following structures: * ib_ah_attr - added dmac * ib_qp_attr - added smac and vlan_id, (sl remains vlan priority) * ib_wc - added smac, vlan_id * ib_sa_path_rec - added smac, dmac, vlan_id * cm_av - added smac and vlan_id For the path record structure, extra care was taken to avoid the new fields when packing it into wire format, so we don't break the IB CM and SA wire protocol. On the active side, the CM fills. its internal structures from the path provided by the ULP. We add there taking the ETH L2 attributes and placing them into the CM Address Handle (struct cm_av). On the passive side, the CM fills its internal structures from the WC associated with the REQ message. We add there taking the ETH L2 attributes from the WC. When the HW driver provides the required ETH L2 attributes in the WC, they set the IB_WC_WITH_SMAC and IB_WC_WITH_VLAN flags. The IB core code checks for the presence of these flags, and in their absence does address resolution from the ib_init_ah_from_wc() helper function. ib_modify_qp_is_ok is also updated to consider the link layer. Some parameters are mandatory for Ethernet link layer, while they are irrelevant for IB. Vendor drivers are modified to support the new function signature. Signed-off-by: Matan Barak <matanb@mellanox.com> Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-12-13 00:03:11 +08:00
if (is_iboe)
ib_update_cm_av(cm_id, psmac, palt_smac);
if (cma_comp(conn_id, RDMA_CM_CONNECT) &&
(conn_id->id.qp_type != IB_QPT_UD))
RDMA/cma: Fix lockdep false positive recursive locking The following lockdep problem was reported by Or Gerlitz <ogerlitz@mellanox.com>: [ INFO: possible recursive locking detected ] 3.3.0-32035-g1b2649e-dirty #4 Not tainted --------------------------------------------- kworker/5:1/418 is trying to acquire lock: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0138a41>] rdma_destroy_i d+0x33/0x1f0 [rdma_cm] but task is already holding lock: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0135130>] cma_disable_ca llback+0x24/0x45 [rdma_cm] other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&id_priv->handler_mutex); lock(&id_priv->handler_mutex); *** DEADLOCK *** May be due to missing lock nesting notation 3 locks held by kworker/5:1/418: #0: (ib_cm){.+.+.+}, at: [<ffffffff81042ac1>] process_one_work+0x210/0x4a 6 #1: ((&(&work->work)->work)){+.+.+.}, at: [<ffffffff81042ac1>] process_on e_work+0x210/0x4a6 #2: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0135130>] cma_disab le_callback+0x24/0x45 [rdma_cm] stack backtrace: Pid: 418, comm: kworker/5:1 Not tainted 3.3.0-32035-g1b2649e-dirty #4 Call Trace: [<ffffffff8102b0fb>] ? console_unlock+0x1f4/0x204 [<ffffffff81068771>] __lock_acquire+0x16b5/0x174e [<ffffffff8106461f>] ? save_trace+0x3f/0xb3 [<ffffffff810688fa>] lock_acquire+0xf0/0x116 [<ffffffffa0138a41>] ? rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffff81364351>] mutex_lock_nested+0x64/0x2ce [<ffffffffa0138a41>] ? rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffff81065a78>] ? trace_hardirqs_on_caller+0x11e/0x155 [<ffffffff81065abc>] ? trace_hardirqs_on+0xd/0xf [<ffffffffa0138a41>] rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffffa0139c02>] cma_req_handler+0x418/0x644 [rdma_cm] [<ffffffffa012ee88>] cm_process_work+0x32/0x119 [ib_cm] [<ffffffffa0130299>] cm_req_handler+0x928/0x982 [ib_cm] [<ffffffffa01302f3>] ? cm_req_handler+0x982/0x982 [ib_cm] [<ffffffffa0130326>] cm_work_handler+0x33/0xfe5 [ib_cm] [<ffffffff81065a78>] ? trace_hardirqs_on_caller+0x11e/0x155 [<ffffffffa01302f3>] ? cm_req_handler+0x982/0x982 [ib_cm] [<ffffffff81042b6e>] process_one_work+0x2bd/0x4a6 [<ffffffff81042ac1>] ? process_one_work+0x210/0x4a6 [<ffffffff813669f3>] ? _raw_spin_unlock_irq+0x2b/0x40 [<ffffffff8104316e>] worker_thread+0x1d6/0x350 [<ffffffff81042f98>] ? rescuer_thread+0x241/0x241 [<ffffffff81046a32>] kthread+0x84/0x8c [<ffffffff8136e854>] kernel_thread_helper+0x4/0x10 [<ffffffff81366d59>] ? retint_restore_args+0xe/0xe [<ffffffff810469ae>] ? __init_kthread_worker+0x56/0x56 [<ffffffff8136e850>] ? gs_change+0xb/0xb The actual locking is fine, since we're dealing with different locks, but from the same lock class. cma_disable_callback() acquires the listening id mutex, whereas rdma_destroy_id() acquires the mutex for the new connection id. To fix this, delay the call to rdma_destroy_id() until we've released the listening id mutex. Signed-off-by: Sean Hefty <sean.hefty@intel.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2012-04-26 01:42:35 +08:00
ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
mutex_unlock(&lock);
mutex_unlock(&conn_id->handler_mutex);
mutex_unlock(&listen_id->handler_mutex);
RDMA/cma: Fix crash in request handlers Doug Ledford and Red Hat reported a crash when running the rdma_cm on a real-time OS. The crash has the following call trace: cm_process_work cma_req_handler cma_disable_callback rdma_create_id kzalloc init_completion cma_get_net_info cma_save_net_info cma_any_addr cma_zero_addr rdma_translate_ip rdma_copy_addr cma_acquire_dev rdma_addr_get_sgid ib_find_cached_gid cma_attach_to_dev ucma_event_handler kzalloc ib_copy_ah_attr_to_user cma_comp [ preempted ] cma_write copy_from_user ucma_destroy_id copy_from_user _ucma_find_context ucma_put_ctx ucma_free_ctx rdma_destroy_id cma_exch cma_cancel_operation rdma_node_get_transport rt_mutex_slowunlock bad_area_nosemaphore oops_enter They were able to reproduce the crash multiple times with the following details: Crash seems to always happen on the: mutex_unlock(&conn_id->handler_mutex); as conn_id looks to have been freed during this code path. An examination of the code shows that a race exists in the request handlers. When a new connection request is received, the rdma_cm allocates a new connection identifier. This identifier has a single reference count on it. If a user calls rdma_destroy_id() from another thread after receiving a callback, rdma_destroy_id will proceed to destroy the id and free the associated memory. However, the request handlers may still be in the process of running. When control returns to the request handlers, they can attempt to access the newly created identifiers. Fix this by holding a reference on the newly created rdma_cm_id until the request handler is through accessing it. Signed-off-by: Sean Hefty <sean.hefty@intel.com> Acked-by: Doug Ledford <dledford@redhat.com> Cc: <stable@kernel.org> Signed-off-by: Roland Dreier <roland@purestorage.com>
2011-02-24 00:11:32 +08:00
cma_deref_id(conn_id);
RDMA/cma: Fix lockdep false positive recursive locking The following lockdep problem was reported by Or Gerlitz <ogerlitz@mellanox.com>: [ INFO: possible recursive locking detected ] 3.3.0-32035-g1b2649e-dirty #4 Not tainted --------------------------------------------- kworker/5:1/418 is trying to acquire lock: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0138a41>] rdma_destroy_i d+0x33/0x1f0 [rdma_cm] but task is already holding lock: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0135130>] cma_disable_ca llback+0x24/0x45 [rdma_cm] other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&id_priv->handler_mutex); lock(&id_priv->handler_mutex); *** DEADLOCK *** May be due to missing lock nesting notation 3 locks held by kworker/5:1/418: #0: (ib_cm){.+.+.+}, at: [<ffffffff81042ac1>] process_one_work+0x210/0x4a 6 #1: ((&(&work->work)->work)){+.+.+.}, at: [<ffffffff81042ac1>] process_on e_work+0x210/0x4a6 #2: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0135130>] cma_disab le_callback+0x24/0x45 [rdma_cm] stack backtrace: Pid: 418, comm: kworker/5:1 Not tainted 3.3.0-32035-g1b2649e-dirty #4 Call Trace: [<ffffffff8102b0fb>] ? console_unlock+0x1f4/0x204 [<ffffffff81068771>] __lock_acquire+0x16b5/0x174e [<ffffffff8106461f>] ? save_trace+0x3f/0xb3 [<ffffffff810688fa>] lock_acquire+0xf0/0x116 [<ffffffffa0138a41>] ? rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffff81364351>] mutex_lock_nested+0x64/0x2ce [<ffffffffa0138a41>] ? rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffff81065a78>] ? trace_hardirqs_on_caller+0x11e/0x155 [<ffffffff81065abc>] ? trace_hardirqs_on+0xd/0xf [<ffffffffa0138a41>] rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffffa0139c02>] cma_req_handler+0x418/0x644 [rdma_cm] [<ffffffffa012ee88>] cm_process_work+0x32/0x119 [ib_cm] [<ffffffffa0130299>] cm_req_handler+0x928/0x982 [ib_cm] [<ffffffffa01302f3>] ? cm_req_handler+0x982/0x982 [ib_cm] [<ffffffffa0130326>] cm_work_handler+0x33/0xfe5 [ib_cm] [<ffffffff81065a78>] ? trace_hardirqs_on_caller+0x11e/0x155 [<ffffffffa01302f3>] ? cm_req_handler+0x982/0x982 [ib_cm] [<ffffffff81042b6e>] process_one_work+0x2bd/0x4a6 [<ffffffff81042ac1>] ? process_one_work+0x210/0x4a6 [<ffffffff813669f3>] ? _raw_spin_unlock_irq+0x2b/0x40 [<ffffffff8104316e>] worker_thread+0x1d6/0x350 [<ffffffff81042f98>] ? rescuer_thread+0x241/0x241 [<ffffffff81046a32>] kthread+0x84/0x8c [<ffffffff8136e854>] kernel_thread_helper+0x4/0x10 [<ffffffff81366d59>] ? retint_restore_args+0xe/0xe [<ffffffff810469ae>] ? __init_kthread_worker+0x56/0x56 [<ffffffff8136e850>] ? gs_change+0xb/0xb The actual locking is fine, since we're dealing with different locks, but from the same lock class. cma_disable_callback() acquires the listening id mutex, whereas rdma_destroy_id() acquires the mutex for the new connection id. To fix this, delay the call to rdma_destroy_id() until we've released the listening id mutex. Signed-off-by: Sean Hefty <sean.hefty@intel.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2012-04-26 01:42:35 +08:00
return 0;
RDMA/cma: Fix lockdep false positive recursive locking The following lockdep problem was reported by Or Gerlitz <ogerlitz@mellanox.com>: [ INFO: possible recursive locking detected ] 3.3.0-32035-g1b2649e-dirty #4 Not tainted --------------------------------------------- kworker/5:1/418 is trying to acquire lock: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0138a41>] rdma_destroy_i d+0x33/0x1f0 [rdma_cm] but task is already holding lock: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0135130>] cma_disable_ca llback+0x24/0x45 [rdma_cm] other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&id_priv->handler_mutex); lock(&id_priv->handler_mutex); *** DEADLOCK *** May be due to missing lock nesting notation 3 locks held by kworker/5:1/418: #0: (ib_cm){.+.+.+}, at: [<ffffffff81042ac1>] process_one_work+0x210/0x4a 6 #1: ((&(&work->work)->work)){+.+.+.}, at: [<ffffffff81042ac1>] process_on e_work+0x210/0x4a6 #2: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0135130>] cma_disab le_callback+0x24/0x45 [rdma_cm] stack backtrace: Pid: 418, comm: kworker/5:1 Not tainted 3.3.0-32035-g1b2649e-dirty #4 Call Trace: [<ffffffff8102b0fb>] ? console_unlock+0x1f4/0x204 [<ffffffff81068771>] __lock_acquire+0x16b5/0x174e [<ffffffff8106461f>] ? save_trace+0x3f/0xb3 [<ffffffff810688fa>] lock_acquire+0xf0/0x116 [<ffffffffa0138a41>] ? rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffff81364351>] mutex_lock_nested+0x64/0x2ce [<ffffffffa0138a41>] ? rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffff81065a78>] ? trace_hardirqs_on_caller+0x11e/0x155 [<ffffffff81065abc>] ? trace_hardirqs_on+0xd/0xf [<ffffffffa0138a41>] rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffffa0139c02>] cma_req_handler+0x418/0x644 [rdma_cm] [<ffffffffa012ee88>] cm_process_work+0x32/0x119 [ib_cm] [<ffffffffa0130299>] cm_req_handler+0x928/0x982 [ib_cm] [<ffffffffa01302f3>] ? cm_req_handler+0x982/0x982 [ib_cm] [<ffffffffa0130326>] cm_work_handler+0x33/0xfe5 [ib_cm] [<ffffffff81065a78>] ? trace_hardirqs_on_caller+0x11e/0x155 [<ffffffffa01302f3>] ? cm_req_handler+0x982/0x982 [ib_cm] [<ffffffff81042b6e>] process_one_work+0x2bd/0x4a6 [<ffffffff81042ac1>] ? process_one_work+0x210/0x4a6 [<ffffffff813669f3>] ? _raw_spin_unlock_irq+0x2b/0x40 [<ffffffff8104316e>] worker_thread+0x1d6/0x350 [<ffffffff81042f98>] ? rescuer_thread+0x241/0x241 [<ffffffff81046a32>] kthread+0x84/0x8c [<ffffffff8136e854>] kernel_thread_helper+0x4/0x10 [<ffffffff81366d59>] ? retint_restore_args+0xe/0xe [<ffffffff810469ae>] ? __init_kthread_worker+0x56/0x56 [<ffffffff8136e850>] ? gs_change+0xb/0xb The actual locking is fine, since we're dealing with different locks, but from the same lock class. cma_disable_callback() acquires the listening id mutex, whereas rdma_destroy_id() acquires the mutex for the new connection id. To fix this, delay the call to rdma_destroy_id() until we've released the listening id mutex. Signed-off-by: Sean Hefty <sean.hefty@intel.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2012-04-26 01:42:35 +08:00
err3:
cma_deref_id(conn_id);
/* Destroy the CM ID by returning a non-zero value. */
conn_id->cm_id.ib = NULL;
RDMA/cma: Fix lockdep false positive recursive locking The following lockdep problem was reported by Or Gerlitz <ogerlitz@mellanox.com>: [ INFO: possible recursive locking detected ] 3.3.0-32035-g1b2649e-dirty #4 Not tainted --------------------------------------------- kworker/5:1/418 is trying to acquire lock: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0138a41>] rdma_destroy_i d+0x33/0x1f0 [rdma_cm] but task is already holding lock: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0135130>] cma_disable_ca llback+0x24/0x45 [rdma_cm] other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&id_priv->handler_mutex); lock(&id_priv->handler_mutex); *** DEADLOCK *** May be due to missing lock nesting notation 3 locks held by kworker/5:1/418: #0: (ib_cm){.+.+.+}, at: [<ffffffff81042ac1>] process_one_work+0x210/0x4a 6 #1: ((&(&work->work)->work)){+.+.+.}, at: [<ffffffff81042ac1>] process_on e_work+0x210/0x4a6 #2: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0135130>] cma_disab le_callback+0x24/0x45 [rdma_cm] stack backtrace: Pid: 418, comm: kworker/5:1 Not tainted 3.3.0-32035-g1b2649e-dirty #4 Call Trace: [<ffffffff8102b0fb>] ? console_unlock+0x1f4/0x204 [<ffffffff81068771>] __lock_acquire+0x16b5/0x174e [<ffffffff8106461f>] ? save_trace+0x3f/0xb3 [<ffffffff810688fa>] lock_acquire+0xf0/0x116 [<ffffffffa0138a41>] ? rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffff81364351>] mutex_lock_nested+0x64/0x2ce [<ffffffffa0138a41>] ? rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffff81065a78>] ? trace_hardirqs_on_caller+0x11e/0x155 [<ffffffff81065abc>] ? trace_hardirqs_on+0xd/0xf [<ffffffffa0138a41>] rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffffa0139c02>] cma_req_handler+0x418/0x644 [rdma_cm] [<ffffffffa012ee88>] cm_process_work+0x32/0x119 [ib_cm] [<ffffffffa0130299>] cm_req_handler+0x928/0x982 [ib_cm] [<ffffffffa01302f3>] ? cm_req_handler+0x982/0x982 [ib_cm] [<ffffffffa0130326>] cm_work_handler+0x33/0xfe5 [ib_cm] [<ffffffff81065a78>] ? trace_hardirqs_on_caller+0x11e/0x155 [<ffffffffa01302f3>] ? cm_req_handler+0x982/0x982 [ib_cm] [<ffffffff81042b6e>] process_one_work+0x2bd/0x4a6 [<ffffffff81042ac1>] ? process_one_work+0x210/0x4a6 [<ffffffff813669f3>] ? _raw_spin_unlock_irq+0x2b/0x40 [<ffffffff8104316e>] worker_thread+0x1d6/0x350 [<ffffffff81042f98>] ? rescuer_thread+0x241/0x241 [<ffffffff81046a32>] kthread+0x84/0x8c [<ffffffff8136e854>] kernel_thread_helper+0x4/0x10 [<ffffffff81366d59>] ? retint_restore_args+0xe/0xe [<ffffffff810469ae>] ? __init_kthread_worker+0x56/0x56 [<ffffffff8136e850>] ? gs_change+0xb/0xb The actual locking is fine, since we're dealing with different locks, but from the same lock class. cma_disable_callback() acquires the listening id mutex, whereas rdma_destroy_id() acquires the mutex for the new connection id. To fix this, delay the call to rdma_destroy_id() until we've released the listening id mutex. Signed-off-by: Sean Hefty <sean.hefty@intel.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2012-04-26 01:42:35 +08:00
err2:
cma_exch(conn_id, RDMA_CM_DESTROYING);
mutex_unlock(&conn_id->handler_mutex);
RDMA/cma: Fix lockdep false positive recursive locking The following lockdep problem was reported by Or Gerlitz <ogerlitz@mellanox.com>: [ INFO: possible recursive locking detected ] 3.3.0-32035-g1b2649e-dirty #4 Not tainted --------------------------------------------- kworker/5:1/418 is trying to acquire lock: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0138a41>] rdma_destroy_i d+0x33/0x1f0 [rdma_cm] but task is already holding lock: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0135130>] cma_disable_ca llback+0x24/0x45 [rdma_cm] other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&id_priv->handler_mutex); lock(&id_priv->handler_mutex); *** DEADLOCK *** May be due to missing lock nesting notation 3 locks held by kworker/5:1/418: #0: (ib_cm){.+.+.+}, at: [<ffffffff81042ac1>] process_one_work+0x210/0x4a 6 #1: ((&(&work->work)->work)){+.+.+.}, at: [<ffffffff81042ac1>] process_on e_work+0x210/0x4a6 #2: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0135130>] cma_disab le_callback+0x24/0x45 [rdma_cm] stack backtrace: Pid: 418, comm: kworker/5:1 Not tainted 3.3.0-32035-g1b2649e-dirty #4 Call Trace: [<ffffffff8102b0fb>] ? console_unlock+0x1f4/0x204 [<ffffffff81068771>] __lock_acquire+0x16b5/0x174e [<ffffffff8106461f>] ? save_trace+0x3f/0xb3 [<ffffffff810688fa>] lock_acquire+0xf0/0x116 [<ffffffffa0138a41>] ? rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffff81364351>] mutex_lock_nested+0x64/0x2ce [<ffffffffa0138a41>] ? rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffff81065a78>] ? trace_hardirqs_on_caller+0x11e/0x155 [<ffffffff81065abc>] ? trace_hardirqs_on+0xd/0xf [<ffffffffa0138a41>] rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffffa0139c02>] cma_req_handler+0x418/0x644 [rdma_cm] [<ffffffffa012ee88>] cm_process_work+0x32/0x119 [ib_cm] [<ffffffffa0130299>] cm_req_handler+0x928/0x982 [ib_cm] [<ffffffffa01302f3>] ? cm_req_handler+0x982/0x982 [ib_cm] [<ffffffffa0130326>] cm_work_handler+0x33/0xfe5 [ib_cm] [<ffffffff81065a78>] ? trace_hardirqs_on_caller+0x11e/0x155 [<ffffffffa01302f3>] ? cm_req_handler+0x982/0x982 [ib_cm] [<ffffffff81042b6e>] process_one_work+0x2bd/0x4a6 [<ffffffff81042ac1>] ? process_one_work+0x210/0x4a6 [<ffffffff813669f3>] ? _raw_spin_unlock_irq+0x2b/0x40 [<ffffffff8104316e>] worker_thread+0x1d6/0x350 [<ffffffff81042f98>] ? rescuer_thread+0x241/0x241 [<ffffffff81046a32>] kthread+0x84/0x8c [<ffffffff8136e854>] kernel_thread_helper+0x4/0x10 [<ffffffff81366d59>] ? retint_restore_args+0xe/0xe [<ffffffff810469ae>] ? __init_kthread_worker+0x56/0x56 [<ffffffff8136e850>] ? gs_change+0xb/0xb The actual locking is fine, since we're dealing with different locks, but from the same lock class. cma_disable_callback() acquires the listening id mutex, whereas rdma_destroy_id() acquires the mutex for the new connection id. To fix this, delay the call to rdma_destroy_id() until we've released the listening id mutex. Signed-off-by: Sean Hefty <sean.hefty@intel.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2012-04-26 01:42:35 +08:00
err1:
mutex_unlock(&listen_id->handler_mutex);
RDMA/cma: Fix lockdep false positive recursive locking The following lockdep problem was reported by Or Gerlitz <ogerlitz@mellanox.com>: [ INFO: possible recursive locking detected ] 3.3.0-32035-g1b2649e-dirty #4 Not tainted --------------------------------------------- kworker/5:1/418 is trying to acquire lock: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0138a41>] rdma_destroy_i d+0x33/0x1f0 [rdma_cm] but task is already holding lock: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0135130>] cma_disable_ca llback+0x24/0x45 [rdma_cm] other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&id_priv->handler_mutex); lock(&id_priv->handler_mutex); *** DEADLOCK *** May be due to missing lock nesting notation 3 locks held by kworker/5:1/418: #0: (ib_cm){.+.+.+}, at: [<ffffffff81042ac1>] process_one_work+0x210/0x4a 6 #1: ((&(&work->work)->work)){+.+.+.}, at: [<ffffffff81042ac1>] process_on e_work+0x210/0x4a6 #2: (&id_priv->handler_mutex){+.+.+.}, at: [<ffffffffa0135130>] cma_disab le_callback+0x24/0x45 [rdma_cm] stack backtrace: Pid: 418, comm: kworker/5:1 Not tainted 3.3.0-32035-g1b2649e-dirty #4 Call Trace: [<ffffffff8102b0fb>] ? console_unlock+0x1f4/0x204 [<ffffffff81068771>] __lock_acquire+0x16b5/0x174e [<ffffffff8106461f>] ? save_trace+0x3f/0xb3 [<ffffffff810688fa>] lock_acquire+0xf0/0x116 [<ffffffffa0138a41>] ? rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffff81364351>] mutex_lock_nested+0x64/0x2ce [<ffffffffa0138a41>] ? rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffff81065a78>] ? trace_hardirqs_on_caller+0x11e/0x155 [<ffffffff81065abc>] ? trace_hardirqs_on+0xd/0xf [<ffffffffa0138a41>] rdma_destroy_id+0x33/0x1f0 [rdma_cm] [<ffffffffa0139c02>] cma_req_handler+0x418/0x644 [rdma_cm] [<ffffffffa012ee88>] cm_process_work+0x32/0x119 [ib_cm] [<ffffffffa0130299>] cm_req_handler+0x928/0x982 [ib_cm] [<ffffffffa01302f3>] ? cm_req_handler+0x982/0x982 [ib_cm] [<ffffffffa0130326>] cm_work_handler+0x33/0xfe5 [ib_cm] [<ffffffff81065a78>] ? trace_hardirqs_on_caller+0x11e/0x155 [<ffffffffa01302f3>] ? cm_req_handler+0x982/0x982 [ib_cm] [<ffffffff81042b6e>] process_one_work+0x2bd/0x4a6 [<ffffffff81042ac1>] ? process_one_work+0x210/0x4a6 [<ffffffff813669f3>] ? _raw_spin_unlock_irq+0x2b/0x40 [<ffffffff8104316e>] worker_thread+0x1d6/0x350 [<ffffffff81042f98>] ? rescuer_thread+0x241/0x241 [<ffffffff81046a32>] kthread+0x84/0x8c [<ffffffff8136e854>] kernel_thread_helper+0x4/0x10 [<ffffffff81366d59>] ? retint_restore_args+0xe/0xe [<ffffffff810469ae>] ? __init_kthread_worker+0x56/0x56 [<ffffffff8136e850>] ? gs_change+0xb/0xb The actual locking is fine, since we're dealing with different locks, but from the same lock class. cma_disable_callback() acquires the listening id mutex, whereas rdma_destroy_id() acquires the mutex for the new connection id. To fix this, delay the call to rdma_destroy_id() until we've released the listening id mutex. Signed-off-by: Sean Hefty <sean.hefty@intel.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2012-04-26 01:42:35 +08:00
if (conn_id)
rdma_destroy_id(&conn_id->id);
return ret;
}
__be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr)
{
if (addr->sa_family == AF_IB)
return ((struct sockaddr_ib *) addr)->sib_sid;
return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr)));
}
EXPORT_SYMBOL(rdma_get_service_id);
static void cma_set_compare_data(enum rdma_port_space ps, struct sockaddr *addr,
struct ib_cm_compare_data *compare)
{
struct cma_hdr *cma_data, *cma_mask;
__be32 ip4_addr;
struct in6_addr ip6_addr;
memset(compare, 0, sizeof *compare);
cma_data = (void *) compare->data;
cma_mask = (void *) compare->mask;
switch (addr->sa_family) {
case AF_INET:
ip4_addr = ((struct sockaddr_in *) addr)->sin_addr.s_addr;
cma_set_ip_ver(cma_data, 4);
cma_set_ip_ver(cma_mask, 0xF);
if (!cma_any_addr(addr)) {
cma_data->dst_addr.ip4.addr = ip4_addr;
cma_mask->dst_addr.ip4.addr = htonl(~0);
}
break;
case AF_INET6:
ip6_addr = ((struct sockaddr_in6 *) addr)->sin6_addr;
cma_set_ip_ver(cma_data, 6);
cma_set_ip_ver(cma_mask, 0xF);
if (!cma_any_addr(addr)) {
cma_data->dst_addr.ip6 = ip6_addr;
memset(&cma_mask->dst_addr.ip6, 0xFF,
sizeof cma_mask->dst_addr.ip6);
}
break;
default:
break;
}
}
static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event)
{
struct rdma_id_private *id_priv = iw_id->context;
struct rdma_cm_event event;
int ret = 0;
struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
if (cma_disable_callback(id_priv, RDMA_CM_CONNECT))
return 0;
memset(&event, 0, sizeof event);
switch (iw_event->event) {
case IW_CM_EVENT_CLOSE:
event.event = RDMA_CM_EVENT_DISCONNECTED;
break;
case IW_CM_EVENT_CONNECT_REPLY:
memcpy(cma_src_addr(id_priv), laddr,
rdma_addr_size(laddr));
memcpy(cma_dst_addr(id_priv), raddr,
rdma_addr_size(raddr));
switch (iw_event->status) {
case 0:
event.event = RDMA_CM_EVENT_ESTABLISHED;
event.param.conn.initiator_depth = iw_event->ird;
event.param.conn.responder_resources = iw_event->ord;
break;
case -ECONNRESET:
case -ECONNREFUSED:
event.event = RDMA_CM_EVENT_REJECTED;
break;
case -ETIMEDOUT:
event.event = RDMA_CM_EVENT_UNREACHABLE;
break;
default:
event.event = RDMA_CM_EVENT_CONNECT_ERROR;
break;
}
break;
case IW_CM_EVENT_ESTABLISHED:
event.event = RDMA_CM_EVENT_ESTABLISHED;
event.param.conn.initiator_depth = iw_event->ird;
event.param.conn.responder_resources = iw_event->ord;
break;
default:
BUG_ON(1);
}
event.status = iw_event->status;
event.param.conn.private_data = iw_event->private_data;
event.param.conn.private_data_len = iw_event->private_data_len;
ret = id_priv->id.event_handler(&id_priv->id, &event);
if (ret) {
/* Destroy the CM ID by returning a non-zero value. */
id_priv->cm_id.iw = NULL;
cma_exch(id_priv, RDMA_CM_DESTROYING);
mutex_unlock(&id_priv->handler_mutex);
rdma_destroy_id(&id_priv->id);
return ret;
}
mutex_unlock(&id_priv->handler_mutex);
return ret;
}
static int iw_conn_req_handler(struct iw_cm_id *cm_id,
struct iw_cm_event *iw_event)
{
struct rdma_cm_id *new_cm_id;
struct rdma_id_private *listen_id, *conn_id;
struct rdma_cm_event event;
int ret;
struct ib_device_attr attr;
struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
listen_id = cm_id->context;
if (cma_disable_callback(listen_id, RDMA_CM_LISTEN))
return -ECONNABORTED;
/* Create a new RDMA id for the new IW CM ID */
new_cm_id = rdma_create_id(listen_id->id.event_handler,
listen_id->id.context,
RDMA_PS_TCP, IB_QPT_RC);
if (IS_ERR(new_cm_id)) {
ret = -ENOMEM;
goto out;
}
conn_id = container_of(new_cm_id, struct rdma_id_private, id);
mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
conn_id->state = RDMA_CM_CONNECT;
IB/core: Ethernet L2 attributes in verbs/cm structures This patch add the support for Ethernet L2 attributes in the verbs/cm/cma structures. When dealing with L2 Ethernet, we should use smac, dmac, vlan ID and priority in a similar manner that the IB L2 (and the L4 PKEY) attributes are used. Thus, those attributes were added to the following structures: * ib_ah_attr - added dmac * ib_qp_attr - added smac and vlan_id, (sl remains vlan priority) * ib_wc - added smac, vlan_id * ib_sa_path_rec - added smac, dmac, vlan_id * cm_av - added smac and vlan_id For the path record structure, extra care was taken to avoid the new fields when packing it into wire format, so we don't break the IB CM and SA wire protocol. On the active side, the CM fills. its internal structures from the path provided by the ULP. We add there taking the ETH L2 attributes and placing them into the CM Address Handle (struct cm_av). On the passive side, the CM fills its internal structures from the WC associated with the REQ message. We add there taking the ETH L2 attributes from the WC. When the HW driver provides the required ETH L2 attributes in the WC, they set the IB_WC_WITH_SMAC and IB_WC_WITH_VLAN flags. The IB core code checks for the presence of these flags, and in their absence does address resolution from the ib_init_ah_from_wc() helper function. ib_modify_qp_is_ok is also updated to consider the link layer. Some parameters are mandatory for Ethernet link layer, while they are irrelevant for IB. Vendor drivers are modified to support the new function signature. Signed-off-by: Matan Barak <matanb@mellanox.com> Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-12-13 00:03:11 +08:00
ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr, NULL);
if (ret) {
mutex_unlock(&conn_id->handler_mutex);
rdma_destroy_id(new_cm_id);
goto out;
}
ret = cma_acquire_dev(conn_id, listen_id);
if (ret) {
mutex_unlock(&conn_id->handler_mutex);
rdma_destroy_id(new_cm_id);
goto out;
}
conn_id->cm_id.iw = cm_id;
cm_id->context = conn_id;
cm_id->cm_handler = cma_iw_handler;
memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr));
memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr));
ret = ib_query_device(conn_id->id.device, &attr);
if (ret) {
mutex_unlock(&conn_id->handler_mutex);
rdma_destroy_id(new_cm_id);
goto out;
}
memset(&event, 0, sizeof event);
event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
event.param.conn.private_data = iw_event->private_data;
event.param.conn.private_data_len = iw_event->private_data_len;
event.param.conn.initiator_depth = iw_event->ird;
event.param.conn.responder_resources = iw_event->ord;
RDMA/cma: Fix crash in request handlers Doug Ledford and Red Hat reported a crash when running the rdma_cm on a real-time OS. The crash has the following call trace: cm_process_work cma_req_handler cma_disable_callback rdma_create_id kzalloc init_completion cma_get_net_info cma_save_net_info cma_any_addr cma_zero_addr rdma_translate_ip rdma_copy_addr cma_acquire_dev rdma_addr_get_sgid ib_find_cached_gid cma_attach_to_dev ucma_event_handler kzalloc ib_copy_ah_attr_to_user cma_comp [ preempted ] cma_write copy_from_user ucma_destroy_id copy_from_user _ucma_find_context ucma_put_ctx ucma_free_ctx rdma_destroy_id cma_exch cma_cancel_operation rdma_node_get_transport rt_mutex_slowunlock bad_area_nosemaphore oops_enter They were able to reproduce the crash multiple times with the following details: Crash seems to always happen on the: mutex_unlock(&conn_id->handler_mutex); as conn_id looks to have been freed during this code path. An examination of the code shows that a race exists in the request handlers. When a new connection request is received, the rdma_cm allocates a new connection identifier. This identifier has a single reference count on it. If a user calls rdma_destroy_id() from another thread after receiving a callback, rdma_destroy_id will proceed to destroy the id and free the associated memory. However, the request handlers may still be in the process of running. When control returns to the request handlers, they can attempt to access the newly created identifiers. Fix this by holding a reference on the newly created rdma_cm_id until the request handler is through accessing it. Signed-off-by: Sean Hefty <sean.hefty@intel.com> Acked-by: Doug Ledford <dledford@redhat.com> Cc: <stable@kernel.org> Signed-off-by: Roland Dreier <roland@purestorage.com>
2011-02-24 00:11:32 +08:00
/*
* Protect against the user destroying conn_id from another thread
* until we're done accessing it.
*/
atomic_inc(&conn_id->refcount);
ret = conn_id->id.event_handler(&conn_id->id, &event);
if (ret) {
/* User wants to destroy the CM ID */
conn_id->cm_id.iw = NULL;
cma_exch(conn_id, RDMA_CM_DESTROYING);
mutex_unlock(&conn_id->handler_mutex);
RDMA/cma: Fix crash in request handlers Doug Ledford and Red Hat reported a crash when running the rdma_cm on a real-time OS. The crash has the following call trace: cm_process_work cma_req_handler cma_disable_callback rdma_create_id kzalloc init_completion cma_get_net_info cma_save_net_info cma_any_addr cma_zero_addr rdma_translate_ip rdma_copy_addr cma_acquire_dev rdma_addr_get_sgid ib_find_cached_gid cma_attach_to_dev ucma_event_handler kzalloc ib_copy_ah_attr_to_user cma_comp [ preempted ] cma_write copy_from_user ucma_destroy_id copy_from_user _ucma_find_context ucma_put_ctx ucma_free_ctx rdma_destroy_id cma_exch cma_cancel_operation rdma_node_get_transport rt_mutex_slowunlock bad_area_nosemaphore oops_enter They were able to reproduce the crash multiple times with the following details: Crash seems to always happen on the: mutex_unlock(&conn_id->handler_mutex); as conn_id looks to have been freed during this code path. An examination of the code shows that a race exists in the request handlers. When a new connection request is received, the rdma_cm allocates a new connection identifier. This identifier has a single reference count on it. If a user calls rdma_destroy_id() from another thread after receiving a callback, rdma_destroy_id will proceed to destroy the id and free the associated memory. However, the request handlers may still be in the process of running. When control returns to the request handlers, they can attempt to access the newly created identifiers. Fix this by holding a reference on the newly created rdma_cm_id until the request handler is through accessing it. Signed-off-by: Sean Hefty <sean.hefty@intel.com> Acked-by: Doug Ledford <dledford@redhat.com> Cc: <stable@kernel.org> Signed-off-by: Roland Dreier <roland@purestorage.com>
2011-02-24 00:11:32 +08:00
cma_deref_id(conn_id);
rdma_destroy_id(&conn_id->id);
goto out;
}
mutex_unlock(&conn_id->handler_mutex);
RDMA/cma: Fix crash in request handlers Doug Ledford and Red Hat reported a crash when running the rdma_cm on a real-time OS. The crash has the following call trace: cm_process_work cma_req_handler cma_disable_callback rdma_create_id kzalloc init_completion cma_get_net_info cma_save_net_info cma_any_addr cma_zero_addr rdma_translate_ip rdma_copy_addr cma_acquire_dev rdma_addr_get_sgid ib_find_cached_gid cma_attach_to_dev ucma_event_handler kzalloc ib_copy_ah_attr_to_user cma_comp [ preempted ] cma_write copy_from_user ucma_destroy_id copy_from_user _ucma_find_context ucma_put_ctx ucma_free_ctx rdma_destroy_id cma_exch cma_cancel_operation rdma_node_get_transport rt_mutex_slowunlock bad_area_nosemaphore oops_enter They were able to reproduce the crash multiple times with the following details: Crash seems to always happen on the: mutex_unlock(&conn_id->handler_mutex); as conn_id looks to have been freed during this code path. An examination of the code shows that a race exists in the request handlers. When a new connection request is received, the rdma_cm allocates a new connection identifier. This identifier has a single reference count on it. If a user calls rdma_destroy_id() from another thread after receiving a callback, rdma_destroy_id will proceed to destroy the id and free the associated memory. However, the request handlers may still be in the process of running. When control returns to the request handlers, they can attempt to access the newly created identifiers. Fix this by holding a reference on the newly created rdma_cm_id until the request handler is through accessing it. Signed-off-by: Sean Hefty <sean.hefty@intel.com> Acked-by: Doug Ledford <dledford@redhat.com> Cc: <stable@kernel.org> Signed-off-by: Roland Dreier <roland@purestorage.com>
2011-02-24 00:11:32 +08:00
cma_deref_id(conn_id);
out:
mutex_unlock(&listen_id->handler_mutex);
return ret;
}
static int cma_ib_listen(struct rdma_id_private *id_priv)
{
struct ib_cm_compare_data compare_data;
struct sockaddr *addr;
struct ib_cm_id *id;
__be64 svc_id;
int ret;
id = ib_create_cm_id(id_priv->id.device, cma_req_handler, id_priv);
if (IS_ERR(id))
return PTR_ERR(id);
id_priv->cm_id.ib = id;
addr = cma_src_addr(id_priv);
svc_id = rdma_get_service_id(&id_priv->id, addr);
if (cma_any_addr(addr) && !id_priv->afonly)
ret = ib_cm_listen(id_priv->cm_id.ib, svc_id, 0, NULL);
else {
cma_set_compare_data(id_priv->id.ps, addr, &compare_data);
ret = ib_cm_listen(id_priv->cm_id.ib, svc_id, 0, &compare_data);
}
if (ret) {
ib_destroy_cm_id(id_priv->cm_id.ib);
id_priv->cm_id.ib = NULL;
}
return ret;
}
static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog)
{
int ret;
struct iw_cm_id *id;
id = iw_create_cm_id(id_priv->id.device,
iw_conn_req_handler,
id_priv);
if (IS_ERR(id))
return PTR_ERR(id);
id_priv->cm_id.iw = id;
memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv),
rdma_addr_size(cma_src_addr(id_priv)));
ret = iw_cm_listen(id_priv->cm_id.iw, backlog);
if (ret) {
iw_destroy_cm_id(id_priv->cm_id.iw);
id_priv->cm_id.iw = NULL;
}
return ret;
}
static int cma_listen_handler(struct rdma_cm_id *id,
struct rdma_cm_event *event)
{
struct rdma_id_private *id_priv = id->context;
id->context = id_priv->id.context;
id->event_handler = id_priv->id.event_handler;
return id_priv->id.event_handler(id, event);
}
static void cma_listen_on_dev(struct rdma_id_private *id_priv,
struct cma_device *cma_dev)
{
struct rdma_id_private *dev_id_priv;
struct rdma_cm_id *id;
int ret;
if (cma_family(id_priv) == AF_IB &&
rdma_node_get_transport(cma_dev->device->node_type) != RDMA_TRANSPORT_IB)
return;
id = rdma_create_id(cma_listen_handler, id_priv, id_priv->id.ps,
id_priv->id.qp_type);
if (IS_ERR(id))
return;
dev_id_priv = container_of(id, struct rdma_id_private, id);
dev_id_priv->state = RDMA_CM_ADDR_BOUND;
memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv),
rdma_addr_size(cma_src_addr(id_priv)));
cma_attach_to_dev(dev_id_priv, cma_dev);
list_add_tail(&dev_id_priv->listen_list, &id_priv->listen_list);
atomic_inc(&id_priv->refcount);
dev_id_priv->internal_id = 1;
dev_id_priv->afonly = id_priv->afonly;
ret = rdma_listen(id, id_priv->backlog);
if (ret)
printk(KERN_WARNING "RDMA CMA: cma_listen_on_dev, error %d, "
"listening on device %s\n", ret, cma_dev->device->name);
}
static void cma_listen_on_all(struct rdma_id_private *id_priv)
{
struct cma_device *cma_dev;
mutex_lock(&lock);
list_add_tail(&id_priv->list, &listen_any_list);
list_for_each_entry(cma_dev, &dev_list, list)
cma_listen_on_dev(id_priv, cma_dev);
mutex_unlock(&lock);
}
void rdma_set_service_type(struct rdma_cm_id *id, int tos)
{
struct rdma_id_private *id_priv;
id_priv = container_of(id, struct rdma_id_private, id);
id_priv->tos = (u8) tos;
}
EXPORT_SYMBOL(rdma_set_service_type);
static void cma_query_handler(int status, struct ib_sa_path_rec *path_rec,
void *context)
{
struct cma_work *work = context;
struct rdma_route *route;
route = &work->id->id.route;
if (!status) {
route->num_paths = 1;
*route->path_rec = *path_rec;
} else {
work->old_state = RDMA_CM_ROUTE_QUERY;
work->new_state = RDMA_CM_ADDR_RESOLVED;
work->event.event = RDMA_CM_EVENT_ROUTE_ERROR;
work->event.status = status;
}
queue_work(cma_wq, &work->work);
}
static int cma_query_ib_route(struct rdma_id_private *id_priv, int timeout_ms,
struct cma_work *work)
{
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
struct ib_sa_path_rec path_rec;
ib_sa_comp_mask comp_mask;
struct sockaddr_in6 *sin6;
struct sockaddr_ib *sib;
memset(&path_rec, 0, sizeof path_rec);
rdma_addr_get_sgid(dev_addr, &path_rec.sgid);
rdma_addr_get_dgid(dev_addr, &path_rec.dgid);
path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
path_rec.numb_path = 1;
path_rec.reversible = 1;
path_rec.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID |
IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH |
IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID;
switch (cma_family(id_priv)) {
case AF_INET:
path_rec.qos_class = cpu_to_be16((u16) id_priv->tos);
comp_mask |= IB_SA_PATH_REC_QOS_CLASS;
break;
case AF_INET6:
sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20);
comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
break;
case AF_IB:
sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20);
comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
break;
}
id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device,
id_priv->id.port_num, &path_rec,
comp_mask, timeout_ms,
GFP_KERNEL, cma_query_handler,
work, &id_priv->query);
return (id_priv->query_id < 0) ? id_priv->query_id : 0;
}
static void cma_work_handler(struct work_struct *_work)
{
struct cma_work *work = container_of(_work, struct cma_work, work);
struct rdma_id_private *id_priv = work->id;
int destroy = 0;
mutex_lock(&id_priv->handler_mutex);
if (!cma_comp_exch(id_priv, work->old_state, work->new_state))
goto out;
if (id_priv->id.event_handler(&id_priv->id, &work->event)) {
cma_exch(id_priv, RDMA_CM_DESTROYING);
destroy = 1;
}
out:
mutex_unlock(&id_priv->handler_mutex);
cma_deref_id(id_priv);
if (destroy)
rdma_destroy_id(&id_priv->id);
kfree(work);
}
static void cma_ndev_work_handler(struct work_struct *_work)
{
struct cma_ndev_work *work = container_of(_work, struct cma_ndev_work, work);
struct rdma_id_private *id_priv = work->id;
int destroy = 0;
mutex_lock(&id_priv->handler_mutex);
if (id_priv->state == RDMA_CM_DESTROYING ||
id_priv->state == RDMA_CM_DEVICE_REMOVAL)
goto out;
if (id_priv->id.event_handler(&id_priv->id, &work->event)) {
cma_exch(id_priv, RDMA_CM_DESTROYING);
destroy = 1;
}
out:
mutex_unlock(&id_priv->handler_mutex);
cma_deref_id(id_priv);
if (destroy)
rdma_destroy_id(&id_priv->id);
kfree(work);
}
static int cma_resolve_ib_route(struct rdma_id_private *id_priv, int timeout_ms)
{
struct rdma_route *route = &id_priv->id.route;
struct cma_work *work;
int ret;
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
work->id = id_priv;
INIT_WORK(&work->work, cma_work_handler);
work->old_state = RDMA_CM_ROUTE_QUERY;
work->new_state = RDMA_CM_ROUTE_RESOLVED;
work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED;
route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL);
if (!route->path_rec) {
ret = -ENOMEM;
goto err1;
}
ret = cma_query_ib_route(id_priv, timeout_ms, work);
if (ret)
goto err2;
return 0;
err2:
kfree(route->path_rec);
route->path_rec = NULL;
err1:
kfree(work);
return ret;
}
int rdma_set_ib_paths(struct rdma_cm_id *id,
struct ib_sa_path_rec *path_rec, int num_paths)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
RDMA_CM_ROUTE_RESOLVED))
return -EINVAL;
id->route.path_rec = kmemdup(path_rec, sizeof *path_rec * num_paths,
GFP_KERNEL);
if (!id->route.path_rec) {
ret = -ENOMEM;
goto err;
}
id->route.num_paths = num_paths;
return 0;
err:
cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED);
return ret;
}
EXPORT_SYMBOL(rdma_set_ib_paths);
static int cma_resolve_iw_route(struct rdma_id_private *id_priv, int timeout_ms)
{
struct cma_work *work;
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
work->id = id_priv;
INIT_WORK(&work->work, cma_work_handler);
work->old_state = RDMA_CM_ROUTE_QUERY;
work->new_state = RDMA_CM_ROUTE_RESOLVED;
work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED;
queue_work(cma_wq, &work->work);
return 0;
}
static int iboe_tos_to_sl(struct net_device *ndev, int tos)
{
int prio;
struct net_device *dev;
prio = rt_tos2priority(tos);
dev = ndev->priv_flags & IFF_802_1Q_VLAN ?
vlan_dev_real_dev(ndev) : ndev;
if (dev->num_tc)
return netdev_get_prio_tc_map(dev, prio);
#if IS_ENABLED(CONFIG_VLAN_8021Q)
if (ndev->priv_flags & IFF_802_1Q_VLAN)
return (vlan_dev_get_egress_qos_mask(ndev, prio) &
VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
#endif
return 0;
}
static int cma_resolve_iboe_route(struct rdma_id_private *id_priv)
{
struct rdma_route *route = &id_priv->id.route;
struct rdma_addr *addr = &route->addr;
struct cma_work *work;
int ret;
struct net_device *ndev = NULL;
IB/core: Ethernet L2 attributes in verbs/cm structures This patch add the support for Ethernet L2 attributes in the verbs/cm/cma structures. When dealing with L2 Ethernet, we should use smac, dmac, vlan ID and priority in a similar manner that the IB L2 (and the L4 PKEY) attributes are used. Thus, those attributes were added to the following structures: * ib_ah_attr - added dmac * ib_qp_attr - added smac and vlan_id, (sl remains vlan priority) * ib_wc - added smac, vlan_id * ib_sa_path_rec - added smac, dmac, vlan_id * cm_av - added smac and vlan_id For the path record structure, extra care was taken to avoid the new fields when packing it into wire format, so we don't break the IB CM and SA wire protocol. On the active side, the CM fills. its internal structures from the path provided by the ULP. We add there taking the ETH L2 attributes and placing them into the CM Address Handle (struct cm_av). On the passive side, the CM fills its internal structures from the WC associated with the REQ message. We add there taking the ETH L2 attributes from the WC. When the HW driver provides the required ETH L2 attributes in the WC, they set the IB_WC_WITH_SMAC and IB_WC_WITH_VLAN flags. The IB core code checks for the presence of these flags, and in their absence does address resolution from the ib_init_ah_from_wc() helper function. ib_modify_qp_is_ok is also updated to consider the link layer. Some parameters are mandatory for Ethernet link layer, while they are irrelevant for IB. Vendor drivers are modified to support the new function signature. Signed-off-by: Matan Barak <matanb@mellanox.com> Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-12-13 00:03:11 +08:00
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
work->id = id_priv;
INIT_WORK(&work->work, cma_work_handler);
route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL);
if (!route->path_rec) {
ret = -ENOMEM;
goto err1;
}
route->num_paths = 1;
if (addr->dev_addr.bound_dev_if)
ndev = dev_get_by_index(&init_net, addr->dev_addr.bound_dev_if);
if (!ndev) {
ret = -ENODEV;
goto err2;
}
IB/core: Ethernet L2 attributes in verbs/cm structures This patch add the support for Ethernet L2 attributes in the verbs/cm/cma structures. When dealing with L2 Ethernet, we should use smac, dmac, vlan ID and priority in a similar manner that the IB L2 (and the L4 PKEY) attributes are used. Thus, those attributes were added to the following structures: * ib_ah_attr - added dmac * ib_qp_attr - added smac and vlan_id, (sl remains vlan priority) * ib_wc - added smac, vlan_id * ib_sa_path_rec - added smac, dmac, vlan_id * cm_av - added smac and vlan_id For the path record structure, extra care was taken to avoid the new fields when packing it into wire format, so we don't break the IB CM and SA wire protocol. On the active side, the CM fills. its internal structures from the path provided by the ULP. We add there taking the ETH L2 attributes and placing them into the CM Address Handle (struct cm_av). On the passive side, the CM fills its internal structures from the WC associated with the REQ message. We add there taking the ETH L2 attributes from the WC. When the HW driver provides the required ETH L2 attributes in the WC, they set the IB_WC_WITH_SMAC and IB_WC_WITH_VLAN flags. The IB core code checks for the presence of these flags, and in their absence does address resolution from the ib_init_ah_from_wc() helper function. ib_modify_qp_is_ok is also updated to consider the link layer. Some parameters are mandatory for Ethernet link layer, while they are irrelevant for IB. Vendor drivers are modified to support the new function signature. Signed-off-by: Matan Barak <matanb@mellanox.com> Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-12-13 00:03:11 +08:00
route->path_rec->vlan_id = rdma_vlan_dev_vlan_id(ndev);
memcpy(route->path_rec->dmac, addr->dev_addr.dst_dev_addr, ETH_ALEN);
memcpy(route->path_rec->smac, ndev->dev_addr, ndev->addr_len);
rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
&route->path_rec->sgid);
rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr,
&route->path_rec->dgid);
route->path_rec->hop_limit = 1;
route->path_rec->reversible = 1;
route->path_rec->pkey = cpu_to_be16(0xffff);
route->path_rec->mtu_selector = IB_SA_EQ;
route->path_rec->sl = iboe_tos_to_sl(ndev, id_priv->tos);
route->path_rec->mtu = iboe_get_mtu(ndev->mtu);
route->path_rec->rate_selector = IB_SA_EQ;
route->path_rec->rate = iboe_get_rate(ndev);
dev_put(ndev);
route->path_rec->packet_life_time_selector = IB_SA_EQ;
route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME;
if (!route->path_rec->mtu) {
ret = -EINVAL;
goto err2;
}
work->old_state = RDMA_CM_ROUTE_QUERY;
work->new_state = RDMA_CM_ROUTE_RESOLVED;
work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED;
work->event.status = 0;
queue_work(cma_wq, &work->work);
return 0;
err2:
kfree(route->path_rec);
route->path_rec = NULL;
err1:
kfree(work);
return ret;
}
int rdma_resolve_route(struct rdma_cm_id *id, int timeout_ms)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY))
return -EINVAL;
atomic_inc(&id_priv->refcount);
switch (rdma_node_get_transport(id->device->node_type)) {
case RDMA_TRANSPORT_IB:
switch (rdma_port_get_link_layer(id->device, id->port_num)) {
case IB_LINK_LAYER_INFINIBAND:
ret = cma_resolve_ib_route(id_priv, timeout_ms);
break;
case IB_LINK_LAYER_ETHERNET:
ret = cma_resolve_iboe_route(id_priv);
break;
default:
ret = -ENOSYS;
}
break;
case RDMA_TRANSPORT_IWARP:
ret = cma_resolve_iw_route(id_priv, timeout_ms);
break;
default:
ret = -ENOSYS;
break;
}
if (ret)
goto err;
return 0;
err:
cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED);
cma_deref_id(id_priv);
return ret;
}
EXPORT_SYMBOL(rdma_resolve_route);
static void cma_set_loopback(struct sockaddr *addr)
{
switch (addr->sa_family) {
case AF_INET:
((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
break;
case AF_INET6:
ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr,
0, 0, 0, htonl(1));
break;
default:
ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr,
0, 0, 0, htonl(1));
break;
}
}
static int cma_bind_loopback(struct rdma_id_private *id_priv)
{
struct cma_device *cma_dev, *cur_dev;
struct ib_port_attr port_attr;
union ib_gid gid;
u16 pkey;
int ret;
u8 p;
cma_dev = NULL;
mutex_lock(&lock);
list_for_each_entry(cur_dev, &dev_list, list) {
if (cma_family(id_priv) == AF_IB &&
rdma_node_get_transport(cur_dev->device->node_type) != RDMA_TRANSPORT_IB)
continue;
if (!cma_dev)
cma_dev = cur_dev;
for (p = 1; p <= cur_dev->device->phys_port_cnt; ++p) {
if (!ib_query_port(cur_dev->device, p, &port_attr) &&
port_attr.state == IB_PORT_ACTIVE) {
cma_dev = cur_dev;
goto port_found;
}
}
}
if (!cma_dev) {
ret = -ENODEV;
goto out;
}
p = 1;
port_found:
ret = ib_get_cached_gid(cma_dev->device, p, 0, &gid);
if (ret)
goto out;
ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey);
if (ret)
goto out;
RDMA/cm: fix loopback address support The RDMA CM is intended to support the use of a loopback address when establishing a connection; however, the behavior of the CM when loopback addresses are used is confusing and does not always work, depending on whether loopback was specified by the server, the client, or both. The defined behavior of rdma_bind_addr is to associate an RDMA device with an rdma_cm_id, as long as the user specified a non- zero address. (ie they weren't just trying to reserve a port) Currently, if the loopback address is passed to rdam_bind_addr, no device is associated with the rdma_cm_id. Fix this. If a loopback address is specified by the client as the destination address for a connection, it will fail to establish a connection. This is true even if the server is listing across all addresses or on the loopback address itself. The issue is that the server tries to translate the IP address carried in the REQ message to a local net_device address, which fails. The translation is not needed in this case, since the REQ carries the actual HW address that should be used. Finally, cleanup loopback support to be more transport neutral. Replace separate calls to get/set the sgid and dgid from the device address to a single call that behaves correctly depending on the format of the device address. And support both IPv4 and IPv6 address formats. Signed-off-by: Sean Hefty <sean.hefty@intel.com> [ Fixed RDS build by s/ib_addr_get/rdma_addr_get/ - Roland ] Signed-off-by: Roland Dreier <rolandd@cisco.com>
2009-11-20 05:26:06 +08:00
id_priv->id.route.addr.dev_addr.dev_type =
(rdma_port_get_link_layer(cma_dev->device, p) == IB_LINK_LAYER_INFINIBAND) ?
RDMA/cm: fix loopback address support The RDMA CM is intended to support the use of a loopback address when establishing a connection; however, the behavior of the CM when loopback addresses are used is confusing and does not always work, depending on whether loopback was specified by the server, the client, or both. The defined behavior of rdma_bind_addr is to associate an RDMA device with an rdma_cm_id, as long as the user specified a non- zero address. (ie they weren't just trying to reserve a port) Currently, if the loopback address is passed to rdam_bind_addr, no device is associated with the rdma_cm_id. Fix this. If a loopback address is specified by the client as the destination address for a connection, it will fail to establish a connection. This is true even if the server is listing across all addresses or on the loopback address itself. The issue is that the server tries to translate the IP address carried in the REQ message to a local net_device address, which fails. The translation is not needed in this case, since the REQ carries the actual HW address that should be used. Finally, cleanup loopback support to be more transport neutral. Replace separate calls to get/set the sgid and dgid from the device address to a single call that behaves correctly depending on the format of the device address. And support both IPv4 and IPv6 address formats. Signed-off-by: Sean Hefty <sean.hefty@intel.com> [ Fixed RDS build by s/ib_addr_get/rdma_addr_get/ - Roland ] Signed-off-by: Roland Dreier <rolandd@cisco.com>
2009-11-20 05:26:06 +08:00
ARPHRD_INFINIBAND : ARPHRD_ETHER;
rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid);
ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey);
id_priv->id.port_num = p;
cma_attach_to_dev(id_priv, cma_dev);
cma_set_loopback(cma_src_addr(id_priv));
out:
mutex_unlock(&lock);
return ret;
}
static void addr_handler(int status, struct sockaddr *src_addr,
struct rdma_dev_addr *dev_addr, void *context)
{
struct rdma_id_private *id_priv = context;
struct rdma_cm_event event;
memset(&event, 0, sizeof event);
mutex_lock(&id_priv->handler_mutex);
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY,
RDMA_CM_ADDR_RESOLVED))
goto out;
memcpy(cma_src_addr(id_priv), src_addr, rdma_addr_size(src_addr));
if (!status && !id_priv->cma_dev)
status = cma_acquire_dev(id_priv, NULL);
if (status) {
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
RDMA_CM_ADDR_BOUND))
goto out;
event.event = RDMA_CM_EVENT_ADDR_ERROR;
event.status = status;
} else
event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
if (id_priv->id.event_handler(&id_priv->id, &event)) {
cma_exch(id_priv, RDMA_CM_DESTROYING);
mutex_unlock(&id_priv->handler_mutex);
cma_deref_id(id_priv);
rdma_destroy_id(&id_priv->id);
return;
}
out:
mutex_unlock(&id_priv->handler_mutex);
cma_deref_id(id_priv);
}
static int cma_resolve_loopback(struct rdma_id_private *id_priv)
{
struct cma_work *work;
union ib_gid gid;
int ret;
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
if (!id_priv->cma_dev) {
ret = cma_bind_loopback(id_priv);
if (ret)
goto err;
}
RDMA/cm: fix loopback address support The RDMA CM is intended to support the use of a loopback address when establishing a connection; however, the behavior of the CM when loopback addresses are used is confusing and does not always work, depending on whether loopback was specified by the server, the client, or both. The defined behavior of rdma_bind_addr is to associate an RDMA device with an rdma_cm_id, as long as the user specified a non- zero address. (ie they weren't just trying to reserve a port) Currently, if the loopback address is passed to rdam_bind_addr, no device is associated with the rdma_cm_id. Fix this. If a loopback address is specified by the client as the destination address for a connection, it will fail to establish a connection. This is true even if the server is listing across all addresses or on the loopback address itself. The issue is that the server tries to translate the IP address carried in the REQ message to a local net_device address, which fails. The translation is not needed in this case, since the REQ carries the actual HW address that should be used. Finally, cleanup loopback support to be more transport neutral. Replace separate calls to get/set the sgid and dgid from the device address to a single call that behaves correctly depending on the format of the device address. And support both IPv4 and IPv6 address formats. Signed-off-by: Sean Hefty <sean.hefty@intel.com> [ Fixed RDS build by s/ib_addr_get/rdma_addr_get/ - Roland ] Signed-off-by: Roland Dreier <rolandd@cisco.com>
2009-11-20 05:26:06 +08:00
rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid);
rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid);
work->id = id_priv;
INIT_WORK(&work->work, cma_work_handler);
work->old_state = RDMA_CM_ADDR_QUERY;
work->new_state = RDMA_CM_ADDR_RESOLVED;
work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
queue_work(cma_wq, &work->work);
return 0;
err:
kfree(work);
return ret;
}
static int cma_resolve_ib_addr(struct rdma_id_private *id_priv)
{
struct cma_work *work;
int ret;
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
if (!id_priv->cma_dev) {
ret = cma_resolve_ib_dev(id_priv);
if (ret)
goto err;
}
rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *)
&(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr));
work->id = id_priv;
INIT_WORK(&work->work, cma_work_handler);
work->old_state = RDMA_CM_ADDR_QUERY;
work->new_state = RDMA_CM_ADDR_RESOLVED;
work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
queue_work(cma_wq, &work->work);
return 0;
err:
kfree(work);
return ret;
}
static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
struct sockaddr *dst_addr)
{
if (!src_addr || !src_addr->sa_family) {
src_addr = (struct sockaddr *) &id->route.addr.src_addr;
src_addr->sa_family = dst_addr->sa_family;
if (dst_addr->sa_family == AF_INET6) {
((struct sockaddr_in6 *) src_addr)->sin6_scope_id =
((struct sockaddr_in6 *) dst_addr)->sin6_scope_id;
} else if (dst_addr->sa_family == AF_IB) {
((struct sockaddr_ib *) src_addr)->sib_pkey =
((struct sockaddr_ib *) dst_addr)->sib_pkey;
}
}
return rdma_bind_addr(id, src_addr);
}
int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
struct sockaddr *dst_addr, int timeout_ms)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (id_priv->state == RDMA_CM_IDLE) {
ret = cma_bind_addr(id, src_addr, dst_addr);
if (ret)
return ret;
}
if (cma_family(id_priv) != dst_addr->sa_family)
return -EINVAL;
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY))
return -EINVAL;
atomic_inc(&id_priv->refcount);
memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr));
if (cma_any_addr(dst_addr)) {
ret = cma_resolve_loopback(id_priv);
} else {
if (dst_addr->sa_family == AF_IB) {
ret = cma_resolve_ib_addr(id_priv);
} else {
ret = rdma_resolve_ip(&addr_client, cma_src_addr(id_priv),
dst_addr, &id->route.addr.dev_addr,
timeout_ms, addr_handler, id_priv);
}
}
if (ret)
goto err;
return 0;
err:
cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
cma_deref_id(id_priv);
return ret;
}
EXPORT_SYMBOL(rdma_resolve_addr);
int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse)
{
struct rdma_id_private *id_priv;
unsigned long flags;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
spin_lock_irqsave(&id_priv->lock, flags);
if (reuse || id_priv->state == RDMA_CM_IDLE) {
id_priv->reuseaddr = reuse;
ret = 0;
} else {
ret = -EINVAL;
}
spin_unlock_irqrestore(&id_priv->lock, flags);
return ret;
}
EXPORT_SYMBOL(rdma_set_reuseaddr);
int rdma_set_afonly(struct rdma_cm_id *id, int afonly)
{
struct rdma_id_private *id_priv;
unsigned long flags;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
spin_lock_irqsave(&id_priv->lock, flags);
if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) {
id_priv->options |= (1 << CMA_OPTION_AFONLY);
id_priv->afonly = afonly;
ret = 0;
} else {
ret = -EINVAL;
}
spin_unlock_irqrestore(&id_priv->lock, flags);
return ret;
}
EXPORT_SYMBOL(rdma_set_afonly);
static void cma_bind_port(struct rdma_bind_list *bind_list,
struct rdma_id_private *id_priv)
{
struct sockaddr *addr;
struct sockaddr_ib *sib;
u64 sid, mask;
__be16 port;
addr = cma_src_addr(id_priv);
port = htons(bind_list->port);
switch (addr->sa_family) {
case AF_INET:
((struct sockaddr_in *) addr)->sin_port = port;
break;
case AF_INET6:
((struct sockaddr_in6 *) addr)->sin6_port = port;
break;
case AF_IB:
sib = (struct sockaddr_ib *) addr;
sid = be64_to_cpu(sib->sib_sid);
mask = be64_to_cpu(sib->sib_sid_mask);
sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port));
sib->sib_sid_mask = cpu_to_be64(~0ULL);
break;
}
id_priv->bind_list = bind_list;
hlist_add_head(&id_priv->node, &bind_list->owners);
}
static int cma_alloc_port(struct idr *ps, struct rdma_id_private *id_priv,
unsigned short snum)
{
struct rdma_bind_list *bind_list;
int ret;
bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL);
if (!bind_list)
return -ENOMEM;
ret = idr_alloc(ps, bind_list, snum, snum + 1, GFP_KERNEL);
if (ret < 0)
goto err;
bind_list->ps = ps;
bind_list->port = (unsigned short)ret;
cma_bind_port(bind_list, id_priv);
return 0;
err:
kfree(bind_list);
return ret == -ENOSPC ? -EADDRNOTAVAIL : ret;
}
static int cma_alloc_any_port(struct idr *ps, struct rdma_id_private *id_priv)
{
static unsigned int last_used_port;
int low, high, remaining;
unsigned int rover;
inet_get_local_port_range(&init_net, &low, &high);
remaining = (high - low) + 1;
rover = prandom_u32() % remaining + low;
retry:
if (last_used_port != rover &&
!idr_find(ps, (unsigned short) rover)) {
int ret = cma_alloc_port(ps, id_priv, rover);
/*
* Remember previously used port number in order to avoid
* re-using same port immediately after it is closed.
*/
if (!ret)
last_used_port = rover;
if (ret != -EADDRNOTAVAIL)
return ret;
}
if (--remaining) {
rover++;
if ((rover < low) || (rover > high))
rover = low;
goto retry;
}
return -EADDRNOTAVAIL;
}
/*
* Check that the requested port is available. This is called when trying to
* bind to a specific port, or when trying to listen on a bound port. In
* the latter case, the provided id_priv may already be on the bind_list, but
* we still need to check that it's okay to start listening.
*/
static int cma_check_port(struct rdma_bind_list *bind_list,
struct rdma_id_private *id_priv, uint8_t reuseaddr)
{
struct rdma_id_private *cur_id;
struct sockaddr *addr, *cur_addr;
addr = cma_src_addr(id_priv);
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 09:06:00 +08:00
hlist_for_each_entry(cur_id, &bind_list->owners, node) {
if (id_priv == cur_id)
continue;
if ((cur_id->state != RDMA_CM_LISTEN) && reuseaddr &&
cur_id->reuseaddr)
continue;
cur_addr = cma_src_addr(cur_id);
if (id_priv->afonly && cur_id->afonly &&
(addr->sa_family != cur_addr->sa_family))
continue;
if (cma_any_addr(addr) || cma_any_addr(cur_addr))
return -EADDRNOTAVAIL;
if (!cma_addr_cmp(addr, cur_addr))
return -EADDRINUSE;
}
return 0;
}
static int cma_use_port(struct idr *ps, struct rdma_id_private *id_priv)
{
struct rdma_bind_list *bind_list;
unsigned short snum;
int ret;
snum = ntohs(cma_port(cma_src_addr(id_priv)));
if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
return -EACCES;
bind_list = idr_find(ps, snum);
if (!bind_list) {
ret = cma_alloc_port(ps, id_priv, snum);
} else {
ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr);
if (!ret)
cma_bind_port(bind_list, id_priv);
}
return ret;
}
static int cma_bind_listen(struct rdma_id_private *id_priv)
{
struct rdma_bind_list *bind_list = id_priv->bind_list;
int ret = 0;
mutex_lock(&lock);
if (bind_list->owners.first->next)
ret = cma_check_port(bind_list, id_priv, 0);
mutex_unlock(&lock);
return ret;
}
static struct idr *cma_select_inet_ps(struct rdma_id_private *id_priv)
{
switch (id_priv->id.ps) {
case RDMA_PS_TCP:
return &tcp_ps;
case RDMA_PS_UDP:
return &udp_ps;
case RDMA_PS_IPOIB:
return &ipoib_ps;
case RDMA_PS_IB:
return &ib_ps;
default:
return NULL;
}
}
static struct idr *cma_select_ib_ps(struct rdma_id_private *id_priv)
{
struct idr *ps = NULL;
struct sockaddr_ib *sib;
u64 sid_ps, mask, sid;
sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK;
sid = be64_to_cpu(sib->sib_sid) & mask;
if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) {
sid_ps = RDMA_IB_IP_PS_IB;
ps = &ib_ps;
} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) &&
(sid == (RDMA_IB_IP_PS_TCP & mask))) {
sid_ps = RDMA_IB_IP_PS_TCP;
ps = &tcp_ps;
} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) &&
(sid == (RDMA_IB_IP_PS_UDP & mask))) {
sid_ps = RDMA_IB_IP_PS_UDP;
ps = &udp_ps;
}
if (ps) {
sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib)));
sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK |
be64_to_cpu(sib->sib_sid_mask));
}
return ps;
}
static int cma_get_port(struct rdma_id_private *id_priv)
{
struct idr *ps;
int ret;
if (cma_family(id_priv) != AF_IB)
ps = cma_select_inet_ps(id_priv);
else
ps = cma_select_ib_ps(id_priv);
if (!ps)
return -EPROTONOSUPPORT;
mutex_lock(&lock);
if (cma_any_port(cma_src_addr(id_priv)))
ret = cma_alloc_any_port(ps, id_priv);
else
ret = cma_use_port(ps, id_priv);
mutex_unlock(&lock);
return ret;
}
static int cma_check_linklocal(struct rdma_dev_addr *dev_addr,
struct sockaddr *addr)
{
#if IS_ENABLED(CONFIG_IPV6)
struct sockaddr_in6 *sin6;
if (addr->sa_family != AF_INET6)
return 0;
sin6 = (struct sockaddr_in6 *) addr;
if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL))
return 0;
if (!sin6->sin6_scope_id)
return -EINVAL;
dev_addr->bound_dev_if = sin6->sin6_scope_id;
#endif
return 0;
}
int rdma_listen(struct rdma_cm_id *id, int backlog)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (id_priv->state == RDMA_CM_IDLE) {
id->route.addr.src_addr.ss_family = AF_INET;
ret = rdma_bind_addr(id, cma_src_addr(id_priv));
if (ret)
return ret;
}
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN))
return -EINVAL;
if (id_priv->reuseaddr) {
ret = cma_bind_listen(id_priv);
if (ret)
goto err;
}
id_priv->backlog = backlog;
if (id->device) {
switch (rdma_node_get_transport(id->device->node_type)) {
case RDMA_TRANSPORT_IB:
ret = cma_ib_listen(id_priv);
if (ret)
goto err;
break;
case RDMA_TRANSPORT_IWARP:
ret = cma_iw_listen(id_priv, backlog);
if (ret)
goto err;
break;
default:
ret = -ENOSYS;
goto err;
}
} else
cma_listen_on_all(id_priv);
return 0;
err:
id_priv->backlog = 0;
cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND);
return ret;
}
EXPORT_SYMBOL(rdma_listen);
int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr)
{
struct rdma_id_private *id_priv;
int ret;
if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 &&
addr->sa_family != AF_IB)
return -EAFNOSUPPORT;
id_priv = container_of(id, struct rdma_id_private, id);
if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND))
return -EINVAL;
ret = cma_check_linklocal(&id->route.addr.dev_addr, addr);
if (ret)
goto err1;
memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr));
if (!cma_any_addr(addr)) {
ret = cma_translate_addr(addr, &id->route.addr.dev_addr);
if (ret)
goto err1;
ret = cma_acquire_dev(id_priv, NULL);
if (ret)
goto err1;
}
if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) {
if (addr->sa_family == AF_INET)
id_priv->afonly = 1;
#if IS_ENABLED(CONFIG_IPV6)
else if (addr->sa_family == AF_INET6)
id_priv->afonly = init_net.ipv6.sysctl.bindv6only;
#endif
}
ret = cma_get_port(id_priv);
if (ret)
goto err2;
return 0;
err2:
if (id_priv->cma_dev)
cma_release_dev(id_priv);
err1:
cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE);
return ret;
}
EXPORT_SYMBOL(rdma_bind_addr);
static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv)
{
struct cma_hdr *cma_hdr;
cma_hdr = hdr;
cma_hdr->cma_version = CMA_VERSION;
if (cma_family(id_priv) == AF_INET) {
struct sockaddr_in *src4, *dst4;
src4 = (struct sockaddr_in *) cma_src_addr(id_priv);
dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv);
cma_set_ip_ver(cma_hdr, 4);
cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr;
cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr;
cma_hdr->port = src4->sin_port;
} else if (cma_family(id_priv) == AF_INET6) {
struct sockaddr_in6 *src6, *dst6;
src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv);
cma_set_ip_ver(cma_hdr, 6);
cma_hdr->src_addr.ip6 = src6->sin6_addr;
cma_hdr->dst_addr.ip6 = dst6->sin6_addr;
cma_hdr->port = src6->sin6_port;
}
return 0;
}
static int cma_sidr_rep_handler(struct ib_cm_id *cm_id,
struct ib_cm_event *ib_event)
{
struct rdma_id_private *id_priv = cm_id->context;
struct rdma_cm_event event;
struct ib_cm_sidr_rep_event_param *rep = &ib_event->param.sidr_rep_rcvd;
int ret = 0;
if (cma_disable_callback(id_priv, RDMA_CM_CONNECT))
return 0;
memset(&event, 0, sizeof event);
switch (ib_event->event) {
case IB_CM_SIDR_REQ_ERROR:
event.event = RDMA_CM_EVENT_UNREACHABLE;
event.status = -ETIMEDOUT;
break;
case IB_CM_SIDR_REP_RECEIVED:
event.param.ud.private_data = ib_event->private_data;
event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE;
if (rep->status != IB_SIDR_SUCCESS) {
event.event = RDMA_CM_EVENT_UNREACHABLE;
event.status = ib_event->param.sidr_rep_rcvd.status;
break;
}
ret = cma_set_qkey(id_priv, rep->qkey);
if (ret) {
event.event = RDMA_CM_EVENT_ADDR_ERROR;
event.status = ret;
break;
}
ib_init_ah_from_path(id_priv->id.device, id_priv->id.port_num,
id_priv->id.route.path_rec,
&event.param.ud.ah_attr);
event.param.ud.qp_num = rep->qpn;
event.param.ud.qkey = rep->qkey;
event.event = RDMA_CM_EVENT_ESTABLISHED;
event.status = 0;
break;
default:
printk(KERN_ERR "RDMA CMA: unexpected IB CM event: %d\n",
ib_event->event);
goto out;
}
ret = id_priv->id.event_handler(&id_priv->id, &event);
if (ret) {
/* Destroy the CM ID by returning a non-zero value. */
id_priv->cm_id.ib = NULL;
cma_exch(id_priv, RDMA_CM_DESTROYING);
mutex_unlock(&id_priv->handler_mutex);
rdma_destroy_id(&id_priv->id);
return ret;
}
out:
mutex_unlock(&id_priv->handler_mutex);
return ret;
}
static int cma_resolve_ib_udp(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct ib_cm_sidr_req_param req;
struct ib_cm_id *id;
void *private_data;
int offset, ret;
memset(&req, 0, sizeof req);
offset = cma_user_data_offset(id_priv);
req.private_data_len = offset + conn_param->private_data_len;
if (req.private_data_len < conn_param->private_data_len)
return -EINVAL;
if (req.private_data_len) {
private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
if (!private_data)
return -ENOMEM;
} else {
private_data = NULL;
}
if (conn_param->private_data && conn_param->private_data_len)
memcpy(private_data + offset, conn_param->private_data,
conn_param->private_data_len);
if (private_data) {
ret = cma_format_hdr(private_data, id_priv);
if (ret)
goto out;
req.private_data = private_data;
}
id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler,
id_priv);
if (IS_ERR(id)) {
ret = PTR_ERR(id);
goto out;
}
id_priv->cm_id.ib = id;
req.path = id_priv->id.route.path_rec;
req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8);
req.max_cm_retries = CMA_MAX_CM_RETRIES;
ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req);
if (ret) {
ib_destroy_cm_id(id_priv->cm_id.ib);
id_priv->cm_id.ib = NULL;
}
out:
kfree(private_data);
return ret;
}
static int cma_connect_ib(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct ib_cm_req_param req;
struct rdma_route *route;
void *private_data;
struct ib_cm_id *id;
int offset, ret;
memset(&req, 0, sizeof req);
offset = cma_user_data_offset(id_priv);
req.private_data_len = offset + conn_param->private_data_len;
if (req.private_data_len < conn_param->private_data_len)
return -EINVAL;
if (req.private_data_len) {
private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
if (!private_data)
return -ENOMEM;
} else {
private_data = NULL;
}
if (conn_param->private_data && conn_param->private_data_len)
memcpy(private_data + offset, conn_param->private_data,
conn_param->private_data_len);
id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv);
if (IS_ERR(id)) {
ret = PTR_ERR(id);
goto out;
}
id_priv->cm_id.ib = id;
route = &id_priv->id.route;
if (private_data) {
ret = cma_format_hdr(private_data, id_priv);
if (ret)
goto out;
req.private_data = private_data;
}
req.primary_path = &route->path_rec[0];
if (route->num_paths == 2)
req.alternate_path = &route->path_rec[1];
req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
req.qp_num = id_priv->qp_num;
req.qp_type = id_priv->id.qp_type;
req.starting_psn = id_priv->seq_num;
req.responder_resources = conn_param->responder_resources;
req.initiator_depth = conn_param->initiator_depth;
req.flow_control = conn_param->flow_control;
req.retry_count = min_t(u8, 7, conn_param->retry_count);
req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
req.max_cm_retries = CMA_MAX_CM_RETRIES;
req.srq = id_priv->srq ? 1 : 0;
ret = ib_send_cm_req(id_priv->cm_id.ib, &req);
out:
if (ret && !IS_ERR(id)) {
ib_destroy_cm_id(id);
id_priv->cm_id.ib = NULL;
}
kfree(private_data);
return ret;
}
static int cma_connect_iw(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct iw_cm_id *cm_id;
int ret;
struct iw_cm_conn_param iw_param;
cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv);
if (IS_ERR(cm_id))
return PTR_ERR(cm_id);
id_priv->cm_id.iw = cm_id;
memcpy(&cm_id->local_addr, cma_src_addr(id_priv),
rdma_addr_size(cma_src_addr(id_priv)));
memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv),
rdma_addr_size(cma_dst_addr(id_priv)));
ret = cma_modify_qp_rtr(id_priv, conn_param);
if (ret)
goto out;
if (conn_param) {
iw_param.ord = conn_param->initiator_depth;
iw_param.ird = conn_param->responder_resources;
iw_param.private_data = conn_param->private_data;
iw_param.private_data_len = conn_param->private_data_len;
iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num;
} else {
memset(&iw_param, 0, sizeof iw_param);
iw_param.qpn = id_priv->qp_num;
}
ret = iw_cm_connect(cm_id, &iw_param);
out:
if (ret) {
iw_destroy_cm_id(cm_id);
id_priv->cm_id.iw = NULL;
}
return ret;
}
int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT))
return -EINVAL;
if (!id->qp) {
id_priv->qp_num = conn_param->qp_num;
id_priv->srq = conn_param->srq;
}
switch (rdma_node_get_transport(id->device->node_type)) {
case RDMA_TRANSPORT_IB:
if (id->qp_type == IB_QPT_UD)
ret = cma_resolve_ib_udp(id_priv, conn_param);
else
ret = cma_connect_ib(id_priv, conn_param);
break;
case RDMA_TRANSPORT_IWARP:
ret = cma_connect_iw(id_priv, conn_param);
break;
default:
ret = -ENOSYS;
break;
}
if (ret)
goto err;
return 0;
err:
cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED);
return ret;
}
EXPORT_SYMBOL(rdma_connect);
static int cma_accept_ib(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct ib_cm_rep_param rep;
int ret;
ret = cma_modify_qp_rtr(id_priv, conn_param);
if (ret)
goto out;
ret = cma_modify_qp_rts(id_priv, conn_param);
if (ret)
goto out;
memset(&rep, 0, sizeof rep);
rep.qp_num = id_priv->qp_num;
rep.starting_psn = id_priv->seq_num;
rep.private_data = conn_param->private_data;
rep.private_data_len = conn_param->private_data_len;
rep.responder_resources = conn_param->responder_resources;
rep.initiator_depth = conn_param->initiator_depth;
rep.failover_accepted = 0;
rep.flow_control = conn_param->flow_control;
rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
rep.srq = id_priv->srq ? 1 : 0;
ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep);
out:
return ret;
}
static int cma_accept_iw(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct iw_cm_conn_param iw_param;
int ret;
ret = cma_modify_qp_rtr(id_priv, conn_param);
if (ret)
return ret;
iw_param.ord = conn_param->initiator_depth;
iw_param.ird = conn_param->responder_resources;
iw_param.private_data = conn_param->private_data;
iw_param.private_data_len = conn_param->private_data_len;
if (id_priv->id.qp) {
iw_param.qpn = id_priv->qp_num;
} else
iw_param.qpn = conn_param->qp_num;
return iw_cm_accept(id_priv->cm_id.iw, &iw_param);
}
static int cma_send_sidr_rep(struct rdma_id_private *id_priv,
enum ib_cm_sidr_status status, u32 qkey,
const void *private_data, int private_data_len)
{
struct ib_cm_sidr_rep_param rep;
int ret;
memset(&rep, 0, sizeof rep);
rep.status = status;
if (status == IB_SIDR_SUCCESS) {
ret = cma_set_qkey(id_priv, qkey);
if (ret)
return ret;
rep.qp_num = id_priv->qp_num;
rep.qkey = id_priv->qkey;
}
rep.private_data = private_data;
rep.private_data_len = private_data_len;
return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep);
}
int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
id_priv->owner = task_pid_nr(current);
if (!cma_comp(id_priv, RDMA_CM_CONNECT))
return -EINVAL;
if (!id->qp && conn_param) {
id_priv->qp_num = conn_param->qp_num;
id_priv->srq = conn_param->srq;
}
switch (rdma_node_get_transport(id->device->node_type)) {
case RDMA_TRANSPORT_IB:
if (id->qp_type == IB_QPT_UD) {
if (conn_param)
ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
conn_param->qkey,
conn_param->private_data,
conn_param->private_data_len);
else
ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
0, NULL, 0);
} else {
if (conn_param)
ret = cma_accept_ib(id_priv, conn_param);
else
ret = cma_rep_recv(id_priv);
}
break;
case RDMA_TRANSPORT_IWARP:
ret = cma_accept_iw(id_priv, conn_param);
break;
default:
ret = -ENOSYS;
break;
}
if (ret)
goto reject;
return 0;
reject:
cma_modify_qp_err(id_priv);
rdma_reject(id, NULL, 0);
return ret;
}
EXPORT_SYMBOL(rdma_accept);
int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (!id_priv->cm_id.ib)
return -EINVAL;
switch (id->device->node_type) {
case RDMA_NODE_IB_CA:
ret = ib_cm_notify(id_priv->cm_id.ib, event);
break;
default:
ret = 0;
break;
}
return ret;
}
EXPORT_SYMBOL(rdma_notify);
int rdma_reject(struct rdma_cm_id *id, const void *private_data,
u8 private_data_len)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (!id_priv->cm_id.ib)
return -EINVAL;
switch (rdma_node_get_transport(id->device->node_type)) {
case RDMA_TRANSPORT_IB:
if (id->qp_type == IB_QPT_UD)
ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0,
private_data, private_data_len);
else
ret = ib_send_cm_rej(id_priv->cm_id.ib,
IB_CM_REJ_CONSUMER_DEFINED, NULL,
0, private_data, private_data_len);
break;
case RDMA_TRANSPORT_IWARP:
ret = iw_cm_reject(id_priv->cm_id.iw,
private_data, private_data_len);
break;
default:
ret = -ENOSYS;
break;
}
return ret;
}
EXPORT_SYMBOL(rdma_reject);
int rdma_disconnect(struct rdma_cm_id *id)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (!id_priv->cm_id.ib)
return -EINVAL;
switch (rdma_node_get_transport(id->device->node_type)) {
case RDMA_TRANSPORT_IB:
ret = cma_modify_qp_err(id_priv);
if (ret)
goto out;
/* Initiate or respond to a disconnect. */
if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0))
ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0);
break;
case RDMA_TRANSPORT_IWARP:
ret = iw_cm_disconnect(id_priv->cm_id.iw, 0);
break;
default:
ret = -EINVAL;
break;
}
out:
return ret;
}
EXPORT_SYMBOL(rdma_disconnect);
static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast)
{
struct rdma_id_private *id_priv;
struct cma_multicast *mc = multicast->context;
struct rdma_cm_event event;
int ret;
id_priv = mc->id_priv;
if (cma_disable_callback(id_priv, RDMA_CM_ADDR_BOUND) &&
cma_disable_callback(id_priv, RDMA_CM_ADDR_RESOLVED))
return 0;
if (!status)
status = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey));
mutex_lock(&id_priv->qp_mutex);
if (!status && id_priv->id.qp)
status = ib_attach_mcast(id_priv->id.qp, &multicast->rec.mgid,
be16_to_cpu(multicast->rec.mlid));
mutex_unlock(&id_priv->qp_mutex);
memset(&event, 0, sizeof event);
event.status = status;
event.param.ud.private_data = mc->context;
if (!status) {
event.event = RDMA_CM_EVENT_MULTICAST_JOIN;
ib_init_ah_from_mcmember(id_priv->id.device,
id_priv->id.port_num, &multicast->rec,
&event.param.ud.ah_attr);
event.param.ud.qp_num = 0xFFFFFF;
event.param.ud.qkey = be32_to_cpu(multicast->rec.qkey);
} else
event.event = RDMA_CM_EVENT_MULTICAST_ERROR;
ret = id_priv->id.event_handler(&id_priv->id, &event);
if (ret) {
cma_exch(id_priv, RDMA_CM_DESTROYING);
mutex_unlock(&id_priv->handler_mutex);
rdma_destroy_id(&id_priv->id);
return 0;
}
mutex_unlock(&id_priv->handler_mutex);
return 0;
}
static void cma_set_mgid(struct rdma_id_private *id_priv,
struct sockaddr *addr, union ib_gid *mgid)
{
unsigned char mc_map[MAX_ADDR_LEN];
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
struct sockaddr_in *sin = (struct sockaddr_in *) addr;
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr;
if (cma_any_addr(addr)) {
memset(mgid, 0, sizeof *mgid);
} else if ((addr->sa_family == AF_INET6) &&
((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) ==
0xFF10A01B)) {
/* IPv6 address is an SA assigned MGID. */
memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
} else if (addr->sa_family == AF_IB) {
memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid);
} else if ((addr->sa_family == AF_INET6)) {
ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map);
if (id_priv->id.ps == RDMA_PS_UDP)
mc_map[7] = 0x01; /* Use RDMA CM signature */
*mgid = *(union ib_gid *) (mc_map + 4);
} else {
ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map);
if (id_priv->id.ps == RDMA_PS_UDP)
mc_map[7] = 0x01; /* Use RDMA CM signature */
*mgid = *(union ib_gid *) (mc_map + 4);
}
}
static int cma_join_ib_multicast(struct rdma_id_private *id_priv,
struct cma_multicast *mc)
{
struct ib_sa_mcmember_rec rec;
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
ib_sa_comp_mask comp_mask;
int ret;
ib_addr_get_mgid(dev_addr, &rec.mgid);
ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num,
&rec.mgid, &rec);
if (ret)
return ret;
ret = cma_set_qkey(id_priv, 0);
if (ret)
return ret;
cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid);
rec.qkey = cpu_to_be32(id_priv->qkey);
RDMA/cm: fix loopback address support The RDMA CM is intended to support the use of a loopback address when establishing a connection; however, the behavior of the CM when loopback addresses are used is confusing and does not always work, depending on whether loopback was specified by the server, the client, or both. The defined behavior of rdma_bind_addr is to associate an RDMA device with an rdma_cm_id, as long as the user specified a non- zero address. (ie they weren't just trying to reserve a port) Currently, if the loopback address is passed to rdam_bind_addr, no device is associated with the rdma_cm_id. Fix this. If a loopback address is specified by the client as the destination address for a connection, it will fail to establish a connection. This is true even if the server is listing across all addresses or on the loopback address itself. The issue is that the server tries to translate the IP address carried in the REQ message to a local net_device address, which fails. The translation is not needed in this case, since the REQ carries the actual HW address that should be used. Finally, cleanup loopback support to be more transport neutral. Replace separate calls to get/set the sgid and dgid from the device address to a single call that behaves correctly depending on the format of the device address. And support both IPv4 and IPv6 address formats. Signed-off-by: Sean Hefty <sean.hefty@intel.com> [ Fixed RDS build by s/ib_addr_get/rdma_addr_get/ - Roland ] Signed-off-by: Roland Dreier <rolandd@cisco.com>
2009-11-20 05:26:06 +08:00
rdma_addr_get_sgid(dev_addr, &rec.port_gid);
rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
rec.join_state = 1;
comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID |
IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE |
IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL |
IB_SA_MCMEMBER_REC_FLOW_LABEL |
IB_SA_MCMEMBER_REC_TRAFFIC_CLASS;
if (id_priv->id.ps == RDMA_PS_IPOIB)
comp_mask |= IB_SA_MCMEMBER_REC_RATE |
IB_SA_MCMEMBER_REC_RATE_SELECTOR |
IB_SA_MCMEMBER_REC_MTU_SELECTOR |
IB_SA_MCMEMBER_REC_MTU |
IB_SA_MCMEMBER_REC_HOP_LIMIT;
mc->multicast.ib = ib_sa_join_multicast(&sa_client, id_priv->id.device,
id_priv->id.port_num, &rec,
comp_mask, GFP_KERNEL,
cma_ib_mc_handler, mc);
return PTR_ERR_OR_ZERO(mc->multicast.ib);
}
static void iboe_mcast_work_handler(struct work_struct *work)
{
struct iboe_mcast_work *mw = container_of(work, struct iboe_mcast_work, work);
struct cma_multicast *mc = mw->mc;
struct ib_sa_multicast *m = mc->multicast.ib;
mc->multicast.ib->context = mc;
cma_ib_mc_handler(0, m);
kref_put(&mc->mcref, release_mc);
kfree(mw);
}
static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid)
{
struct sockaddr_in *sin = (struct sockaddr_in *)addr;
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr;
if (cma_any_addr(addr)) {
memset(mgid, 0, sizeof *mgid);
} else if (addr->sa_family == AF_INET6) {
memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
} else {
mgid->raw[0] = 0xff;
mgid->raw[1] = 0x0e;
mgid->raw[2] = 0;
mgid->raw[3] = 0;
mgid->raw[4] = 0;
mgid->raw[5] = 0;
mgid->raw[6] = 0;
mgid->raw[7] = 0;
mgid->raw[8] = 0;
mgid->raw[9] = 0;
mgid->raw[10] = 0xff;
mgid->raw[11] = 0xff;
*(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr;
}
}
static int cma_iboe_join_multicast(struct rdma_id_private *id_priv,
struct cma_multicast *mc)
{
struct iboe_mcast_work *work;
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
int err;
struct sockaddr *addr = (struct sockaddr *)&mc->addr;
struct net_device *ndev = NULL;
if (cma_zero_addr((struct sockaddr *)&mc->addr))
return -EINVAL;
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
mc->multicast.ib = kzalloc(sizeof(struct ib_sa_multicast), GFP_KERNEL);
if (!mc->multicast.ib) {
err = -ENOMEM;
goto out1;
}
cma_iboe_set_mgid(addr, &mc->multicast.ib->rec.mgid);
mc->multicast.ib->rec.pkey = cpu_to_be16(0xffff);
if (id_priv->id.ps == RDMA_PS_UDP)
mc->multicast.ib->rec.qkey = cpu_to_be32(RDMA_UDP_QKEY);
if (dev_addr->bound_dev_if)
ndev = dev_get_by_index(&init_net, dev_addr->bound_dev_if);
if (!ndev) {
err = -ENODEV;
goto out2;
}
mc->multicast.ib->rec.rate = iboe_get_rate(ndev);
mc->multicast.ib->rec.hop_limit = 1;
mc->multicast.ib->rec.mtu = iboe_get_mtu(ndev->mtu);
dev_put(ndev);
if (!mc->multicast.ib->rec.mtu) {
err = -EINVAL;
goto out2;
}
rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
&mc->multicast.ib->rec.port_gid);
work->id = id_priv;
work->mc = mc;
INIT_WORK(&work->work, iboe_mcast_work_handler);
kref_get(&mc->mcref);
queue_work(cma_wq, &work->work);
return 0;
out2:
kfree(mc->multicast.ib);
out1:
kfree(work);
return err;
}
int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr,
void *context)
{
struct rdma_id_private *id_priv;
struct cma_multicast *mc;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (!cma_comp(id_priv, RDMA_CM_ADDR_BOUND) &&
!cma_comp(id_priv, RDMA_CM_ADDR_RESOLVED))
return -EINVAL;
mc = kmalloc(sizeof *mc, GFP_KERNEL);
if (!mc)
return -ENOMEM;
memcpy(&mc->addr, addr, rdma_addr_size(addr));
mc->context = context;
mc->id_priv = id_priv;
spin_lock(&id_priv->lock);
list_add(&mc->list, &id_priv->mc_list);
spin_unlock(&id_priv->lock);
switch (rdma_node_get_transport(id->device->node_type)) {
case RDMA_TRANSPORT_IB:
switch (rdma_port_get_link_layer(id->device, id->port_num)) {
case IB_LINK_LAYER_INFINIBAND:
ret = cma_join_ib_multicast(id_priv, mc);
break;
case IB_LINK_LAYER_ETHERNET:
kref_init(&mc->mcref);
ret = cma_iboe_join_multicast(id_priv, mc);
break;
default:
ret = -EINVAL;
}
break;
default:
ret = -ENOSYS;
break;
}
if (ret) {
spin_lock_irq(&id_priv->lock);
list_del(&mc->list);
spin_unlock_irq(&id_priv->lock);
kfree(mc);
}
return ret;
}
EXPORT_SYMBOL(rdma_join_multicast);
void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr)
{
struct rdma_id_private *id_priv;
struct cma_multicast *mc;
id_priv = container_of(id, struct rdma_id_private, id);
spin_lock_irq(&id_priv->lock);
list_for_each_entry(mc, &id_priv->mc_list, list) {
if (!memcmp(&mc->addr, addr, rdma_addr_size(addr))) {
list_del(&mc->list);
spin_unlock_irq(&id_priv->lock);
if (id->qp)
ib_detach_mcast(id->qp,
&mc->multicast.ib->rec.mgid,
be16_to_cpu(mc->multicast.ib->rec.mlid));
if (rdma_node_get_transport(id_priv->cma_dev->device->node_type) == RDMA_TRANSPORT_IB) {
switch (rdma_port_get_link_layer(id->device, id->port_num)) {
case IB_LINK_LAYER_INFINIBAND:
ib_sa_free_multicast(mc->multicast.ib);
kfree(mc);
break;
case IB_LINK_LAYER_ETHERNET:
kref_put(&mc->mcref, release_mc);
break;
default:
break;
}
}
return;
}
}
spin_unlock_irq(&id_priv->lock);
}
EXPORT_SYMBOL(rdma_leave_multicast);
static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv)
{
struct rdma_dev_addr *dev_addr;
struct cma_ndev_work *work;
dev_addr = &id_priv->id.route.addr.dev_addr;
if ((dev_addr->bound_dev_if == ndev->ifindex) &&
memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) {
printk(KERN_INFO "RDMA CM addr change for ndev %s used by id %p\n",
ndev->name, &id_priv->id);
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
INIT_WORK(&work->work, cma_ndev_work_handler);
work->id = id_priv;
work->event.event = RDMA_CM_EVENT_ADDR_CHANGE;
atomic_inc(&id_priv->refcount);
queue_work(cma_wq, &work->work);
}
return 0;
}
static int cma_netdev_callback(struct notifier_block *self, unsigned long event,
void *ptr)
{
struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
struct cma_device *cma_dev;
struct rdma_id_private *id_priv;
int ret = NOTIFY_DONE;
if (dev_net(ndev) != &init_net)
return NOTIFY_DONE;
if (event != NETDEV_BONDING_FAILOVER)
return NOTIFY_DONE;
if (!(ndev->flags & IFF_MASTER) || !(ndev->priv_flags & IFF_BONDING))
return NOTIFY_DONE;
mutex_lock(&lock);
list_for_each_entry(cma_dev, &dev_list, list)
list_for_each_entry(id_priv, &cma_dev->id_list, list) {
ret = cma_netdev_change(ndev, id_priv);
if (ret)
goto out;
}
out:
mutex_unlock(&lock);
return ret;
}
static struct notifier_block cma_nb = {
.notifier_call = cma_netdev_callback
};
static void cma_add_one(struct ib_device *device)
{
struct cma_device *cma_dev;
struct rdma_id_private *id_priv;
cma_dev = kmalloc(sizeof *cma_dev, GFP_KERNEL);
if (!cma_dev)
return;
cma_dev->device = device;
init_completion(&cma_dev->comp);
atomic_set(&cma_dev->refcount, 1);
INIT_LIST_HEAD(&cma_dev->id_list);
ib_set_client_data(device, &cma_client, cma_dev);
mutex_lock(&lock);
list_add_tail(&cma_dev->list, &dev_list);
list_for_each_entry(id_priv, &listen_any_list, list)
cma_listen_on_dev(id_priv, cma_dev);
mutex_unlock(&lock);
}
static int cma_remove_id_dev(struct rdma_id_private *id_priv)
{
struct rdma_cm_event event;
enum rdma_cm_state state;
int ret = 0;
/* Record that we want to remove the device */
state = cma_exch(id_priv, RDMA_CM_DEVICE_REMOVAL);
if (state == RDMA_CM_DESTROYING)
return 0;
cma_cancel_operation(id_priv, state);
mutex_lock(&id_priv->handler_mutex);
/* Check for destruction from another callback. */
if (!cma_comp(id_priv, RDMA_CM_DEVICE_REMOVAL))
goto out;
memset(&event, 0, sizeof event);
event.event = RDMA_CM_EVENT_DEVICE_REMOVAL;
ret = id_priv->id.event_handler(&id_priv->id, &event);
out:
mutex_unlock(&id_priv->handler_mutex);
return ret;
}
static void cma_process_remove(struct cma_device *cma_dev)
{
struct rdma_id_private *id_priv;
int ret;
mutex_lock(&lock);
while (!list_empty(&cma_dev->id_list)) {
id_priv = list_entry(cma_dev->id_list.next,
struct rdma_id_private, list);
list_del(&id_priv->listen_list);
list_del_init(&id_priv->list);
atomic_inc(&id_priv->refcount);
mutex_unlock(&lock);
ret = id_priv->internal_id ? 1 : cma_remove_id_dev(id_priv);
cma_deref_id(id_priv);
if (ret)
rdma_destroy_id(&id_priv->id);
mutex_lock(&lock);
}
mutex_unlock(&lock);
cma_deref_dev(cma_dev);
wait_for_completion(&cma_dev->comp);
}
static void cma_remove_one(struct ib_device *device)
{
struct cma_device *cma_dev;
cma_dev = ib_get_client_data(device, &cma_client);
if (!cma_dev)
return;
mutex_lock(&lock);
list_del(&cma_dev->list);
mutex_unlock(&lock);
cma_process_remove(cma_dev);
kfree(cma_dev);
}
static int cma_get_id_stats(struct sk_buff *skb, struct netlink_callback *cb)
{
struct nlmsghdr *nlh;
struct rdma_cm_id_stats *id_stats;
struct rdma_id_private *id_priv;
struct rdma_cm_id *id = NULL;
struct cma_device *cma_dev;
int i_dev = 0, i_id = 0;
/*
* We export all of the IDs as a sequence of messages. Each
* ID gets its own netlink message.
*/
mutex_lock(&lock);
list_for_each_entry(cma_dev, &dev_list, list) {
if (i_dev < cb->args[0]) {
i_dev++;
continue;
}
i_id = 0;
list_for_each_entry(id_priv, &cma_dev->id_list, list) {
if (i_id < cb->args[1]) {
i_id++;
continue;
}
id_stats = ibnl_put_msg(skb, &nlh, cb->nlh->nlmsg_seq,
sizeof *id_stats, RDMA_NL_RDMA_CM,
RDMA_NL_RDMA_CM_ID_STATS);
if (!id_stats)
goto out;
memset(id_stats, 0, sizeof *id_stats);
id = &id_priv->id;
id_stats->node_type = id->route.addr.dev_addr.dev_type;
id_stats->port_num = id->port_num;
id_stats->bound_dev_if =
id->route.addr.dev_addr.bound_dev_if;
if (ibnl_put_attr(skb, nlh,
rdma_addr_size(cma_src_addr(id_priv)),
cma_src_addr(id_priv),
RDMA_NL_RDMA_CM_ATTR_SRC_ADDR))
goto out;
if (ibnl_put_attr(skb, nlh,
rdma_addr_size(cma_src_addr(id_priv)),
cma_dst_addr(id_priv),
RDMA_NL_RDMA_CM_ATTR_DST_ADDR))
goto out;
id_stats->pid = id_priv->owner;
id_stats->port_space = id->ps;
id_stats->cm_state = id_priv->state;
id_stats->qp_num = id_priv->qp_num;
id_stats->qp_type = id->qp_type;
i_id++;
}
cb->args[1] = 0;
i_dev++;
}
out:
mutex_unlock(&lock);
cb->args[0] = i_dev;
cb->args[1] = i_id;
return skb->len;
}
static const struct ibnl_client_cbs cma_cb_table[] = {
[RDMA_NL_RDMA_CM_ID_STATS] = { .dump = cma_get_id_stats,
.module = THIS_MODULE },
};
static int __init cma_init(void)
{
int ret;
cma_wq = create_singlethread_workqueue("rdma_cm");
if (!cma_wq)
return -ENOMEM;
ib_sa_register_client(&sa_client);
rdma_addr_register_client(&addr_client);
register_netdevice_notifier(&cma_nb);
ret = ib_register_client(&cma_client);
if (ret)
goto err;
if (ibnl_add_client(RDMA_NL_RDMA_CM, RDMA_NL_RDMA_CM_NUM_OPS, cma_cb_table))
printk(KERN_WARNING "RDMA CMA: failed to add netlink callback\n");
return 0;
err:
unregister_netdevice_notifier(&cma_nb);
rdma_addr_unregister_client(&addr_client);
ib_sa_unregister_client(&sa_client);
destroy_workqueue(cma_wq);
return ret;
}
static void __exit cma_cleanup(void)
{
ibnl_remove_client(RDMA_NL_RDMA_CM);
ib_unregister_client(&cma_client);
unregister_netdevice_notifier(&cma_nb);
rdma_addr_unregister_client(&addr_client);
ib_sa_unregister_client(&sa_client);
destroy_workqueue(cma_wq);
idr_destroy(&tcp_ps);
idr_destroy(&udp_ps);
idr_destroy(&ipoib_ps);
idr_destroy(&ib_ps);
}
module_init(cma_init);
module_exit(cma_cleanup);