2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 15:44:01 +08:00
linux-next/arch/x86/crypto/Makefile

44 lines
1.8 KiB
Makefile
Raw Normal View History

#
# Arch-specific CryptoAPI modules.
#
obj-$(CONFIG_CRYPTO_AES_586) += aes-i586.o
obj-$(CONFIG_CRYPTO_TWOFISH_586) += twofish-i586.o
obj-$(CONFIG_CRYPTO_SALSA20_586) += salsa20-i586.o
obj-$(CONFIG_CRYPTO_SERPENT_SSE2_586) += serpent-sse2-i586.o
obj-$(CONFIG_CRYPTO_AES_X86_64) += aes-x86_64.o
obj-$(CONFIG_CRYPTO_BLOWFISH_X86_64) += blowfish-x86_64.o
obj-$(CONFIG_CRYPTO_TWOFISH_X86_64) += twofish-x86_64.o
crypto: twofish - add 3-way parallel x86_64 assembler implemention Patch adds 3-way parallel x86_64 assembly implementation of twofish as new module. New assembler functions crypt data in three blocks chunks, improving cipher performance on out-of-order CPUs. Patch has been tested with tcrypt and automated filesystem tests. Summary of the tcrypt benchmarks: Twofish 3-way-asm vs twofish asm (128bit 8kb block ECB) encrypt: 1.3x speed decrypt: 1.3x speed Twofish 3-way-asm vs twofish asm (128bit 8kb block CBC) encrypt: 1.07x speed decrypt: 1.4x speed Twofish 3-way-asm vs twofish asm (128bit 8kb block CTR) encrypt: 1.4x speed Twofish 3-way-asm vs AES asm (128bit 8kb block ECB) encrypt: 1.0x speed decrypt: 1.0x speed Twofish 3-way-asm vs AES asm (128bit 8kb block CBC) encrypt: 0.84x speed decrypt: 1.09x speed Twofish 3-way-asm vs AES asm (128bit 8kb block CTR) encrypt: 1.15x speed Full output: http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-twofish-3way-asm-x86_64.txt http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-twofish-asm-x86_64.txt http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-aes-asm-x86_64.txt Tests were run on: vendor_id : AuthenticAMD cpu family : 16 model : 10 model name : AMD Phenom(tm) II X6 1055T Processor Also userspace test were run on: vendor_id : GenuineIntel cpu family : 6 model : 15 model name : Intel(R) Xeon(R) CPU E7330 @ 2.40GHz stepping : 11 Userspace test results: Encryption/decryption of twofish 3-way vs x86_64-asm on AMD Phenom II: encrypt: 1.27x decrypt: 1.25x Encryption/decryption of twofish 3-way vs x86_64-asm on Intel Xeon E7330: encrypt: 1.36x decrypt: 1.36x Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-09-26 21:47:25 +08:00
obj-$(CONFIG_CRYPTO_TWOFISH_X86_64_3WAY) += twofish-x86_64-3way.o
obj-$(CONFIG_CRYPTO_SALSA20_X86_64) += salsa20-x86_64.o
crypto: serpent - add 8-way parallel x86_64/SSE2 assembler implementation Patch adds x86_64/SSE2 assembler implementation of serpent cipher. Assembler functions crypt data in eigth block chunks (two 4 block chunk SSE2 operations in parallel to improve performance on out-of-order CPUs). Glue code is based on one from AES-NI implementation, so requests from irq context are redirected to cryptd. v2: - add missing include of linux/module.h (appearently crypto.h used to include module.h, which changed for 3.2 by commit 7c926402a7e8c9b279968fd94efec8700ba3859e) Patch has been tested with tcrypt and automated filesystem tests. Tcrypt benchmarks results (serpent-sse2/serpent_generic speed ratios): AMD Phenom II 1055T (fam:16, model:10): size ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec 16B 1.03x 1.01x 1.03x 1.05x 1.00x 0.99x 64B 1.00x 1.01x 1.02x 1.04x 1.02x 1.01x 256B 2.34x 2.41x 0.99x 2.43x 2.39x 2.40x 1024B 2.51x 2.57x 1.00x 2.59x 2.56x 2.56x 8192B 2.50x 2.54x 1.00x 2.55x 2.57x 2.57x Intel Celeron T1600 (fam:6, model:15, step:13): size ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec 16B 0.97x 0.97x 1.01x 1.01x 1.01x 1.02x 64B 1.00x 1.00x 1.00x 1.02x 1.01x 1.01x 256B 3.41x 3.35x 1.00x 3.39x 3.42x 3.44x 1024B 3.75x 3.72x 0.99x 3.74x 3.75x 3.75x 8192B 3.70x 3.68x 0.99x 3.68x 3.69x 3.69x Full output: http://koti.mbnet.fi/axh/kernel/crypto/phenom-ii-1055t/serpent-generic.txt http://koti.mbnet.fi/axh/kernel/crypto/phenom-ii-1055t/serpent-sse2.txt http://koti.mbnet.fi/axh/kernel/crypto/celeron-t1600/serpent-generic.txt http://koti.mbnet.fi/axh/kernel/crypto/celeron-t1600/serpent-sse2.txt Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-11-09 22:26:25 +08:00
obj-$(CONFIG_CRYPTO_SERPENT_SSE2_X86_64) += serpent-sse2-x86_64.o
obj-$(CONFIG_CRYPTO_AES_NI_INTEL) += aesni-intel.o
obj-$(CONFIG_CRYPTO_GHASH_CLMUL_NI_INTEL) += ghash-clmulni-intel.o
obj-$(CONFIG_CRYPTO_CRC32C_INTEL) += crc32c-intel.o
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
obj-$(CONFIG_CRYPTO_SHA1_SSSE3) += sha1-ssse3.o
aes-i586-y := aes-i586-asm_32.o aes_glue.o
twofish-i586-y := twofish-i586-asm_32.o twofish_glue.o
salsa20-i586-y := salsa20-i586-asm_32.o salsa20_glue.o
serpent-sse2-i586-y := serpent-sse2-i586-asm_32.o serpent_sse2_glue.o
aes-x86_64-y := aes-x86_64-asm_64.o aes_glue.o
blowfish-x86_64-y := blowfish-x86_64-asm_64.o blowfish_glue.o
twofish-x86_64-y := twofish-x86_64-asm_64.o twofish_glue.o
crypto: twofish - add 3-way parallel x86_64 assembler implemention Patch adds 3-way parallel x86_64 assembly implementation of twofish as new module. New assembler functions crypt data in three blocks chunks, improving cipher performance on out-of-order CPUs. Patch has been tested with tcrypt and automated filesystem tests. Summary of the tcrypt benchmarks: Twofish 3-way-asm vs twofish asm (128bit 8kb block ECB) encrypt: 1.3x speed decrypt: 1.3x speed Twofish 3-way-asm vs twofish asm (128bit 8kb block CBC) encrypt: 1.07x speed decrypt: 1.4x speed Twofish 3-way-asm vs twofish asm (128bit 8kb block CTR) encrypt: 1.4x speed Twofish 3-way-asm vs AES asm (128bit 8kb block ECB) encrypt: 1.0x speed decrypt: 1.0x speed Twofish 3-way-asm vs AES asm (128bit 8kb block CBC) encrypt: 0.84x speed decrypt: 1.09x speed Twofish 3-way-asm vs AES asm (128bit 8kb block CTR) encrypt: 1.15x speed Full output: http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-twofish-3way-asm-x86_64.txt http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-twofish-asm-x86_64.txt http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-aes-asm-x86_64.txt Tests were run on: vendor_id : AuthenticAMD cpu family : 16 model : 10 model name : AMD Phenom(tm) II X6 1055T Processor Also userspace test were run on: vendor_id : GenuineIntel cpu family : 6 model : 15 model name : Intel(R) Xeon(R) CPU E7330 @ 2.40GHz stepping : 11 Userspace test results: Encryption/decryption of twofish 3-way vs x86_64-asm on AMD Phenom II: encrypt: 1.27x decrypt: 1.25x Encryption/decryption of twofish 3-way vs x86_64-asm on Intel Xeon E7330: encrypt: 1.36x decrypt: 1.36x Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-09-26 21:47:25 +08:00
twofish-x86_64-3way-y := twofish-x86_64-asm_64-3way.o twofish_glue_3way.o
salsa20-x86_64-y := salsa20-x86_64-asm_64.o salsa20_glue.o
crypto: serpent - add 8-way parallel x86_64/SSE2 assembler implementation Patch adds x86_64/SSE2 assembler implementation of serpent cipher. Assembler functions crypt data in eigth block chunks (two 4 block chunk SSE2 operations in parallel to improve performance on out-of-order CPUs). Glue code is based on one from AES-NI implementation, so requests from irq context are redirected to cryptd. v2: - add missing include of linux/module.h (appearently crypto.h used to include module.h, which changed for 3.2 by commit 7c926402a7e8c9b279968fd94efec8700ba3859e) Patch has been tested with tcrypt and automated filesystem tests. Tcrypt benchmarks results (serpent-sse2/serpent_generic speed ratios): AMD Phenom II 1055T (fam:16, model:10): size ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec 16B 1.03x 1.01x 1.03x 1.05x 1.00x 0.99x 64B 1.00x 1.01x 1.02x 1.04x 1.02x 1.01x 256B 2.34x 2.41x 0.99x 2.43x 2.39x 2.40x 1024B 2.51x 2.57x 1.00x 2.59x 2.56x 2.56x 8192B 2.50x 2.54x 1.00x 2.55x 2.57x 2.57x Intel Celeron T1600 (fam:6, model:15, step:13): size ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec 16B 0.97x 0.97x 1.01x 1.01x 1.01x 1.02x 64B 1.00x 1.00x 1.00x 1.02x 1.01x 1.01x 256B 3.41x 3.35x 1.00x 3.39x 3.42x 3.44x 1024B 3.75x 3.72x 0.99x 3.74x 3.75x 3.75x 8192B 3.70x 3.68x 0.99x 3.68x 3.69x 3.69x Full output: http://koti.mbnet.fi/axh/kernel/crypto/phenom-ii-1055t/serpent-generic.txt http://koti.mbnet.fi/axh/kernel/crypto/phenom-ii-1055t/serpent-sse2.txt http://koti.mbnet.fi/axh/kernel/crypto/celeron-t1600/serpent-generic.txt http://koti.mbnet.fi/axh/kernel/crypto/celeron-t1600/serpent-sse2.txt Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-11-09 22:26:25 +08:00
serpent-sse2-x86_64-y := serpent-sse2-x86_64-asm_64.o serpent_sse2_glue.o
aesni-intel-y := aesni-intel_asm.o aesni-intel_glue.o fpu.o
ghash-clmulni-intel-y := ghash-clmulni-intel_asm.o ghash-clmulni-intel_glue.o
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
# enable AVX support only when $(AS) can actually assemble the instructions
ifeq ($(call as-instr,vpxor %xmm0$(comma)%xmm1$(comma)%xmm2,yes,no),yes)
AFLAGS_sha1_ssse3_asm.o += -DSHA1_ENABLE_AVX_SUPPORT
CFLAGS_sha1_ssse3_glue.o += -DSHA1_ENABLE_AVX_SUPPORT
endif
sha1-ssse3-y := sha1_ssse3_asm.o sha1_ssse3_glue.o